Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido

ilustraciones, diagramas

Autores:
Gómez Mateus, José Alfredo
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86160
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86160
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::621 - Física aplicada
Rugosidad
Microscopio Electrónico de Barrido
Reconstrucción en 3D
Nubes de puntos
Algoritmos de detección de puntos característicos
Dimensión fractal
Roughness
Scanning Electron Microscopy
3D reconstruction
Point clouds
Fractal dimension
Characteristic point detection algorithms
Rugosidad (electrónica)
microscopio electrónico
dimensión fractal
algoritmo
electron microscope
fractal dimension
algorithm
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_0f4277866cea94d0bab9056f1815fdcb
oai_identifier_str oai:repositorio.unal.edu.co:unal/86160
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido
dc.title.translated.eng.fl_str_mv Determination of roughness from images obtained with a Scanning Electron Microscope
title Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido
spellingShingle Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::621 - Física aplicada
Rugosidad
Microscopio Electrónico de Barrido
Reconstrucción en 3D
Nubes de puntos
Algoritmos de detección de puntos característicos
Dimensión fractal
Roughness
Scanning Electron Microscopy
3D reconstruction
Point clouds
Fractal dimension
Characteristic point detection algorithms
Rugosidad (electrónica)
microscopio electrónico
dimensión fractal
algoritmo
electron microscope
fractal dimension
algorithm
title_short Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido
title_full Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido
title_fullStr Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido
title_full_unstemmed Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido
title_sort Obtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de Barrido
dc.creator.fl_str_mv Gómez Mateus, José Alfredo
dc.contributor.advisor.spa.fl_str_mv Sandino del Busto, John William
dc.contributor.author.spa.fl_str_mv Gómez Mateus, José Alfredo
dc.contributor.researchgroup.spa.fl_str_mv Microscopía Electrónica
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::621 - Física aplicada
Rugosidad
Microscopio Electrónico de Barrido
Reconstrucción en 3D
Nubes de puntos
Algoritmos de detección de puntos característicos
Dimensión fractal
Roughness
Scanning Electron Microscopy
3D reconstruction
Point clouds
Fractal dimension
Characteristic point detection algorithms
Rugosidad (electrónica)
microscopio electrónico
dimensión fractal
algoritmo
electron microscope
fractal dimension
algorithm
dc.subject.proposal.spa.fl_str_mv Rugosidad
Microscopio Electrónico de Barrido
Reconstrucción en 3D
Nubes de puntos
Algoritmos de detección de puntos característicos
Dimensión fractal
dc.subject.proposal.eng.fl_str_mv Roughness
Scanning Electron Microscopy
3D reconstruction
Point clouds
Fractal dimension
Characteristic point detection algorithms
dc.subject.wikidata.spa.fl_str_mv Rugosidad (electrónica)
microscopio electrónico
dimensión fractal
algoritmo
dc.subject.wikidata.eng.fl_str_mv electron microscope
fractal dimension
algorithm
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-05-24T20:58:20Z
dc.date.available.none.fl_str_mv 2024-05-24T20:58:20Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86160
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86160
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akhtar, K., Khan, S. A., Khan, S. B. K., & Asiri, A. M. (2018). Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. Springer. https://doi.org/10.1007/978-3-319-92955-2 4
Alcantarilla, P. F., Bartoli, A., & Davison, A. J. (2012). KAZE Features. Eur. Conf. on Computer Vision (ECCV)
Arasan, S., Akbulut, S., & Hasiloglu, A. S. (2011). The relationship between the fractal dimension and shape properties of particles. KSCE Journal of Civil Engineering, 15 (7), 1219-1225. https://doi.org/10.1007/s12205-011-1310-x
Barash, D., Israeli, M., & Kimmel, R. (2001). An Accurate Operator Splitting Scheme for Nonlinear Diffusion Filtering. En M. Kerckhove (Ed.), Scale-Space and Morphology in Computer Vision (pp. 281-289, Vol. 2106). Springer. https://doi.org/10.1007/3- 540-47778-0 25
Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ballpivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5 (4), 349-359
Blachowski, A., & Ruebenbauer, K. (2009). Roughness method to estimate fractal dimension. Acta Physica Polonica A, 115 (3), 636-640
Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327 (8476), 307-310. https://doi.org/ 10.1016/S0140-6736(86)90837-8
Bonetto, R. D., Ladaga, J. L., & Ponz, E. (2006). Measuring Surface Topography by Scanning Electron Microscopy. II. Analysis of Three Estimators of Surface Roughness in Second Dimension and Third Dimension. Microscopy and Microanalysis, 12, 178-186
Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., & L´evy, B. (2010). Polygon Mesh Processing. A K Peters/CRC Press
Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. O’Reilly Media, Inc
Brown, M., & Lowe, D. G. (2002). Invariant features from interest point groups. British Machine Vision Conference
Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). BRIEF: Binary Robust Independent Elementary Features. European conference on computer vision, 778-792
Chongpu, Z., Hanaor, D., Proust, G., & Gan, Y. (2017). Stress-Dependent Electrical Contact Resistance at Fractal Rough Surfaces. Journal of Engineering Mechanics, 143 (3), B4015001. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000967
Datatab. (2021). Tutorial: Kendall’s Tau. Consultado el 8 de diciembre de 2023, desde https: //datatab.es/tutorial/kendalls-tau
Dektak 150 Profiler User’s Manual [Available from Veeco Instruments Inc., (www.veeco.com)]. (2007). Veeco Instruments Inc. Plainview, NY.
