Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa
ilustraciones
- Autores:
-
Lozano Montaña, Paula Andrea
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83364
- Palabra clave:
- 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
570 - Biología::571 - Fisiología y temas relacionados
Seguridad alimenticia
Producción alimenticia
Food security
Food production
Déficit hídrico
Conductancia estomática
Expresión diferencial
ABA
ROS
Stomatal conductance
Differential expression
ABA
ROS
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_0e8543cc8abfb314d7a2bd1a95e231f3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83364 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa |
dc.title.translated.eng.fl_str_mv |
Transcriptional and physiological dynamics of the response to progressive water deficit in gulupa |
title |
Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa |
spellingShingle |
Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas 570 - Biología::571 - Fisiología y temas relacionados Seguridad alimenticia Producción alimenticia Food security Food production Déficit hídrico Conductancia estomática Expresión diferencial ABA ROS Stomatal conductance Differential expression ABA ROS |
title_short |
Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa |
title_full |
Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa |
title_fullStr |
Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa |
title_full_unstemmed |
Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa |
title_sort |
Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa |
dc.creator.fl_str_mv |
Lozano Montaña, Paula Andrea |
dc.contributor.advisor.none.fl_str_mv |
Sarmiento Salazar, Felipe Melgarejo Muñoz, Luz Marina |
dc.contributor.author.none.fl_str_mv |
Lozano Montaña, Paula Andrea |
dc.contributor.researchgroup.spa.fl_str_mv |
Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos |
dc.contributor.cvlac.spa.fl_str_mv |
Lozano-Montaña, P. |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas 570 - Biología::571 - Fisiología y temas relacionados |
topic |
570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas 570 - Biología::571 - Fisiología y temas relacionados Seguridad alimenticia Producción alimenticia Food security Food production Déficit hídrico Conductancia estomática Expresión diferencial ABA ROS Stomatal conductance Differential expression ABA ROS |
dc.subject.lemb.spa.fl_str_mv |
Seguridad alimenticia Producción alimenticia |
dc.subject.lemb.eng.fl_str_mv |
Food security Food production |
dc.subject.proposal.spa.fl_str_mv |
Déficit hídrico Conductancia estomática Expresión diferencial ABA ROS |
dc.subject.proposal.eng.fl_str_mv |
Stomatal conductance Differential expression ABA ROS |
description |
ilustraciones |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-10-07 |
dc.date.accessioned.none.fl_str_mv |
2023-02-07T19:16:41Z |
dc.date.available.none.fl_str_mv |
2023-02-07T19:16:41Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83364 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83364 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88–95. https://doi.org/10.1104/PP.108.129791 Nakayama, S., Moncrief, N. D., & Kretsinger, R. H. (1992). Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. Journal of Molecular Evolution, 34(5), 416–448. https://doi.org/10.1007/BF00162998 Naramoto, S., Kleine-Vehn, J., Robert, S., Fujimoto, M., Dainobu, T., Paciorek, T., Ueda, T., Nakano, A., van Montagu, M. C. E., Fukuda, H., & Friml, J. (2010). ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21890–21895. https://doi.org/10.1073/PNAS.1016260107/-/DCSUPPLEMENTAL Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. TheScientificWorldJournal, 2013. https://doi.org/10.1155/2013/610721 Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C., & Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology, 224–225, 30–48. https://doi.org/10.1016/J.JPLPH.2018.03.001 Noodén, L. D. (2004). Plant cell death processes. 392. Ocampo Pérez, J., & Wyckhuys, K. (2012). Tecnología para el cultivo de la gulupa en Colombia. :(Passiflora edulis f. edulis sims). Centro de Bio-Sistemas de la Universidad Jorge Tadeo Lozano, Centro Internacional de Agricultura Tropical - CIAT y Ministerio de Agricultura y Desarrollo Rural, República de Colombia. https://repository.agrosavia.co/handle/20.500.12324/13557?locale-attribute=es Ostberg, S., Schewe, J., Childers, K., & Frieler, K. (2018). Changes in crop yields and their variability at different levels of global warming. Earth System Dynamics, 9(2), 479–496. https://doi.org/10.5194/ESD-9-479-2018 Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80–85. https://doi.org/10.1016/J.ECOENV.2011.11.012 Passioura, J. B. (2002). ‘Soil conditions and plant growth.’ Plant, Cell & Environment, 25(2), 311–318. https://doi.org/10.1046/J.0016-8025.2001.00802.X Peñuelas, J., & Inoue, Y. (1999). Reflectance Indices Indicative of Changes in Water and Pigment Contents of Peanut and Wheat Leaves. Photosynthetica 1999 36:3, 36(3), 355–360. https://doi.org/10.1023/A:1007033503276 Penuelas, J., Pinol, J., Ogaya, R., & Filella, I. (2010). Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Http://Dx.Doi.Org/10.1080/014311697217396, 18(13), 2869–2875. https://doi.org/10.1080/014311697217396 Perea Dallos, M., Matallana Ramirez, L., & Tirado Perea, A. (2010). Biotecnologia aplicada al mejoramiento de los cultivos de frutas tropicales. Universidad Nacional de Colombia Perez Martinez, L. V., & Melgarejo, L. M. (2015). Photosynthetic performance and leaf water potential og gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the Colombian Andes. Acta Biológica Colombiana, 20(1), 183–194. https://doi.org/10.15446/ABC.V20N1.42196 Pierre, Y., Breyton, C., Kramer, D., & Popot, J. L. (1995). Purification and characterization of the cytochrome b6 f complex from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 270(49), 29342–29349. https://doi.org/10.1074/jbc.270.49.29342 Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869–882. https://doi.org/10.1093/jxb/erq340 Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., & Upchurch, D. R. (2003). Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69(6), 647–664. https://doi.org/10.14358/PERS.69.6.647 Pnueli, L., Hallak-Herr, E., Rozenberg, M., Cohen, M., Goloubinoff, P., Kaplan, A., & Mittler, R. (2002). Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. The Plant Journal, 31(3), 319–330. https://doi.org/10.1046/J.1365-313X.2002.01364.X Polosoro, A., Enggarini, W., & Ohmido, N. (2019). Global epigenetic changes of histone modification under environmental stresses in rice root. Chromosome Research, 27(4), 287–298. https://doi.org/10.1007/S10577-019-09611-3/FIGURES/5 Ponce, C. (2020). Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: A word of caution on the sustainability of adaptation to climate change. World Development, 127. https://doi.org/10.1016/j.worlddev.2019.104740 Posada, C. C., & Posada, C. C. (2007). La adaptación al cambio climático en Colombia. Revista de Ingeniería, 0(26), 74–80. https://doi.org/10.16924/riua.v0i26.298 Qi, J., Song, C. P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J. K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9), 805–826. https://doi.org/10.1111/JIPB.12654 Qiu, W., Su, W., Cai, Z., Dong, L., Li, C., Xin, M., Fang, W., Liu, Y., Wang, X., Huang, Z., Ren, H., & Wu, Z. (2020). Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis sims. Journal of Agricultural and Food Chemistry, 68(43), 12096–12106. https://doi.org/10.1021/acs.jafc.0c03619 Raja, V., Majeed, U., Kang, H., Andrabi, K. I., & John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157. https://doi.org/10.1016/J.ENVEXPBOT.2017.02.010 Rallo, G., Minacapilli, M., Ciraolo, G., & Provenzano, G. (2014). Detecting crop water status in mature olive groves using vegetation spectral measurements. Biosystems Engineering, 128, 52–68. https://doi.org/10.1016/J.BIOSYSTEMSENG.2014.08.012 Razi, K., & Muneer, S. (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Https://Doi.Org/10.1080/07388551.2021.1874280, 41(5), 669–691. https://doi.org/10.1080/07388551.2021.1874280 Reddy, A. S. N. (2001). Calcium: silver bullet in signaling. Plant Science, 160(3), 381–404. https://doi.org/10.1016/S0168-9452(00)00386-1 Redillas, M. C. F. R., Kim, J.-K., Strasser, R. J., Jeong, J. S., & Kim, Y.