Parameter Estimation of Power Function Distribution with TL-moments
Accurate estimation of parameters of a probability distribution is of immense importance in statistics. Biased and imprecise estimation of parameters can lead to erroneous results. Our focus is to estimate the parameter of Power function distribution accurately because this density is now widely use...
- Autores:
-
Naveed-Shahzad, Mirza
Asghar, Zahid
Shehzad, Farrukh
Shahzadi, Mubeen
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66528
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66528
http://bdigital.unal.edu.co/67556/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Moments
Monte Carlo Simulation
Order Statistics
Parameter estimation
Power function distribution
Distribución de función de potencias
Estadísticas de orden
Estimación de parámetros
Momentos
Simulación de Monte Carlo.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Accurate estimation of parameters of a probability distribution is of immense importance in statistics. Biased and imprecise estimation of parameters can lead to erroneous results. Our focus is to estimate the parameter of Power function distribution accurately because this density is now widely used for modelling various types of data. In this study, L-moments, TL-moments, LL-moments and LH-moments of Power function distribution are derived. In addition, the coefficient of variation, skewness and kurtosis are obtained by method of moments, L-moments and TL-moments. Parameters of the density are estimated using linear moments and compared with method of moments and MLE on the basis of bias, root mean square error and coefficients through simulation study. L-moments proved to be superior for the parameter estimation and this conclusion is equally true for different parametric values and sample size. |
---|