Edelsbrunner, H., Kirkpatrick, D. G., & Seidel, R. (1983). On the shape of a set of points in the plane. IEEE Transactions on Information Theory, 29 (4), 551-559.
Elcometer. (2022). Rugosímetro MarSurf PS1 Elcometer 7061 [ Último acceso: 2023-04-04]. http ://www.elcometer .com/es/inspeccin - revestimientos/limpieza- de- superficie - perfil - de - la - superficie / rugosidad - de - la - superficie / rugosimetro - marsurf - ps1 - elcometer-7061.html
El-Gomati, M. M., Wells, T., Zha, X., Sykes, R., Russo, C. J., Henderson, R., & McMullan, G. (2021). 100 keV vacuum sealed field emission gun for high resolution electron microscopy. Journal of Vacuum Science & Technology B, 39 (6), 062804. https://doi. org/10.1116/6.0001275
Forum, O. Q. (2013, agosto). Is SURF algorithm used in OPENCV patented? https : / / answers.opencv.org/question/18259/is-surf-algorithm-used-in-opencv-patented/
Forum, O. Q. (2020, noviembre). Expired US patent on SIFT. https://answers.opencv.org/ question/238447/expired-us-patent-on-sift/
Gadelmawla, E., Koura, M., Maksoud, T., Elewa, I., & Soliman, H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123 (1), 133-145. https://doi. org/https://doi.org/10.1016/S0924-0136(02)00060-2
Goldstein, J. I., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. Springer.
Gontard, L., L´opez-Castro, J., Gonz´alez-Rovira, L., V´azquez-Mart´ınez, J., Varela-Feria, F., Marcos, M., & Calvino, J. (2017). Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry. Ultramicroscopy, 177, 106-114. https:// doi.org/https://doi.org/10.1016/j.ultramic.2017.03.007
Hanaor, D., Gan, Y., & Einav, I. (2016). Static friction at fractal interfaces. Tribology International, 93, 229-238. https://doi.org/10.1016/j.triboint.2015.09.016
Hartley, R., & Zisserman, A. (2003). Multiple View Geometry in Computer Vision. Cambridge University Press
Henao-Londoño, J. C., Riaño-Rojas, J. C., Gómez-Mendoza, J. B., & Restrepo-Parra, E. (2018). 3D Stereo Reconstruction of SEM Images. Modern Applied Science, 12 (12), 57. https://doi.org/10.5539/mas.v12n12p57
Kalvani, P. R., Jahangiri, A. R., Shapouri, S., Sari, A., & Jalili, Y. S. (2019). Multimode AFM analysis of aluminum-doped zinc oxide thin films sputtered under various substrate temperatures for optoelectronic applications. Superlattices and Microstructures, 132, 106173. https://doi.org/10.1016/j.spmi.2019.106173
Kayaalp, A., Rao, A. R., & Jain, R. (1990). Scanning Electron Microscope-Based Stereo Analysis. Machine Vision and Applications, 3, 231-246.
Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Proceedings of the fourth Eurographics symposium on Geometry processing, 7.