-S. (2011). The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. Plant Biotechnology Reports, 5(2), 169–175. Rivas-Ubach, A., Sardans, J., Peŕez-Trujillo, M., Estiarte, M., & Penũelas, J. (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4181–4186. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/BIOINFORMATICS/BTP616 Rodrigues, D. L., Viana, A. P., Vieira, H. D., Santos, E. A., de Lima e Silva, F. H., & Santos, C. L. (2017). Contribution of production and seed variables to the genetic divergence in passion fruit under different nutrient availabilities. Pesquisa Agropecuária Brasileira, 52(8), 607–614. https://doi.org/10.1590/S0100-204X2017000800006 Rodríguez, N., Armenteras, D., & Retana, J. (2015). National ecosystems services priorities for planning carbon and water resource management in Colombia. Land Use Policy, 42, 609–618. https://doi.org/10.1016/J.LANDUSEPOL.2014.09.013 Rolly, N. K., Mun, B. G., & Yun, B. W. (2021a). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes, 12(2), 1–17. https://doi.org/10.3390/GENES12020298 Rolly, N. K., Mun, B.-G., & Yun, B.-W. (2021b). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes 2021, Vol. 12, Page 298, 12(2), 298. https://doi.org/10.3390/GENES12020298 Safriel, U., Lead, Z. A., Niemeijer, D., Puigdefabregas, J., White, R., Lal, R., Winslow, M., Ziedler, J., Prince, S., Archer, E., King, C., Shapiro, B., Wessels, K., Nielsen, T., Portnov, B., Reshef, I., Thonell, J., Lachman, E., & Mcnab, D. (2005). Dryland Systems. In M. El-Kassas & E. Ezcurra (Eds.), Millennium Ecosystem Assessment – Ecosystems and Human well-being. . World Resources Institute. Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought Stress in Plants: Causes, Consequences, and Tolerance BT - Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry. 1–16. https://doi.org/10.1007/978-3-319-28899-4_1 Schulze, E. D. (2003). Carbon Dioxide and Water Vapor Exchange in Response to Drought in the Atmosphere and in the Soil. Annual Review of Plant Physiology, 37(1), 247–274. https://doi.org/10.1146/ANNUREV.PP.37.060186.001335 Seo, P. J., Lee, S. B., Suh, M. C., Park, M. J., & Park, C. M. (2011). The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in arabidopsis. Plant Cell, 23(3), 1138–1152. https://doi.org/10.1105/tpc.111.083485 Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221–227. https://doi.org/10.1093/JXB/ERL164 Sousa, A., Souza, M., Melo, C., & Sodré, G. (2015). ISSR markers in wild species of Passiflora L. (Passifloraceae) as a tool for taxon selection in ornamental breeding. Genetics and Molecular Research : GMR, 14(4), 18534–18545. https://doi.org/10.4238/2015.DECEMBER.23.41 Souza, P. U., Lima, L. K. S., Soares, T. L., Jesus, O. N. de, Coelho Filho, M. A., & Girardi, E. A. (2018). Biometric, physiological and anatomical responses of Passiflora spp. to controlled water deficit. Scientia Horticulturae, 229, 77–90. https://doi.org/10.1016/j.scienta.2017.10.019 Spang, A., Shiba, Y., & Randazzo, P. A. (2010). ArfGAPs: gatekeepers of vesicle generation. FEBS Letters, 584(12), 2646. https://doi.org/10.1016/J.FEBSLET.2010.04.005 Sposito, V., Faggian, R., Romeijn, H., & Downey, M. (2013). Expert Systems Modeling for Assessing Climate Change Impacts and Adaptation in Agricultural Systems at Regional Level. Open Journal of Applied Sciences, 03, 369–380. https://doi.org/10.4236/OJAPPS.2013.36047 Stamm, M. D., Enders, L. S., Donze-Reiner, T. J., Baxendale, F. P., Siegfried, B. D., & Heng-Moss, T. M. (2014). Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress. BMC Genomics, 15(1), 1–13. https://doi.org/10.1186/1471-2164-15-1055/FIGURES/2 Sterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156(4), 1063–1076. https://doi.org/10.1007/S10658-020-01961-7/TABLES/4 Strauss, A. J., Krüger, G. H. J., Strasser, R. J., & Heerden, P. D. R. V. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), 147–157. https://doi.org/10.1016/J.ENVEXPBOT.2005.01.011 Suseela, V., Tharayil, N., Xing, B., & Dukes, J. S. (2015). Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Global Change Biology, 21(11), 4177–4195. https://doi.org/10.1111/GCB.13033 Svensson, B., Svendsen, I., Poulsen, F. M., Højrup, P., Roepstorff, P., & Ludvigsen, S. (1992). Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry, 31(37), 8767–8770. https://doi.org/10.1021/BI00152A012 Taiz, L., & Zeiger, E. (2006). FISIOLOGIA VEGETAL . www.sinauer.com Takizawa, K., Kanazawa, A., & Kramer, D. M. (2008). Depletion of stromal P(i) induces high “energy-dependent” antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase. Plant, Cell & Environment, 31(2), 235–243. https://doi.org/10.1111/J.1365-3040.2007.01753.X Tang, S., Liang, H., Yan, D., Zhao, Y., Han, X., Carlson, J. E., Xia, X., & Yin, W. (2013). Populus euphratica: The transcriptomic response to drought stress. Plant Molecular Biology, 83(6), 539–557. https://doi.org/10.1007/S11103-013-0107-3/TABLES/4 Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0 Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research Atmospheres, 114(2). https://doi.org/10.1029/2008JD011021 Vancostenoble, B., Blanchet, N., Langlade, N. B., & Bailly, C. (2022). Maternal drought stress induces abiotic stress tolerance to the progeny at the germination stage in sunflower. Environmental and Experimental Botany, 201, 104939. https://doi.org/10.1016/J.ENVEXPBOT.2022.104939 Vanwallendael, A., Soltani, A., Emery, N. C., Peixoto, M. M., Olsen, J., & Lowry, D. B. (2019). A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. In Annual Review of Plant Biology (Vol. 70, pp. 559–583). Annual Reviews Inc. https://doi.org/10.1146/annurev-arplant-050718-100114 Vicente, M. J., Martínez-Díaz, E., Martínez-Sánchez, J. J., Franco, J. A., Bañón, S., & Conesa, E. (2020). Effect of light, temperature, and salinity and drought stresses on seed germination of Hypericum ericoides, a wild plant with ornamental potential. Scientia Horticulturae, 270, 109433. https://doi.org/10.1016/J.SCIENTA.2020.109433 Vila, H. F., Hugalde, I. P., & di Filippo, M. L. (2011). Estimación de potencial hídrico en vid por medio de medidas termográficas y espectrales. RIA 37 (1) : 46-53 (Abril 2011). http://repositorio.inta.gob.ar:80/handle/20.500.12123/6387 Vitousek, P. (2015). Nutrient Cycling and Nutrient Use Efficiency. Https://Doi.Org/10.1086/283931, 119(4), 553–572. https://doi.org/10.1086/283931 Wang, M., Newsham, I., Wu, Y. Q., Dinh, H., Kovar, C., Santibanez, J., Sabo, A., Reid, J., Bainbridge, M., Boerwinkle, E., Albert, T., Gibbs, R., & Muzny, D. (2011). High-Throughput Next Generation Sequencing Methods and Applications. Journal of Biomolecular Techniques : JBT, 22(Suppl), S7. /pmc/articles/PMC3186667/?report=abstract Wang, N., Xiao, B., & Xiong, L. (2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 168(18), 2212–2224. https://doi.org/10.1016/J.JPLPH.2011.07.013 Wang, S., & Gribskov, M. (2017). Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Bioinformatics, 33(3), 327–333. https://doi.org/10.1093/BIOINFORMATICS/BTW625 Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. In Nature Reviews Genetics (Vol. 10, Issue 1, pp. 57–63). Nature Publishing Group. https://doi.org/10.1038/nrg2484 Wilke, A. B. B., Beier, J. C., & Benelli, G. (2019). Complexity of the relationship between global warming and urbanization – an obscure future for predicting increases in vector-borne infectious diseases. Current Opinion in Insect Science, 35, 1–9. https://doi.org/10.1016/J.COIS.2019.06.002 Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338. https://doi.org/10.12688/F1000RESEARCH.15931.2 Wu, M., Zhang, W. H., Ma, C., & Zhou, J. Y. (2013). Changes in morphological, physiological, and biochemical responses to different levels of drought stress in chinese cork oak (Quercus variabilis Bl.) seedlings. Russian Journal of Plant Physiology 2013 60:5, 60(5), 681–692. https://doi.org/10.1134/S1021443713030151 Wu, Y., Tian, Q., Huang, W., Liu, J., Xia, X., Yang, X., & Mou, H. (2020). Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Molecular Biology Reports, 47(4), 2951–2962. https://doi.org/10.1007/s11033-020-05385-8 Xia, Z., Huang, D., Zhang, S., Wang, W., Ma, F., Wu, B., Xu, Y., Xu, B., Chen, D., Zou, M., Xu, H., Zhou, X., Zhan, R., & Song, S. (2021). Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit ( Passiflora edulis Sims). Horticulture Research 2021 8:1, 8(1), 1–14. https://doi.org/10.1038/s41438-020-00455-1 Xiong, F., Li, X., Zheng, L., Hu, N., Cui, M., & Li, H. (2019). Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods. Carbohydrate Polymers, 218, 46–52. https://doi.org/10.1016/j.carbpol.2019.04.069 Xu, J., & Scheres, B. (2005). Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell Polarity. The Plant Cell, 17(2), 525. https://doi.org/10.1105/TPC.104.028449 Xu, M., Li, A., Teng, Y., & Sun, Z. (2019). Exploring the adaptive mechanism of Passiflora edulis in karst areas via an integrative analysis of nutrient elements and transcriptional profiles. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/s12870-019-1797-8 Xu, W., Cui, K., Xu, A., Nie, L., Huang, J., & Peng, S. (2015). Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 37(2), 1–11. https://doi.org/10.1007/s11738-014-1760-0 Xue, F., Liu, W., Cao, H., Song, L., Ji, S., Tong, L., & Ding, R. (2021). Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum, 172(4), 2070–2078. https://doi.org/10.1111/PPL.13441 Yang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13(4), 119. https://doi.org/10.5808/GI.2015.13.4.119 Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae 2021, Vol. 7, Page 50, 7(3), 50. https://doi.org/10.3390/HORTICULTURAE7030050 Yi, X. P., Zhang, Y. L., Yao, H. S., Luo, H. H., Gou, L., Chow, W. S., & Zhang, W. F. (2016). Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23–34. https://doi.org/10.1016/J.JPLPH.2016.01.016 Yordanov, I., Velikova, V., & Tsonev, T. (2000). Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica, 38(2), 171–186. https://doi.org/10.1023/A:1007201411474 Yoshida, T., Mogami, J., & Yamaguchi-Shinozaki, K. (2015). Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant & Cell Physiology, 56(6), 1043–1052. https://doi.org/10.1093/PCP/PCV060 You, J., Zhang, Y., Liu, A., Li, D., Wang, X., Dossa, K., Zhou, R., Yu, J., Zhang, Y., Wang, L., & Zhang, X. (2019). Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/S12870-019-1880-1/FIGURES/9 Zaefyzadeh, M., Quliyev, R. A., Babayeva, S. M., & Abbasov, M. A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turkish Journal of Biology, 33(1), 1–7. Zeng, H., Zhang, Y., Zhang, X., Pi, E., & Zhu, Y. (2017). Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Frontiers in Plant Science, 8, 877. https://doi.org/10.3389/FPLS.2017.00877/BIBTEX Zhang, X., & Cheng, X. (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure, 11(5), 509–520. https://doi.org/10.1016/S0969-2126(03)00071-6 Zhang, X., Lei, L., Lai, J., Zhao, H., & Song, W. (2018). Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1), 1–16. https://doi.org/10.1186/S12870-018-1281-X/FIGURES/7 Zhang, X., Yang, Z., Li, Z., Zhang, F., & Hao, L. (2019). De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress. Gene, 710, 375–386. https://doi.org/10.1016/j.gene.2019.05.055 Zhao, P., Hou, S., Guo, X., Jia, J., Yang, W., Liu, Z., Chen, S., Li, X., Qi, D., Liu, G., & Cheng, L. (2019). A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC Plant Biology, 19(1), 1–15. https://doi.org/10.1186/S12870-019-2159-2/FIGURES/9 Zhou, J.-J., Zhang, Y.-H., Han, Z.-M., Liu, X.-Y., Jian, Y.-F., Hu, C.-G., Dian, Y.-Y., Zhou, J.-J. ;, Zhang, Y.-H. ;, Han, Z.-M. ;, Liu, X.-Y. ;, Jian, Y.-F. ;, Hu, C.-G. ;, & Dian, Y.-Y. (2021). Evaluating the Performance of Hyperspectral Leaf Reflectance to Detect Water Stress and Estimation of Photosynthetic Capacities. Remote Sensing 2021, Vol. 13, Page 2160, 13(11), 2160. https://doi.org/10.3390/RS13112160 Zhu, A., Ibrahim, J. G., & Love, M. I. (2019). Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics, 35(12), 2084–2092. https://doi.org/10.1093/BIOINFORMATICS/BTY895 Zhuang, J., Wang, Y., Chi, Y., Zhou, L., Chen, J., Zhou, W., Song, J., Zhao, N., & Ding, J. (2020). Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ, 8, e10046. https://doi.org/10.7717/PEERJ.10046/SUPP-1 Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M., Yang, X., & Allakhverdiev, S. I. (2013). Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynthesis Research, 117(1–3), 529–546. https://doi.org/10.1007/S11120-013-9885-3 Zivcak, M., Olsovska, K., & Brestic, M. (2017). Photosynthetic responses under harmful and changing environment: Practical aspects in crop research. Photosynthesis: Structures, Mechanisms, and Applications, 203–248. https://doi.org/10.1007/978-3-319-48873-8_10 Zolnierowicz, S. (2000). Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochemical Pharmacology, 60(8), 1225–1235. https://doi.org/10.1016/S0006-2952(00)00424-X Mutz, K. O., Heilkenbrinker, A., Lönne, M., Walter, J. G., & Stahl, F. (2013). Transcriptome analysis using next-generation sequencing. In Current Opinion in Biotechnology (Vol. 24, Issue 1, pp. 22–30). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.09.004 Morimoto, K., Mizoi, J., Qin, F., Kim, J.-S., Sato, H., Osakabe, Y., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2013). Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS ONE, 8(12), e80457. https://doi.org/10.1371/journal.pone.0080457 Moreno, S. G., Vela, H. P., & Alvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119–129. Mohammadkhani, N., & Heidari, R. (2007). Effects of water stress on respiration, photosynthetic pigments and water content in two maize cultivars. Pakistan Journal of Biological Sciences, 10(22), 4022–4028. https://doi.org/10.3923/pjbs.2007.4022.4028 Mofatto, L. S., Carneiro, F. de A., Vieira, N. G., Duarte, K. E., Vidal, R. O., Alekcevetch, J. C., Cotta, M. G., Verdeil, J. L., Lapeyre-Montes, F., Lartaud, M., Leroy, T., de Bellis, F., Pot, D., Rodrigues, G. C., Carazzolle, M. F., Pereira, G. A. G., Andrade, A. C., & Marraccini, P. (2016). Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biology, 16(1), 1–18. https://doi.org/10.1186/S12870-016-0777-5/FIGURES/7 Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/NAR/GKAA913 Ministerio de Agricultura. (2020). Informe Gulupa. https://www.minagricultura.gov.co/paginas/default.aspx Meza, K., Ruales, B., Maiguashca, J., & Rivadeneira, J. L. (2020). CARACTERIZACIÓN ESPECTRAL DE ESTRÉS HÍDRICO EN EL CULTIVO DE PEPINO DULCE (Solanum muricatum). Revista Geoespacial, 17(1), 14–24. https://doi.org/10.24133/geoespacial.v17i1.1492 Meng, A., Wen, D., & Zhang, C. (2022). Maize Seed Germination Under Low-Temperature Stress Impacts Seedling Growth Under Normal Temperature by Modulating Photosynthesis and Antioxidant Metabolism. Frontiers in Plant Science, 13, 514. https://doi.org/10.3389/FPLS.2022.843033/BIBTEX Meneses, V. A. B., Téllez, J. M., & Velasquez, D. F. A. (2015). USO DE DRONES PARA EL ANALISIS DE IMÁGENES MULTIESPECTRALES EN AGRICULTURA DE PRECISIÓN. @limentech, Ciencia y Tecnología Alimentaria, 13(1), 28–40. https://doi.org/10.24054/16927125.V1.N1.2015.1647 Melgarejo, L. M. (2011). Caracterizacion ecofisiologica de las plantas passiflora en areas arbolicolas de Colombia. Revista de Horticultura. Mehta, P., Allakhverdiev, S., & Jajoo, A. (2010). Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research, 105(3), 249–255. https://doi.org/10.1007/S11120-010-9588-Y Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/JEXBOT/51.345.659 Mashaki, K. M., Garg, V., Nasrollahnezhad Ghomi, A. A., Kudapa, H., Chitikineni, A., Nezhad, K. Z., Yamchi, A., Soltanloo, H., Varshney, R. K., & Thudi, M. (2018). RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLOS ONE, 13(6), e0199774. https://doi.org/10.1371/JOURNAL.PONE.0199774 Maseda, P. H., & Fernández, R. J. (2006). Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 57(15), 3963–3977. https://doi.org/10.1093/JXB/ERL127 Martínez-Barbáchano, R., & Solís-Miranda, G. A. (2018). Caracterización Espectral y Detección de Flecha Seca en Palma Africana en Puntarenas, Costa Rica. Revista Geográfica de América Central, 2(61), 349–377. https://doi.org/10.15359/RGAC.61-2.13 Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T., Dziurka, M., Dziurka, K., Nowakowska, A., & Quarrie, S. A. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35(2), 451–461. https://doi.org/10.1007/S11738-012-1088-6/TABLES/2 Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59(2), 141–149. https://doi.org/10.1016/J.COLSURFB.2007.05.002 Mangena, P. (2019). Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). Protein & Peptide Letters, 27(2), 135–144. https://doi.org/10.2174/0929866526666191014125453 Ma, P., Bai, T. hui, & Ma, F. wang. (2015). Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees. Journal of Integrative Agriculture, 14(4), 681–690. https://doi.org/10.1016/S2095-3119(14)60871-6 Ma, D., Dong, S., Zhang, S., Wei, X., Xie, Q., Ding, Q., Xia, R., & Zhang, X. (2021). Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis). Molecular Ecology Resources, 21(3), 955–968. https://doi.org/10.1111/1755-0998.13310 Lu, T., Lu, G., Fan, D., Zhu, C., Li, W., Zhao, Q., Feng, Q., Zhao, Y., Guo, Y., Li, W., Huang, X., & Han, B. (2010). Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research, 20(9), 1238–1249. https://doi.org/10.1101/GR.106120.110 Lozano-Povis, A., Alvarez-Montalván, C. E., & Moggiano, N. (2021). Climate change in the Andes and its impact on agriculture: a systematic review. In Scientia Agropecuaria (Vol. 12, Issue 1, pp. 101–108). Universidad Nacional de Trujillo. https://doi.org/10.17268/SCI.AGROPECU.2021.012 Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275, 109655. https://doi.org/10.1016/j.scienta.2020.109655 Love, M. I., Huber, W., & Anders, S. (2014b). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/S13059-014-0550-8 Love, M. I., Huber, W., & Anders, S. (2014a). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 2014 15:12, 15(12), 1–21. https://doi.org/10.1186/S13059-014-0550-8 Love, M. I. (2021). Statistical Modeling of High Dimensional Counts. Methods in Molecular Biology, 2284, 97–134. https://doi.org/10.1007/978-1-0716-1307-8_7 López-Hidalgo, C., Meijón, M., Lamelas, L., & Valledor, L. (2021). The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant, Cell & Environment, 44(6), 1977–1986. https://doi.org/10.1111/PCE.14007 Lobos, G. A., & Hancock, J. F. (2015). Breeding blueberries for a changing global environment: A review. Frontiers in Plant Science, 6(SEPTEMBER), 782. https://doi.org/10.3389/FPLS.2015.00782/XML/NLM Liu, S., Li, A., Chen, C., Cai, G., Zhang, L., Guo, C., & Xu, M. (2017). De novo transcriptome sequencing in Passiflora edulis sims to identify genes and signaling pathways involved in cold tolerance. Forests, 8(11), 435. https://doi.org/10.3390/f8110435 Lissina, E., Young, B., Urbanus, M. L., Guan, X. L., Lowenson, J., Hoon, S., Baryshnikova, A., Riezman, I., Michaut, M., Riezman, H., Cowen, L. E., Wenk, M. R., Clarke, S. G., Giaever, G., & Nislow, C. (2011). A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis. PLOS Genetics, 7(10), e1002332. https://doi.org/10.1371/JOURNAL.PGEN.1002332 Lichtenthaler, H. K., Gitelson, A., & Lang, M. (1996). Non-Destructive Determination of Chlorophyll Content of Leaves of a Green and an Aurea Mutant of Tobacco by Reflectance Measurements. Journal of Plant Physiology, 148(3–4), 483–493. https://doi.org/10.1016/S0176-1617(96)80283-5 Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/BIOINFORMATICS/BTP324 Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011 12:1, 12(1), 1–16. https://doi.org/10.1186/1471-2105-12-323 Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25(2), 275–294. https://doi.org/10.1046/J.0016-8025.2001.00814.X Lauriano, J. A., Ramalho, J. C., Lidon, F. C., & do Céu Matos, M. (2006). Mechanisms of energy dissipation in peanut under water stress. Photosynthetica 2006 44:3, 44(3), 404–410. https://doi.org/10.1007/S11099-006-0043-4 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods 2012 9:4, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 Lamers, J., der Meer, T. van, & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624–1635. https://doi.org/10.1104/PP.19.01464 Kusvuran, S., & Dasgan, H. Y. (2017). Drought induced physiological and biochemical responses in solanum lycopersicum genotypes differing to tolerance. Acta Scientiarum Polonorum, Hortorum Cultus, 16(6), 19–27. https://doi.org/10.24326/ASPHC.2017.6.2 Kukurba, K. R., & Montgomery, S. B. (2015). RNA Sequencing and Analysis. Cold Spring Harbor Protocols, 2015(11), 951. https://doi.org/10.1101/PDB.TOP084970 Koramutla, M. K., Negi, M., & Ayele, B. T. (2021). Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes 2021, Vol. 12, Page 1620, 12(10), 1620. https://doi.org/10.3390/GENES12101620 Kohzuma, K., Cruz, J. A., Akashi, K., Hoshiyasu, S., Munekage, Y. N., Yokota, A., & Kramer, D. M. (2009). The long-term responses of the photosynthetic proton circuit to drought. Plant, Cell & Environment, 32(3), 209–219. https://doi.org/10.1111/J.1365-3040.2008.01912.X Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root Response to Drought Stress in Rice (Oryza sativa L.). International Journal of Molecular Sciences 2020, Vol. 21, Page 1513, 21(4), 1513. https://doi.org/10.3390/IJMS21041513 Kautsky, H., & Hirsch, A. (1931). Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 1931 19:48, 19(48), 964–964. https://doi.org/10.1007/BF01516164 Katz, J. E., Dlakić, M., & Clarke, S. (2003). Automated identification of putative methyltransferases from genomic open reading frames. Molecular & Cellular Proteomics : MCP, 2(8), 525–540. https://doi.org/10.1074/mcp.M300037-MCP200 Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V., & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 1–11. https://doi.org/10.1007/S11738-016-2113-Y/FIGURES/2 Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7(2016JULY), 1029. https://doi.org/10.3389/FPLS.2016.01029/BIBTEX Joshi, R., Ramanarao, M. V., Lee, S., Kato, N., & Baisakh, N. (2014). Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell, Tissue and Organ Culture, 117(1), 17–30. https://doi.org/10.1007/S11240-013-0416-X/FIGURES/9 Jiménez, A. M., Sierra, C. A., Rodríguez-Pulido, F. J., González-Miret, M. L., Heredia, F. J., & Osorio, C. (2011). Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Research International, 44(7), 1912–1918. https://doi.org/10.1016/j.foodres.2010.11.007 Jiang, Y., & Carrow, R. N. (2007). Broadband Spectral Reflectance Models of Turfgrass Species and Cultivars to Drought Stress. Crop Science, 47(4), 1611–1618. https://doi.org/10.2135/CROPSCI2006.09.0617 Jiang, C., Song, J., Huang, R., Huang, M., & Xu, L. (2013). Cloning and expression analysis of Chitinase genes from Populus canadensis. Russian Journal of Plant Physiology 2013 60:3, 60(3), 396–403. https://doi.org/10.1134/S1021443713030072 Jia, H., Wang, C., Wang, F., Liu, S., Li, G., & Guo, X. (2015). GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE, 10(3). https://doi.org/10.1371/JOURNAL.PONE.0120646 Hussain, S., Rao, M. J., Anjum, M. A., Ejaz, S., Zakir, I., Ali, M. A., Ahmad, N., & Ahmad, S. (2019). Oxidative stress and antioxidant defense in plants under drought conditions. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 207–219. https://doi.org/10.1007/978-3-030-06118-0_9/TABLES/3 Hurtado-Salazar, A., Silva, D. F. P. da, Ceballos-Aguirre, N., Ocampo, J., & Bruckner, C. H. (2020). Promissory Passiflora species (Passifloraceae) for its tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/rcch.2020v14i1.10574 Hurtado-Salazar, A., Pereira, D. F., Silva, D. A., Ceballos-Aguirre, N., Ocampo-Pérez, J., & Bruckner, C. H. (2020). Promissory Passiflora L. species (Passifloraceae) for tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/RCCH.2020V14I1.10574 Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5 Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M. I., MaCdonald, J., Obenchain, V., Oles̈, A. K., … Morgan, M. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods 2015 12:2, 12(2), 115–121. https://doi.org/10.1038/nmeth.3252 Huang, S. H., Zhang, J. Y., Wang, L. H., & Huang, L. Q. (2013). Effect of abiotic stress on the abundance of different vitamin B6 vitamers in tobacco plants. Plant Physiology and Biochemistry, 66, 63–67. https://doi.org/10.1016/J.PLAPHY.2013.02.010 Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., & Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 12987–12992. https://doi.org/10.1073/PNAS.0604882103/SUPPL_FILE/04882FIG8.PDF Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431–438. https://doi.org/10.1016/S1360-1385(01)02052-0 Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3232–3237. https://doi.org/10.1073/PNAS.1109936109/SUPPL_FILE/PNAS.1109936109_SI.PDF Hernández, A. (2003). ). Revision taxonomica de Passiflora, subgénero Decaloba (Passifloraceae) en Colombia [Tesis Pregrado]. Universidad Nacional de Colombia. He, Y., Zhang, Y., Pereira, A., Gómez, A., & Wang, J. (2005). Nondestructive Determination of Tomato Fruit Quality Characteristics Using Vis/NIR Spectroscopy Technique. International Journal of Information Technology, 11(11), 97–108. https://www.researchgate.net/publication/242488503_Nondestructive_Determination_of_Tomato_Fruit_Quality_Characteristics_Using_VisNIR_Spectroscopy_Technique Harb, A., Krishnan, A., Ambavaram, M. M. R., & Pereira, A. (2010). Molecular and Physiological Analysis of Drought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth. Plant Physiology, 154(3), 1254–1271. https://doi.org/10.1104/pp.110.161752 Hansatech. (2006). Handy PEA+ - Hansatech Instruments Ltd. http://www.hansatech-instruments.com/product/handy-pea/ Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/SCIENCE.AAZ7614/ASSET/85DF5D35-16C3-4F44-A8B6-6FBF05AF8557/ASSETS/GRAPHIC/368_266_F4.JPEG Guha, A., Sengupta, D., Kumar Rasineni, G., & Ramachandra Reddy, A. (2010). An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora: Morphology, Distribution, Functional Ecology of Plants, 205(2), 144–151. https://doi.org/10.1016/j.flora.2009.01.004 Greenham, K., Guadagno, C. R., Gehan, M. A., Mockler, T. C., Weinig, C., Ewers, B. E., & McClung, C. R. (2017). Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in brassica rapa. ELife, 6. https://doi.org/10.7554/eLife.29655 González-Fernández, A. B., Rodríguez-Pérez, J. R., Marcelo, V., & Valenciano, J. B. (2015). Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards. Agricultural Water Management, 156, 43–50. https://doi.org/10.1016/j.agwat.2015.03.024 Gomes, M. T. G., da Luz, A. C., dos Santos, M. R., do Carmo Pimentel Batitucci, M., Silva, D. M., & Falqueto, A. R. (2012). Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142, 49–56. https://doi.org/10.1016/J.SCIENTA.2012.04.026 Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887 Gioppato, H. A., da Silva, M. B., Carrara, S., Palermo, B. R. Z., de Souza Moraes, T., & Dornelas, M. C. (2019). Genomic and transcriptomic approaches to understand Passiflora physiology and to contribute to passionfruit breeding. Theoretical and Experimental Plant Physiology, 31(1), 173–181. https://doi.org/10.1007/s40626-018-0134-1 Gilbert, G., & McLeman, R. (2010). Household access to capital and its effects on drought adaptation and migration: A case study of rural Alberta in the 1930s. Population and Environment, 32(1), 3–26. https://doi.org/10.1007/S11111-010-0112-2/TABLES/4 Gehring, W. J. (1992). The homeobox in perspective. Trends in Biochemical Sciences, 17(8), 277–280. https://doi.org/10.1016/0968-0004(92)90434-B García-Castro, A., Volder, A., Restrepo-Diaz, H., Starman, T. W., & Lombardini, L. (2017). Evaluation of different drought stress regimens on growth, leaf gas exchange properties, and carboxylation activity in purple passionflower plants. Journal of the American Society for Horticultural Science, 142(1), 57–64. https://doi.org/10.21273/JASHS03961-16 Gao, R., Liu, P., Yong, Y., & Wong, S.-M. (2016). Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana. Scientific Reports, 6. https://doi.org/10.1038/SREP24604 Gamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997 112:4, 112(4), 492–501. https://doi.org/10.1007/S004420050337 Gallino, J. P., Ruibal, C., Casaretto, E., Fleitas, A. L., Bonnecarrère, V., Borsani, O., & Vidal, S. (2018). A dehydration-induced eukaryotic translation initiation factor iso4G identified in a slow wilting soybean cultivar enhances abiotic stress tolerance in Arabidopsis. Frontiers in Plant Science, 9, 262. https://doi.org/10.3389/FPLS.2018.00262/BIBTEX Gallie, D. R. (2016). Eukaryotic initiation factor eIFiso4G1 and eIFiso4G2 are isoforms exhibiting distinct functional differences in supporting translation in arabidopsis. Journal of Biological Chemistry, 291(3), 1501–1513. https://doi.org/10.1074/jbc.M115.692939 Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17(12), 3470–3488. https://doi.org/10.1105/tpc.105.035659 Frank, H. A., & Brudvig, G. W. (2004). Redox functions of carotenoids in photosynthesis. Biochemistry, 43(27), 8607–8615. https://doi.org/10.1021/BI0492096 Flach, J., Pilet, P. E., & Jollès, P. (1992). What’s new in chitinase research? Experientia, 48(8), 701–716. https://doi.org/10.1007/BF02124285 Filichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., Wong, W. K., & Mockler, T. C. (2010). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20(1), 45–58. https://doi.org/10.1101/GR.093302.109 Fernandes, A. M., Fortini, E. A., Müller, L. A. de C., Batista, D. S., Vieira, L. M., Silva, P. O., Amaral, C. H. do, Poethig, R. S., & Otoni, W. C. (2020). Leaf development stages and ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by narrowband spectral signal. Journal of Photochemistry and Photobiology B: Biology, 209, 111931. https://doi.org/10.1016/J.JPHOTOBIOL.2020.111931 Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 2009 29:1, 29(1), 185–212. https://doi.org/10.1051/AGRO:2008021 Fang, H., & Gough, J. (2013b). A domain-centric solution to functional genomics via dcGO Predictor. BMC Bioinformatics, 14(SUPPL.3), 1–11. https://doi.org/10.1186/1471-2105-14-S3-S9/FIGURES/3 Fang, H., & Gough, J. (2013a). dcGO: database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Research, 41(Database issue), D536. https://doi.org/10.1093/NAR/GKS1080 Fàbregas, N., & Fernie, A. R. (2019). The metabolic response to drought. Journal of Experimental Botany, 70(4), 1077–1085. https://doi.org/10.1093/JXB/ERY437 Emerson, R., & Arnold, W. (1932). THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS. Journal of General Physiology, 16(2), 191–205. https://doi.org/10.1085/JGP.16.2.191 Dubois, M., & Inzé, D. (2020). Plant growth under suboptimal water conditions: early responses and methods to study them. Journal of Experimental Botany, 71(5), 1706–1722. https://doi.org/10.1093/JXB/ERAA037 Dubey, A. K., Kumar, N., & Sanyal, I. (2022). Targets of NO in plastids. Nitric Oxide in Plant Biology: An Ancient Molecule with Emerging Roles, 331–344. https://doi.org/10.1016/B978-0-12-818797-5.00032-7 Drewke, C., & Leistner, E. (2001). Biosynthesis of vitamin B6 and structurally related derivatives. Vitamins and Hormones, 61, 121–155. https://doi.org/10.1016/S0083-6729(01)61004-5 de Brito, G. G., Sofiatti, V., de Andrade Lima, M. M., de Carvalho, L. P., & Filho, J. L. da S. (2011). Traços fisiológicos para fenotipagem de algodoeiro sob seca. Acta Scientiarum - Agronomy, 33(1), 117–125. https://doi.org/10.4025/ACTASCIAGRON.V33I1.9839 Day, I. S., Reddy, V. S., Shad Ali, G., & Reddy, A. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biology 2002 3:10, 3(10), 1–24. https://doi.org/10.1186/GB-2002-3-10-RESEARCH0056 Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993), 3(9), 853–859. https://doi.org/10.1016/S0969-2126(01)00220-9 Datt, B. (1999). A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. Journal of Plant Physiology, 154(1), 30–36. https://doi.org/10.1016/S0176-1617(99)80314-9 Dalal, M., Sahu, S., Tiwari, S., Rao, A. R., & Gaikwad, K. (2018). Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130, 482–492. https://doi.org/10.1016/J.PLAPHY.2018.07.035 Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology 2016 17:1, 17(1), 1–19. https://doi.org/10.1186/S13059-016-0881-8 Comstock, J. P. (2002). Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. Journal of Experimental Botany, 53(367), 195–200. https://doi.org/10.1093/JEXBOT/53.367.195 Çiçek, N., Pekcan, V., Arslan, Ö., Çulha Erdal, Ş., Balkan Nalçaiyi, A. S., Çil, A. N., Şahin, V., Kaya, Y., & Ekmekçi, Y. (2019). Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Revista Brasileira de Botanica, 42(2), 249–260. https://doi.org/10.1007/S40415-019-00534-1/FIGURES/5 Chuvieco-Salinero, E. (2010). Teledetección ambiental : la observación de la tierra desde el espacio (Ariel, Ed.; 1st ed.). https://bibliotecadigital.uchile.cl/discovery/fulldisplay?vid=56UDC_INST:56UDC_INST&search_scope=MyInst_and_CI&tab=Everything&docid=alma991001205769703936&lang=es&context=L&adaptor=Local%20Search%20Engine&query=any,contains,the%20new%20nature%20of%20maps&facet=library,include,56UDC_INSTAQ06&offset=0 Chen, Y.-C. (2020). Introductory Chapter: Gene Expression and Phenotypic Traits. Gene Expression and Phenotypic Traits. https://doi.org/10.5772/INTECHOPEN.89863 Chen, P., Ran, S., Li, R., Huang, Z., Qian, J., Yu, M., & Zhou, R. (2014). Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Molecular Breeding, 34(4), 1879–1891. https://doi.org/10.1007/s11032-014-0146-8 Chen, D., He, L., Lin, M., Jing, Y., Liang, C., Liu, H., Gao, J., Zhang, W., & Wang, M. (2021). A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. Plant Science, 306, 110858. https://doi.org/10.1016/J.PLANTSCI.2021.110858 Caturegli, L., Matteoli, S., Gaetani, M., Grossi, N., Magni, S., Minelli, A., Corsini, G., Remorini, D., & Volterrani, M. (2020). Effects of water stress on spectral reflectance of bermudagrass. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/s41598-020-72006-6 Castillo, N. C. R., Wu, X., Chacón, M. I., Melgarejo, L. M., & Blair, M. W. (2021). Genetic Diversity of Purple Passion Fruit, Passiflora edulis f. edulis, Based on Single-Nucleotide Polymorphism Markers Discovered through Genotyping by Sequencing. Diversity 2021, Vol. 13, Page 144, 13(4), 144. https://doi.org/10.3390/D13040144 Carr, M. K. V. (2013). The water relations and irrigation requirements of passion fruit (passiflora edulis sims): A review. In Experimental Agriculture (Vol. 49, Issue 4, pp. 585–596). https://doi.org/10.1017/S0014479713000240 Cardoso, A. A., Gori, A., Da-Silva, C. J., & Brunetti, C. (2020). Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. Applied Sciences 2020, Vol. 10, Page 6322, 10(18), 6322. https://doi.org/10.3390/APP10186322 Cao, S., Wang, Y., Li, Z., Shi, W., Gao, F., Zhou, Y., Zhang, G., & Feng, J. (2019). Genome-Wide Identification and Expression Analyses of the Chitinases under Cold and Osmotic Stress in Ammopiptanthus nanus. Genes 2019, Vol. 10, Page 472, 10(6), 472. https://doi.org/10.3390/GENES10060472 Cai, W., Zhang, C., Suen, H. P., Ai, S., Bai, Y., Bao, J., Chen, B., Cheng, L., Cui, X., Dai, H., Di, Q., Dong, W., Dou, D., Fan, W., Fan, X., Gao, T., Geng, Y., Guan, D., Guo, Y., … Gong, P. (2021). The 2020 China report of the Lancet Countdown on health and climate change. The Lancet Public Health, 6(1), e64–e81. https://doi.org/10.1016/S2468-2667(20)30256-5 Caballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero, cambio climático, calentamiento global. (Vol. 8). Revista Digital Universitaria. Browning, K. S., & Bailey-Serres, J. (2015). Mechanism of Cytoplasmic mRNA Translation. The Arabidopsis Book / American Society of Plant Biologists, 13, e0176. https://doi.org/10.1199/TAB.0176 Boman, A. L., & Kahn, R. A. (1995). Arf proteins: the membrane traffic police? Trends in Biochemical Sciences, 20(4), 147–150. https://doi.org/10.1016/S0968-0004(00)88991-4 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170 Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: a review. Agronomy for Sustainable Development, 35(2), 401–442. https://doi.org/10.1007/S13593-015-0283-4/FIGURES/5 Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132(1), 21–32. https://doi.org/10.1111/PBR.12004 Basu, S., & Rabara, R. (2017). Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. Plant Gene, 11, 90–98. https://doi.org/10.1016/J.PLGENE.2017.04.008 Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses 2014, Vol. 6, Pages 106-136, 6(1), 106–136. https://doi.org/10.3390/V6010106 Bano, H., Athar, H. ur R., Zafar, Z. U., Kalaji, H. M., & Ashraf, M. (2021). Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiologia Plantarum, 172(2), 1244–1254. https://doi.org/10.1111/PPL.13327 Banks, J. M. (2017). Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiology, 37(8), 1128–1136. https://doi.org/10.1093/TREEPHYS/TPX059 Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/ANNUREV.ARPLANT.59.032607.092759 ASOHOFRUCOL. (2020). Cartilla Producción Hortofrutícola . https://www.asohofrucol.com.co/biblioteca?paginalib=2#libros Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/J.ENVEXPBOT.2005.12.006 Arslan, Balkan Nalçaiyi, A. S., Çulha Erdal, Pekcan, V., Kaya, Y., Çiçek, N., & Ekmekçi, Y. (2020). Special issue in honour of Prof. Reto J. Strasser – Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Http://Ps.Ueb.Cas.Cz/Doi/10.32615/Ps.2019.171.Html, 58(SPECIAL ISSUE), 348–357. https://doi.org/10.32615/PS.2019.171 Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/ANNUREV.ARPLANT.55.031903.141701 Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide Application Improves the Drought Tolerance in Maize Through Modulation of Enzymatic Antioxidants and Leaf Gas Exchange. Journal of Agronomy and Crop Science, 197(3), 177–185. https://doi.org/10.1111/j.1439-037X.2010.00459.x Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034 Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology 2010 11:10, 11(10), 1–12. https://doi.org/10.1186/GB-2010-11-10-R106 Amrhein, N., Apel, K., Baginsky, S., Buchmann, N., Geisler, M., Keller, F., Körner, C., Martinoia, E., Merbold, L., Müller, C., Paschke, M., & Schmid, B. (2013). Plant response to stress. https://doi.org/10.3929/ETHZ-A-009779047 Ali, S., Hayat, K., Iqbal, A., & Xie, L. (2020). Implications of Abscisic Acid in the Drought Stress Tolerance of Plants. Agronomy 2020, Vol. 10, Page 1323, 10(9), 1323. https://doi.org/10.3390/AGRONOMY10091323 Alborzi, S. Z., Devignes, M. D., & Ritchie, D. W. (2017). Associating gene ontology terms with pfam protein domains. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10209 LNCS, 127–138. https://doi.org/10.1007/978-3-319-56154-7_13/TABLES/2 Alam Khan, M., Iqbal, M., Jameel, M., Nazeer, W., Shakir, S., Aslam, M. T., & Iqbal, B. (2013). Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). African Journal of Biotechnology, 10(55), 11340–11344. https://doi.org/10.4314/ajb.v10i55. Ahmad, Z., Anjum, S., Waraich, E. A., Ayub, M. A., Ahmad, T., Tariq, R. M. S., Ahmad, R., & Iqbal, M. A. (2018). Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress – a review. Https://Doi.Org/10.1080/01904167.2018.1459688, 41(13), 1734–1743. https://doi.org/10.1080/01904167.2018.1459688 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
111 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83364/4/Tesis%20MSc%20Paula%20Andrea%20Lozano%20Monta%c3%b1a.pdf https://repositorio.unal.edu.co/bitstream/unal/83364/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/83364/5/Tesis%20MSc%20Paula%20Andrea%20Lozano%20Monta%c3%b1a.pdf.jpg |
bitstream.checksum.fl_str_mv |
9699d2b7bbe05a0ed6eef6c55a164fcc eb34b1cf90b7e1103fc9dfd26be24b4a 14a048e53b5cf9b9d9b9f5f788e05e0d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090193320280064 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarmiento Salazar, Felipe97400f5ef687d1b92cbb7c10c002339cMelgarejo Muñoz, Luz Marinac13b62e709cbe2df09a40b59645414d3Lozano Montaña, Paula Andrea84c93a10648de538c448542c5551efe1Fisiología del Estrés y Biodiversidad en Plantas y MicroorganismosLozano-Montaña, P.2023-02-07T19:16:41Z2023-02-07T19:16:41Z2022-10-07https://repositorio.unal.edu.co/handle/unal/83364Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEl cambio climático, especialmente de la escasez de agua, ha tenido dentro de sus consecuencias, algunas devastadoras para la agricultura en los últimos 50 años; amenazando directamente la seguridad alimentaria de las comunidades involucradas en producción de alimentos y demás consumidores. Para el siglo 21 se espera un aumento de la sequía en distintas zonas del mundo, resultado de un aumento de la evapotranspiración, acompañado de una reducción en la precipitación. En la zona Andina su efecto se ha visto principalmente en el retroceso acelerado de los glaciares, que proveen de agua a los sistemas agrícolas circundantes, por lo que se espera una disminución en la capacidad de abastecimiento hídrico de las comunidades andinas y de sus sistemas agrícolas. Colombia es un país que está intentado posicionarse en exportaciones agrícolas pero debido a eventos climáticos como el déficit hídrico, muchos de estos cultivos se ven amenazados. Dentro de estos se encuentra el cultivo de gulupa o fruta de la pasión (Passiflora edulis Sims f. edulis), fruta cuya exportación ha crecido considerablemente en la última década, generándole entradas económicas al país anuales alrededor de los 35 millones de dólares. Este cultivo al verse enfrentado a cambios en las condiciones de riego puede reducir su crecimiento y comprometer su producción, es por eso que realizar estudios sobre su respuesta frente al