Koga, D., Kusumi, S., Shibata, H., & Watanabe, M. (2021). Applications of Scanning Electron Microscopy Using Secondary and Backscattered Electron Signals in Neural Structure. Frontiers in Neuroanatomy, 15. https://doi.org/10.3389/fnana.2021.647428
Li, Y., Shum, H.-Y., Tang, C.-K., & Szeliski, R. (2004). Stereo reconstruction from multiperspective panoramas. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (1), 45-62. https://doi.org/10.1109/TPAMI.2004.1261078
Lin Chen, F. R., & Heipke, C. (2021). Feature detection and description for image matching: from hand-crafted design to deep learning. Geo-spatial Information Science, 24 (1), 58-74. https://doi.org/10.1080/10095020.2020.1843376
Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30 (2), 77-116
Liu, Z., Wang, Y., Chen, J., Li, X., & Zhang, Z. (2019). Anisotropy of surface roughness of metals. Applied Surface Science, 479, 796-805. https://doi.org/10.1016/j.apsusc. 2019.02.163
Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the seventh IEEE international conference on computer vision, 2, 1150-1157.
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60 (2), 91-110.
Luo, W., Schwing, A. G., & Urtasun, R. (2016). Efficient Deep Learning for Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5695-5703.
Ma, Z., & Liu, S. (2018). A review of 3D reconstruction techniques in civil engineering and their applications. Advanced Engineering Informatics, 37, 163-174. https://doi.org/ https://doi.org/10.1016/j.aei.2018.05.005
Majumdar, A., & Bhushan, B. (1990). Fractal Characterization and Simulation of Rough Surfaces. American Society of Mechanical Engineers
Mandelbrot, B. (1983). The Fractal Geometry of Nature. Henry Holt; Company. https:// books.google.com.co/books?id=0R2LkE3N7-oC
Mate, C. M. (2008). Tribology on the Small Scale: Mesoscopic Physics and Nanotechnology. Oxford University Press
Milanese, E., Brink, T., Aghababaei, R., & Molinari, J.-F. (2019). Emergence of self-affine surfaces during adhesive wear. Nature Communications, 10 (1), 1116. https://doi. org/10.1038/s41467-019-09127-8
Minitab. (2021). Estadísticos y gráficas para t de 1 muestra. Consultado el 8 de diciembre de 2023, desde https://support.minitab.com/es-mx/minitab/21/help-and-howto/ statistics/basic-statistics/how-to/1-sample-t/interpret-the-results/all-statisticsand- graphs/
Moeslund, T. B. (2012). BLOB Analysis. En Introduction to Video and Image Processing: Building Real Systems and Applications (pp. 103-115). Springer London. https://doi. org/10.1007/978-1-4471-2503-7 7
Montakhabi, F., Poursaeidi, E., Rahimi, J., & Sigaroodi, M. R. J. (2022). Investigation of the effect of BC layer surface roughness and TC layer porosity on stress values in plasma sprayed coatings based on SEM images. Materials Today Communications, 33, 104737. https://doi.org/https://doi.org/10.1016/j.mtcomm.2022.104737
Moons, T., Van Gool, L., & Vergauwen, M. (2009). 3D Reconstruction from Multiple Images: Part 1 - Principles. Foundations and Trends in Computer Graphics and Vision, 4, 287-404
Nayak, S. R., Mishra, J., & Palai, G. (2019). Analysing roughness of surface through fractal dimension: A review. Image and Vision Computing, 89, 21-34. https://doi.org/https: //doi.org/10.1016/j.imavis.2019.06.015
Odling, N. E. (1994). Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mechanics and Rock Engineering, 27 (3), 135-153. https://doi.org/10. 1007/BF01020307
Oho, E. (2002). Digital image-processing technology useful for scanning electron microscopy and its practical applications. En P. W. Hawkes (Ed.), Electron Microscopy and Holography II (pp. 251-IV, Vol. 122). Elsevier. https://doi.org/https://doi.org/10. 1016/S1076-5670(02)80054-4
Oliveira, S. M. (2005). Analysis of Surface Roughness and Models of Mechanical Contacts [Tesis de grado]. Universita di Pisa
Open3D. (2023). Surface Reconstruction. http://www.open3d.org/docs/release/tutorial/ geometry/surface reconstruction.html
OpenCV. (2021). Understanding Features [Consultado el 15 de Octubre de 2022]. https : //docs.opencv.org/3.4/df/d54/tutorial py features meaning.html
Parker, K. A., Ribet, S., Kimmel, B. R., dos Reis, R., Mrksich, M., & Dravid, V. P. (2022). Scanning Transmission Electron Microscopy in a Scanning Electron Microscope for the High-Throughput Imaging of Biological Assemblies. Biomacromolecules, 23 (8), 3235-3242. https://doi.org/https://doi.org/10.1021/acs.biomac.2c00323
Parsons, D. F., Walsh, R. B., & Craig, V. S. J. (2014). Surface forces: Surface roughness in theory and experiment. Journal of Chemical Physics, 140 (16), 164701. https://doi. org/10.1063/1.4871412
Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7), 629-639.
Pfeifer, P. (1988). Fractals in Surface Science: Scattering and Thermodynamics of Adsorbed Films. En R. Vanselow & R. Howe (Eds.), Chemistry and Physics of Solid Surfaces VII (pp. 283-305, Vol. 10). Springer Berlin Heidelberg. https://doi.org/10.1007/978- 3-642-73902-6 10
Quan, L. (2010). Image-based modeling. Springer Science & Business Media.
QuestionPro. (2020). Coeficiente de correlación de Spearman: ¿Qué es y cómo se calcula? Consultado el 8 de diciembre de 2023, desde https://www.questionpro.com/blog/es/ coeficiente-de-correlacion-de-spearman/
Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer.
Rivera, M. H., & Melo, M. E. R. (2001). La rugosidad de las superficies: Topometría. Ingenierías, 4, 27-33.
Rosin, P. L. (1999). Measuring corner properties. Computer Vision and Image Understanding, 73 (2), 291-307.
Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. European conference on computer vision, 430-443.
Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: an efficient alternative to SIFT or SURF. in Proc. of the IEEE International Conf. on Computer Vision (ICCV).
Sarode, V. (2022). What Are Point Clouds? https://medium.com/analytics-vidhya/whatare- point-clouds-3655d565e142
Sato, H., O-Hori, M., & Nakayama, K. (1982). Surface Roughness Measurement by Scanning Electron Microscope. CIRP Annals, 31 (1), 457-462. https://doi.org/https://doi.org/ 10.1016/S0007-8506(07)63347-2
Shet, V., & Picard, R. W. (2005). Python for scientific computing. Computing in Science & Engineering, 7 (3), 10-20
Sun, T., Li, Y., Liu, Y., Deng, B., Liao, C., & Zhu, Y. (2023). Advanced scanning electron microscopy and microanalysis: Applications to nanomaterials. En Y. Yin, Y. Lu & Y. Xia (Eds.), Encyclopedia of Nanomaterials (First Edition) (First Edition, pp. 183-209). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822425-0.00104-4
Team, O. (2023). Feature Detection and Description. https://docs.opencv.org/4.x/d5/d51/ group features2d main.html
TESCAN a.s. (2014). Scanning Electron Microscope: Instructions for Use. TESCAN. https: //www.csuchico.edu/sem/ assets/documents/vega-manual-2014.pdf
Thäle, C., & Freiberg, U. (2008). A Markov Chain Algorithm for Determining Crossing Times Through Nested Graphs. Discrete Mathematics & Theoretical Computer Science.
Töberg, S., & Reithmeier, E. (2020). Quantitative 3D Reconstruction from Scanning Electron Microscope Images Based on Affine Camera Models. Sensors, 20 (12), 3598. https: //doi.org/10.3390/s20123598
Vanderbilt University. (s.f.). The Hausdorff Dimension
Viper, Q. (2022). Making Fractal Shapes with Python
Wang, J., Wu, Y., Cao, Y., et al. (2020). Influence of surface roughness on contact angle hysteresis and spreading work. Colloid and Polymer Science, 298, 1107-1112. https: //doi.org/10.1007/s00396-020-04680-x
Wang, Y., Liu, R., Ji, H., Li, S., Yu, L., & Feng, X. (2022). Correlating mechanical properties to fractal dimensions of shales under uniaxial compression tests. Environmental Earth Sciences, 82 (1), 2. https://doi.org/10.1007/s12665-022-10642-z
Weickert, J., Ishikawa, S., & Imiya, A. (1999). Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10.
Weisstein, E. W. (2023). Menger Sponge
Whitehouse, D. J. (2010). Surfaces and their Measurement. Butterworth-Heinemann. https: //www.elsevier.com/books/surfaces-and- their-measurement/whitehouse/978- 1- 4377-3465-6
Zhai, C., Hanaor, D., & Gan, Y. (2017). Contact stiffness of multiscale surfaces by truncation analysis. International Journal of Mechanical Sciences, 131. https://doi.org/10.1016/ j.ijmecsci.2017.07.018
Zhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A Modern Library for 3D Data Processing. arXiv:1801.09847.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 73 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86160/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86160/2/79925312.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86160/3/79925312.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
60c71b398bddd055b39d7e3767ad60a9
830e2d9638d249c759d73db725fcec8c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089452162646016
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sandino del Busto, John William1316ac4e998635a011fdb61947d32faf600Gómez Mateus, José Alfredo28a402ef4c014072fc6fd3edbcdb128eMicroscopía Electrónica2024-05-24T20:58:20Z2024-05-24T20:58:20Z2023https://repositorio.unal.edu.co/handle/unal/86160Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEsta investigación se enfoca en determinar la rugosidad superficial y su correlación con la dimensión fractal a partir de imágenes obtenidas mediante microscopía electrónica de barrido (SEM). Se empleó software libre para procesar imágenes y calcular parámetros de rugosidad y dimensión fractal en 3D. El estudio se centró en micrografías de una incisión en una lámina de aluminio, utilizando SIFT para detectar puntos característicos y el método de box counting para la dimensión fractal. Los resultados demostraron coherencia entre los perfiles de rugosidad medidos y los obtenidos mediante un perfilómetro, además de establecer correlaciones significativas entre la rugosidad promediada y la dimensión fractal. Este enfoque multidimensional proporciona una perspectiva más completa de la rugosidad, superando las limitaciones de las mediciones lineales y contribuyendo al entendimiento detallado de las superficies a nivel microscópico. (Texto tomado de la fuente).This research focuses on determining surface roughness and its correlation with the fractal dimension from images obtained through Scanning Electron Microscopy (SEM). Open-source software was used to process images and calculate roughness parameters and fractal dimension in 3D. The study centered on micrographs of an incision in an aluminum sheet, using SIFT to detect characteristic points and the box counting method for fractal dimension. The results demonstrated coherence between the measured roughness profiles and those obtained by a profilometer, in addition to establishing significant correlations between averaged roughness and fractal dimension. This multidimensional approach provides a more comprehensive perspective on roughness, overcoming the limitations of linear measurements and contributing to a detailed understanding of surfaces at the microscopic level.MaestríaMagíster en Ciencias - FísicaMicroscopía electrónicaxv, 73 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación620 - Ingeniería y operaciones afines::621 - Física aplicadaRugosidadMicroscopio Electrónico de BarridoReconstrucción en 3DNubes de puntosAlgoritmos de detección de puntos característicosDimensión fractalRoughnessScanning Electron Microscopy3D reconstructionPoint cloudsFractal dimensionCharacteristic point detection algorithmsRugosidad (electrónica)microscopio electrónicodimensión fractalalgoritmoelectron microscopefractal dimensionalgorithmObtención de la rugosidad a partir de imágenes obtenidas en un Microscopio Electrónico de BarridoDetermination of roughness from images obtained with a Scanning Electron MicroscopeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAkhtar, K., Khan, S. A., Khan, S. B. K., & Asiri, A. M. (2018). Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. Springer. https://doi.org/10.1007/978-3-319-92955-2 4Alcantarilla, P. F., Bartoli, A., & Davison, A. J. (2012). KAZE Features. Eur. Conf. on Computer Vision (ECCV)Arasan, S., Akbulut, S., & Hasiloglu, A. S. (2011). The relationship between the fractal dimension and shape properties of particles. KSCE Journal of Civil Engineering, 15 (7), 1219-1225. https://doi.org/10.1007/s12205-011-1310-xBarash, D., Israeli, M., & Kimmel, R. (2001). An Accurate Operator Splitting Scheme for Nonlinear Diffusion Filtering. En M. Kerckhove (Ed.), Scale-Space and Morphology in Computer Vision (pp. 281-289, Vol. 2106). Springer. https://doi.org/10.1007/3- 540-47778-0 25Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ballpivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5 (4), 349-359Blachowski, A., & Ruebenbauer, K. (2009). Roughness method to estimate fractal dimension. Acta Physica Polonica A, 115 (3), 636-640Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 327 (8476), 307-310. https://doi.org/ 10.1016/S0140-6736(86)90837-8Bonetto, R. D., Ladaga, J. L., & Ponz, E. (2006). Measuring Surface Topography by Scanning Electron Microscopy. II. Analysis of Three Estimators of Surface Roughness in Second Dimension and Third Dimension. Microscopy and Microanalysis, 12, 178-186Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., & L´evy, B. (2010). Polygon Mesh Processing. A K Peters/CRC PressBradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the OpenCV library. O’Reilly Media, IncBrown, M., & Lowe, D. G. (2002). Invariant features from interest point groups. British Machine Vision ConferenceCalonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). BRIEF: Binary Robust Independent Elementary Features. European conference on computer vision, 778-792Chongpu, Z., Hanaor, D., Proust, G., & Gan, Y. (2017). Stress-Dependent Electrical Contact Resistance at Fractal Rough Surfaces. Journal of Engineering Mechanics, 143 (3), B4015001. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000967Datatab. (2021). Tutorial: Kendall’s Tau. Consultado el 8 de diciembre de 2023, desde https: //datatab.es/tutorial/kendalls-tauDektak 150 Profiler User’s Manual [Available from Veeco Instruments Inc., (www.veeco.com)]. (2007). Veeco Instruments Inc. Plainview, NY.Edelsbrunner, H., Kirkpatrick, D. G., & Seidel, R. (1983). On the shape of a set of points in the plane. IEEE Transactions on Information Theory, 29 (4), 551-559.Elcometer. (2022). Rugosímetro MarSurf PS1 Elcometer 7061 [ Último acceso: 2023-04-04]. http ://www.elcometer .com/es/inspeccin - revestimientos/limpieza- de- superficie - perfil - de - la - superficie / rugosidad - de - la - superficie / rugosimetro - marsurf - ps1 - elcometer-7061.htmlEl-Gomati, M. M., Wells, T., Zha, X., Sykes, R., Russo, C. J., Henderson, R., & McMullan, G. (2021). 100 keV vacuum sealed field emission gun for high resolution electron microscopy. Journal of Vacuum Science & Technology B, 39 (6), 062804. https://doi. org/10.1116/6.0001275Forum, O. Q. (2013, agosto). Is SURF algorithm used in OPENCV patented? https : / / answers.opencv.org/question/18259/is-surf-algorithm-used-in-opencv-patented/Forum, O. Q. (2020, noviembre). Expired US patent on SIFT. https://answers.opencv.org/ question/238447/expired-us-patent-on-sift/Gadelmawla, E., Koura, M., Maksoud, T., Elewa, I., & Soliman, H. (2002). Roughness parameters. Journal of Materials Processing Technology, 123 (1), 133-145. https://doi. org/https://doi.org/10.1016/S0924-0136(02)00060-2Goldstein, J. I., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. Springer.Gontard, L., L´opez-Castro, J., Gonz´alez-Rovira, L., V´azquez-Mart´ınez, J., Varela-Feria, F., Marcos, M., & Calvino, J. (2017). Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry. Ultramicroscopy, 177, 106-114. https:// doi.org/https://doi.org/10.1016/j.ultramic.2017.03.007Hanaor, D., Gan, Y., & Einav, I. (2016). Static friction at fractal interfaces. Tribology International, 93, 229-238. https://doi.org/10.1016/j.triboint.2015.09.016Hartley, R., & Zisserman, A. (2003). Multiple View Geometry in Computer Vision. Cambridge University PressHenao-Londoño, J. C., Riaño-Rojas, J. C., Gómez-Mendoza, J. B., & Restrepo-Parra, E. (2018). 3D Stereo Reconstruction of SEM Images. Modern Applied Science, 12 (12), 57. https://doi.org/10.5539/mas.v12n12p57Kalvani, P. R., Jahangiri, A. R., Shapouri, S., Sari, A., & Jalili, Y. S. (2019). Multimode AFM analysis of aluminum-doped zinc oxide thin films sputtered under various substrate temperatures for optoelectronic applications. Superlattices and Microstructures, 132, 106173. https://doi.org/10.1016/j.spmi.2019.106173Kayaalp, A., Rao, A. R., & Jain, R. (1990). Scanning Electron Microscope-Based Stereo Analysis. Machine Vision and Applications, 3, 231-246.Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Proceedings of the fourth Eurographics symposium on Geometry processing, 7.Koga, D., Kusumi, S., Shibata, H., & Watanabe, M. (2021). Applications of Scanning Electron Microscopy Using Secondary and Backscattered Electron Signals in Neural Structure. Frontiers in Neuroanatomy, 15. https://doi.org/10.3389/fnana.2021.647428Li, Y., Shum, H.-Y., Tang, C.-K., & Szeliski, R. (2004). Stereo reconstruction from multiperspective panoramas. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (1), 45-62. https://doi.org/10.1109/TPAMI.2004.1261078Lin Chen, F. R., & Heipke, C. (2021). Feature detection and description for image matching: from hand-crafted design to deep learning. Geo-spatial Information Science, 24 (1), 58-74. https://doi.org/10.1080/10095020.2020.1843376Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30 (2), 77-116Liu, Z., Wang, Y., Chen, J., Li, X., & Zhang, Z. (2019). Anisotropy of surface roughness of metals. Applied Surface Science, 479, 796-805. https://doi.org/10.1016/j.apsusc. 2019.02.163Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the seventh IEEE international conference on computer vision, 2, 1150-1157.Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60 (2), 91-110.Luo, W., Schwing, A. G., & Urtasun, R. (2016). Efficient Deep Learning for Stereo Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5695-5703.Ma, Z., & Liu, S. (2018). A review of 3D reconstruction techniques in civil engineering and their applications. Advanced Engineering Informatics, 37, 163-174. https://doi.org/ https://doi.org/10.1016/j.aei.2018.05.005Majumdar, A., & Bhushan, B. (1990). Fractal Characterization and Simulation of Rough Surfaces. American Society of Mechanical EngineersMandelbrot, B. (1983). The Fractal Geometry of Nature. Henry Holt; Company. https:// books.google.com.co/books?id=0R2LkE3N7-oCMate, C. M. (2008). Tribology on the Small Scale: Mesoscopic Physics and Nanotechnology. Oxford University PressMilanese, E., Brink, T., Aghababaei, R., & Molinari, J.-F. (2019). Emergence of self-affine surfaces during adhesive wear. Nature Communications, 10 (1), 1116. https://doi. org/10.1038/s41467-019-09127-8Minitab. (2021). Estadísticos y gráficas para t de 1 muestra. Consultado el 8 de diciembre de 2023, desde https://support.minitab.com/es-mx/minitab/21/help-and-howto/ statistics/basic-statistics/how-to/1-sample-t/interpret-the-results/all-statisticsand- graphs/Moeslund, T. B. (2012). BLOB Analysis. En Introduction to Video and Image Processing: Building Real Systems and Applications (pp. 103-115). Springer London. https://doi. org/10.1007/978-1-4471-2503-7 7Montakhabi, F., Poursaeidi, E., Rahimi, J., & Sigaroodi, M. R. J. (2022). Investigation of the effect of BC layer surface roughness and TC layer porosity on stress values in plasma sprayed coatings based on SEM images. Materials Today Communications, 33, 104737. https://doi.org/https://doi.org/10.1016/j.mtcomm.2022.104737Moons, T., Van Gool, L., & Vergauwen, M. (2009). 3D Reconstruction from Multiple Images: Part 1 - Principles. Foundations and Trends in Computer Graphics and Vision, 4, 287-404Nayak, S. R., Mishra, J., & Palai, G. (2019). Analysing roughness of surface through fractal dimension: A review. Image and Vision Computing, 89, 21-34. https://doi.org/https: //doi.org/10.1016/j.imavis.2019.06.015Odling, N. E. (1994). Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mechanics and Rock Engineering, 27 (3), 135-153. https://doi.org/10. 1007/BF01020307Oho, E. (2002). Digital image-processing technology useful for scanning electron microscopy and its practical applications. En P. W. Hawkes (Ed.), Electron Microscopy and Holography II (pp. 251-IV, Vol. 122). Elsevier. https://doi.org/https://doi.org/10. 1016/S1076-5670(02)80054-4Oliveira, S. M. (2005). Analysis of Surface Roughness and Models of Mechanical Contacts [Tesis de grado]. Universita di PisaOpen3D. (2023). Surface Reconstruction. http://www.open3d.org/docs/release/tutorial/ geometry/surface reconstruction.htmlOpenCV. (2021). Understanding Features [Consultado el 15 de Octubre de 2022]. https : //docs.opencv.org/3.4/df/d54/tutorial py features meaning.htmlParker, K. A., Ribet, S., Kimmel, B. R., dos Reis, R., Mrksich, M., & Dravid, V. P. (2022). Scanning Transmission Electron Microscopy in a Scanning Electron Microscope for the High-Throughput Imaging of Biological Assemblies. Biomacromolecules, 23 (8), 3235-3242. https://doi.org/https://doi.org/10.1021/acs.biomac.2c00323Parsons, D. F., Walsh, R. B., & Craig, V. S. J. (2014). Surface forces: Surface roughness in theory and experiment. Journal of Chemical Physics, 140 (16), 164701. https://doi. org/10.1063/1.4871412Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7), 629-639.Pfeifer, P. (1988). Fractals in Surface Science: Scattering and Thermodynamics of Adsorbed Films. En R. Vanselow & R. Howe (Eds.), Chemistry and Physics of Solid Surfaces VII (pp. 283-305, Vol. 10). Springer Berlin Heidelberg. https://doi.org/10.1007/978- 3-642-73902-6 10Quan, L. (2010). Image-based modeling. Springer Science & Business Media.QuestionPro. (2020). Coeficiente de correlación de Spearman: ¿Qué es y cómo se calcula? Consultado el 8 de diciembre de 2023, desde https://www.questionpro.com/blog/es/ coeficiente-de-correlacion-de-spearman/Reimer, L. (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer.Rivera, M. H., & Melo, M. E. R. (2001). La rugosidad de las superficies: Topometría. Ingenierías, 4, 27-33.Rosin, P. L. (1999). Measuring corner properties. Computer Vision and Image Understanding, 73 (2), 291-307.Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. European conference on computer vision, 430-443.Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: an efficient alternative to SIFT or SURF. in Proc. of the IEEE International Conf. on Computer Vision (ICCV).Sarode, V. (2022). What Are Point Clouds? https://medium.com/analytics-vidhya/whatare- point-clouds-3655d565e142Sato, H., O-Hori, M., & Nakayama, K. (1982). Surface Roughness Measurement by Scanning Electron Microscope. CIRP Annals, 31 (1), 457-462. https://doi.org/https://doi.org/ 10.1016/S0007-8506(07)63347-2Shet, V., & Picard, R. W. (2005). Python for scientific computing. Computing in Science & Engineering, 7 (3), 10-20Sun, T., Li, Y., Liu, Y., Deng, B., Liao, C., & Zhu, Y. (2023). Advanced scanning electron microscopy and microanalysis: Applications to nanomaterials. En Y. Yin, Y. Lu & Y. Xia (Eds.), Encyclopedia of Nanomaterials (First Edition) (First Edition, pp. 183-209). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822425-0.00104-4Team, O. (2023). Feature Detection and Description. https://docs.opencv.org/4.x/d5/d51/ group features2d main.htmlTESCAN a.s. (2014). Scanning Electron Microscope: Instructions for Use. TESCAN. https: //www.csuchico.edu/sem/ assets/documents/vega-manual-2014.pdfThäle, C., & Freiberg, U. (2008). A Markov Chain Algorithm for Determining Crossing Times Through Nested Graphs. Discrete Mathematics & Theoretical Computer Science.Töberg, S., & Reithmeier, E. (2020). Quantitative 3D Reconstruction from Scanning Electron Microscope Images Based on Affine Camera Models. Sensors, 20 (12), 3598. https: //doi.org/10.3390/s20123598Vanderbilt University. (s.f.). The Hausdorff DimensionViper, Q. (2022). Making Fractal Shapes with PythonWang, J., Wu, Y., Cao, Y., et al. (2020). Influence of surface roughness on contact angle hysteresis and spreading work. Colloid and Polymer Science, 298, 1107-1112. https: //doi.org/10.1007/s00396-020-04680-xWang, Y., Liu, R., Ji, H., Li, S., Yu, L., & Feng, X. (2022). Correlating mechanical properties to fractal dimensions of shales under uniaxial compression tests. Environmental Earth Sciences, 82 (1), 2. https://doi.org/10.1007/s12665-022-10642-zWeickert, J., Ishikawa, S., & Imiya, A. (1999). Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10.Weisstein, E. W. (2023). Menger SpongeWhitehouse, D. J. (2010). Surfaces and their Measurement. Butterworth-Heinemann. https: //www.elsevier.com/books/surfaces-and- their-measurement/whitehouse/978- 1- 4377-3465-6Zhai, C., Hanaor, D., & Gan, Y. (2017). Contact stiffness of multiscale surfaces by truncation analysis. International Journal of Mechanical Sciences, 131. https://doi.org/10.1016/ j.ijmecsci.2017.07.018Zhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A Modern Library for 3D Data Processing. arXiv:1801.09847.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86160/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL79925312.2024.pdf79925312.2024.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf35592354https://repositorio.unal.edu.co/bitstream/unal/86160/2/79925312.2024.pdf60c71b398bddd055b39d7e3767ad60a9MD52THUMBNAIL79925312.2024.pdf.jpg79925312.2024.pdf.jpgGenerated Thumbnailimage/jpeg4792https://repositorio.unal.edu.co/bitstream/unal/86160/3/79925312.2024.pdf.jpg830e2d9638d249c759d73db725fcec8cMD53unal/86160oai:repositorio.unal.edu.co:unal/861602024-08-25 23:10:51.414Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=