estrés por déficit hídrico es necesario, además de seguir profundizando en los mecanismos de respuesta de las plantas frente a la escasez de agua en búsqueda de posibles soluciones. Es por esto por lo que se planteó el objetivo de analizar la respuesta fisiológica y transcriptómica de gulupa frente al déficit hídrico. Se midieron variables fisiológicas como: conductancia estomática (gs), temperatura foliar (Tf), contenido de fotopigmentos, fluorescencia de la clorofila a y reflectancia foliar, de donde se encontró una respuesta con rasgos de evitación, así como con rasgos de tolerancia, en donde en búsqueda de mantener las condiciones hídricas se sacrifican procesos como el crecimiento. Por otra parte, y con ayudas de herramientas de secuenciación de nueva generación, se obtuvo una lista de genes diferencialmente expresados de las plantas sometidas a déficit. Los cambios en la expresión que se generan participan en la modulación de distintos procesos en toda la planta, principalmente relacionados con señalización mediada por ABA, crecimiento, el sistema antioxidante. Estos procesos se reportan dentro de los rasgos asociados a la tolerancia al estrés. Entender los distintos mecanismos de respuesta y poder integrar los distintos niveles, moleculares, bioquímicos y fisiológicos, es una propuesta actualmente muy utilizada para alimentar las bases de los programas de mejoramiento, de esta manera protegiendo la seguridad alimentaria. (Texto tomado de la fuente)Climate change, especially water scarcity, has had some devastating consequences for agriculture in the last 50 years, directly threatening the food security of communities involved in food production and other consumers. For the 21st century, an increase in drought is expected in different areas of the world, because of an increase in evapotranspiration, accompanied by a reduction in precipitation. In the Andean zone, its effect has been seen mainly in the accelerated retreat of glaciers, which provide water to the surrounding agricultural systems, so a decrease in the water supply capacity of Andean communities and their agricultural systems is expected. Colombia is a country that is trying to position itself in agricultural exports, but due to climatic events such as the water deficit, many of these crops are threatened, including the gulupa or passion fruit (Passiflora edulis Sims f. edulis), a fruit whose export has grown considerably in the last decade, generating annual economic income for the country of around US$35 million. This crop, when faced with changes in irrigation conditions, can reduce its growth and compromise its production, which is why it is necessary to conduct studies on its response to water stress, as well as to continue delving into the mechanisms of plant response to water scarcity in search of possible solutions. For this reason, the objective was to analyze the physiological and transcriptomic response of gulupa to water deficit. Physiological variables such as stomatal conductance (gs), leaf temperature (Tf), photopigment content, chlorophyll fluorescence, and leaf reflectance were measured, from which a response with avoidance traits was found, as well as tolerance traits, where processes such as growth are sacrificed in the search to maintain water conditions. On the other hand, a list of differentially expressed genes of plants subjected to deficit was obtained with the aid of new-generation sequencing tools. The change in expression participates in the modulation of different processes in the whole plant, mainly related to ABA-mediated signaling, growth, and the antioxidant system. These processes are reported within the traits associated with stress tolerance. Understanding the different response mechanisms and being able to integrate the different molecular, biochemical, and physiological levels is a widely used breeding program approached, thus protecting food security.MaestríaMaestría en ciencias - BiologíaFisiología del estrésTranscriptomica111 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas570 - Biología::571 - Fisiología y temas relacionadosSeguridad alimenticiaProducción alimenticiaFood securityFood productionDéficit hídricoConductancia estomáticaExpresión diferencialABAROSStomatal conductanceDifferential expressionABAROSDinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupaTranscriptional and physiological dynamics of the response to progressive water deficit in gulupaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMNakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88–95. https://doi.org/10.1104/PP.108.129791Nakayama, S., Moncrief, N. D., & Kretsinger, R. H. (1992). Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. Journal of Molecular Evolution, 34(5), 416–448. https://doi.org/10.1007/BF00162998Naramoto, S., Kleine-Vehn, J., Robert, S., Fujimoto, M., Dainobu, T., Paciorek, T., Ueda, T., Nakano, A., van Montagu, M. C. E., Fukuda, H., & Friml, J. (2010). ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21890–21895. https://doi.org/10.1073/PNAS.1016260107/-/DCSUPPLEMENTALNezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. TheScientificWorldJournal, 2013. https://doi.org/10.1155/2013/610721Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C., & Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology, 224–225, 30–48. https://doi.org/10.1016/J.JPLPH.2018.03.001Noodén, L. D. (2004). Plant cell death processes. 392.Ocampo Pérez, J., & Wyckhuys, K. (2012). Tecnología para el cultivo de la gulupa en Colombia. :(Passiflora edulis f. edulis sims). Centro de Bio-Sistemas de la Universidad Jorge Tadeo Lozano, Centro Internacional de Agricultura Tropical - CIAT y Ministerio de Agricultura y Desarrollo Rural, República de Colombia. https://repository.agrosavia.co/handle/20.500.12324/13557?locale-attribute=esOstberg, S., Schewe, J., Childers, K., & Frieler, K. (2018). Changes in crop yields and their variability at different levels of global warming. Earth System Dynamics, 9(2), 479–496. https://doi.org/10.5194/ESD-9-479-2018Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80–85. https://doi.org/10.1016/J.ECOENV.2011.11.012Passioura, J. B. (2002). ‘Soil conditions and plant growth.’ Plant, Cell & Environment, 25(2), 311–318. https://doi.org/10.1046/J.0016-8025.2001.00802.XPeñuelas, J., & Inoue, Y. (1999). Reflectance Indices Indicative of Changes in Water and Pigment Contents of Peanut and Wheat Leaves. Photosynthetica 1999 36:3, 36(3), 355–360. https://doi.org/10.1023/A:1007033503276Penuelas, J., Pinol, J., Ogaya, R., & Filella, I. (2010). Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Http://Dx.Doi.Org/10.1080/014311697217396, 18(13), 2869–2875. https://doi.org/10.1080/014311697217396Perea Dallos, M., Matallana Ramirez, L., & Tirado Perea, A. (2010). Biotecnologia aplicada al mejoramiento de los cultivos de frutas tropicales. Universidad Nacional de ColombiaPerez Martinez, L. V., & Melgarejo, L. M. (2015). Photosynthetic performance and leaf water potential og gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the Colombian Andes. Acta Biológica Colombiana, 20(1), 183–194. https://doi.org/10.15446/ABC.V20N1.42196Pierre, Y., Breyton, C., Kramer, D., & Popot, J. L. (1995). Purification and characterization of the cytochrome b6 f complex from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 270(49), 29342–29349. https://doi.org/10.1074/jbc.270.49.29342Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869–882. https://doi.org/10.1093/jxb/erq340Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., & Upchurch, D. R. (2003). Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69(6), 647–664. https://doi.org/10.14358/PERS.69.6.647Pnueli, L., Hallak-Herr, E., Rozenberg, M., Cohen, M., Goloubinoff, P., Kaplan, A., & Mittler, R. (2002). Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. The Plant Journal, 31(3), 319–330. https://doi.org/10.1046/J.1365-313X.2002.01364.XPolosoro, A., Enggarini, W., & Ohmido, N. (2019). Global epigenetic changes of histone modification under environmental stresses in rice root. Chromosome Research, 27(4), 287–298. https://doi.org/10.1007/S10577-019-09611-3/FIGURES/5Ponce, C. (2020). Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: A word of caution on the sustainability of adaptation to climate change. World Development, 127. https://doi.org/10.1016/j.worlddev.2019.104740Posada, C. C., & Posada, C. C. (2007). La adaptación al cambio climático en Colombia. Revista de Ingeniería, 0(26), 74–80. https://doi.org/10.16924/riua.v0i26.298Qi, J., Song, C. P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J. K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9), 805–826. https://doi.org/10.1111/JIPB.12654Qiu, W., Su, W., Cai, Z., Dong, L., Li, C., Xin, M., Fang, W., Liu, Y., Wang, X., Huang, Z., Ren, H., & Wu, Z. (2020). Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis sims. Journal of Agricultural and Food Chemistry, 68(43), 12096–12106. https://doi.org/10.1021/acs.jafc.0c03619Raja, V., Majeed, U., Kang, H., Andrabi, K. I., & John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157. https://doi.org/10.1016/J.ENVEXPBOT.2017.02.010Rallo, G., Minacapilli, M., Ciraolo, G., & Provenzano, G. (2014). Detecting crop water status in mature olive groves using vegetation spectral measurements. Biosystems Engineering, 128, 52–68. https://doi.org/10.1016/J.BIOSYSTEMSENG.2014.08.012Razi, K., & Muneer, S. (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Https://Doi.Org/10.1080/07388551.2021.1874280, 41(5), 669–691. https://doi.org/10.1080/07388551.2021.1874280Reddy, A. S. N. (2001). Calcium: silver bullet in signaling. Plant Science, 160(3), 381–404. https://doi.org/10.1016/S0168-9452(00)00386-1Redillas, M. C. F. R., Kim, J.-K., Strasser, R. J., Jeong, J. S., & Kim, Y.-S. (2011). The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. Plant Biotechnology Reports, 5(2), 169–175.Rivas-Ubach, A., Sardans, J., Peŕez-Trujillo, M., Estiarte, M., & Penũelas, J. (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4181–4186.Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/BIOINFORMATICS/BTP616Rodrigues, D. L., Viana, A. P., Vieira, H. D., Santos, E. A., de Lima e Silva, F. H., & Santos, C. L. (2017). Contribution of production and seed variables to the genetic divergence in passion fruit under different nutrient availabilities. Pesquisa Agropecuária Brasileira, 52(8), 607–614. https://doi.org/10.1590/S0100-204X2017000800006Rodríguez, N., Armenteras, D., & Retana, J. (2015). National ecosystems services priorities for planning carbon and water resource management in Colombia. Land Use Policy, 42, 609–618. https://doi.org/10.1016/J.LANDUSEPOL.2014.09.013Rolly, N. K., Mun, B. G., & Yun, B. W. (2021a). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes, 12(2), 1–17. https://doi.org/10.3390/GENES12020298Rolly, N. K., Mun, B.-G., & Yun, B.-W. (2021b). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes 2021, Vol. 12, Page 298, 12(2), 298. https://doi.org/10.3390/GENES12020298Safriel, U., Lead, Z. A., Niemeijer, D., Puigdefabregas, J., White, R., Lal, R., Winslow, M., Ziedler, J., Prince, S., Archer, E., King, C., Shapiro, B., Wessels, K., Nielsen, T., Portnov, B., Reshef, I., Thonell, J., Lachman, E., & Mcnab, D. (2005). Dryland Systems. In M. El-Kassas & E. Ezcurra (Eds.), Millennium Ecosystem Assessment – Ecosystems and Human well-being. . World Resources Institute.Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought Stress in Plants: Causes, Consequences, and Tolerance BT - Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry. 1–16. https://doi.org/10.1007/978-3-319-28899-4_1Schulze, E. D. (2003). Carbon Dioxide and Water Vapor Exchange in Response to Drought in the Atmosphere and in the Soil. Annual Review of Plant Physiology, 37(1), 247–274. https://doi.org/10.1146/ANNUREV.PP.37.060186.001335Seo, P. J., Lee, S. B., Suh, M. C., Park, M. J., & Park, C. M. (2011). The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in arabidopsis. Plant Cell, 23(3), 1138–1152. https://doi.org/10.1105/tpc.111.083485Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221–227. https://doi.org/10.1093/JXB/ERL164Sousa, A., Souza, M., Melo, C., & Sodré, G. (2015). ISSR markers in wild species of Passiflora L. (Passifloraceae) as a tool for taxon selection in ornamental breeding. Genetics and Molecular Research : GMR, 14(4), 18534–18545. https://doi.org/10.4238/2015.DECEMBER.23.41Souza, P. U., Lima, L. K. S., Soares, T. L., Jesus, O. N. de, Coelho Filho, M. A., & Girardi, E. A. (2018). Biometric, physiological and anatomical responses of Passiflora spp. to controlled water deficit. Scientia Horticulturae, 229, 77–90. https://doi.org/10.1016/j.scienta.2017.10.019Spang, A., Shiba, Y., & Randazzo, P. A. (2010). ArfGAPs: gatekeepers of vesicle generation. FEBS Letters, 584(12), 2646. https://doi.org/10.1016/J.FEBSLET.2010.04.005Sposito, V., Faggian, R., Romeijn, H., & Downey, M. (2013). Expert Systems Modeling for Assessing Climate Change Impacts and Adaptation in Agricultural Systems at Regional Level. Open Journal of Applied Sciences, 03, 369–380. https://doi.org/10.4236/OJAPPS.2013.36047Stamm, M. D., Enders, L. S., Donze-Reiner, T. J., Baxendale, F. P., Siegfried, B. D., & Heng-Moss, T. M. (2014). Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress. BMC Genomics, 15(1), 1–13. https://doi.org/10.1186/1471-2164-15-1055/FIGURES/2Sterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156(4), 1063–1076. https://doi.org/10.1007/S10658-020-01961-7/TABLES/4Strauss, A. J., Krüger, G. H. J., Strasser, R. J., & Heerden, P. D. R. V. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), 147–157. https://doi.org/10.1016/J.ENVEXPBOT.2005.01.011Suseela, V., Tharayil, N., Xing, B., & Dukes, J. S. (2015). Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Global Change Biology, 21(11), 4177–4195. https://doi.org/10.1111/GCB.13033Svensson, B., Svendsen, I., Poulsen, F. M., Højrup, P., Roepstorff, P., & Ludvigsen, S. (1992). Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry, 31(37), 8767–8770. https://doi.org/10.1021/BI00152A012Taiz, L., & Zeiger, E. (2006). FISIOLOGIA VEGETAL . www.sinauer.comTakizawa, K., Kanazawa, A., & Kramer, D. M. (2008). Depletion of stromal P(i) induces high “energy-dependent” antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase. Plant, Cell & Environment, 31(2), 235–243. https://doi.org/10.1111/J.1365-3040.2007.01753.XTang, S., Liang, H., Yan, D., Zhao, Y., Han, X., Carlson, J. E., Xia, X., & Yin, W. (2013). Populus euphratica: The transcriptomic response to drought stress. Plant Molecular Biology, 83(6), 539–557. https://doi.org/10.1007/S11103-013-0107-3/TABLES/4Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research Atmospheres, 114(2). https://doi.org/10.1029/2008JD011021Vancostenoble, B., Blanchet, N., Langlade, N. B., & Bailly, C. (2022). Maternal drought stress induces abiotic stress tolerance to the progeny at the germination stage in sunflower. Environmental and Experimental Botany, 201, 104939. https://doi.org/10.1016/J.ENVEXPBOT.2022.104939Vanwallendael, A., Soltani, A., Emery, N. C., Peixoto, M. M., Olsen, J., & Lowry, D. B. (2019). A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. In Annual Review of Plant Biology (Vol. 70, pp. 559–583). Annual Reviews Inc. https://doi.org/10.1146/annurev-arplant-050718-100114Vicente, M. J., Martínez-Díaz, E., Martínez-Sánchez, J. J., Franco, J. A., Bañón, S., & Conesa, E. (2020). Effect of light, temperature, and salinity and drought stresses on seed germination of Hypericum ericoides, a wild plant with ornamental potential. Scientia Horticulturae, 270, 109433. https://doi.org/10.1016/J.SCIENTA.2020.109433Vila, H. F., Hugalde, I. P., & di Filippo, M. L. (2011). Estimación de potencial hídrico en vid por medio de medidas termográficas y espectrales. RIA 37 (1) : 46-53 (Abril 2011). http://repositorio.inta.gob.ar:80/handle/20.500.12123/6387Vitousek, P. (2015). Nutrient Cycling and Nutrient Use Efficiency. Https://Doi.Org/10.1086/283931, 119(4), 553–572. https://doi.org/10.1086/283931Wang, M., Newsham, I., Wu, Y. Q., Dinh, H., Kovar, C., Santibanez, J., Sabo, A., Reid, J., Bainbridge, M., Boerwinkle, E., Albert, T., Gibbs, R., & Muzny, D. (2011). High-Throughput Next Generation Sequencing Methods and Applications. Journal of Biomolecular Techniques : JBT, 22(Suppl), S7. /pmc/articles/PMC3186667/?report=abstractWang, N., Xiao, B., & Xiong, L. (2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 168(18), 2212–2224. https://doi.org/10.1016/J.JPLPH.2011.07.013Wang, S., & Gribskov, M. (2017). Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Bioinformatics, 33(3), 327–333. https://doi.org/10.1093/BIOINFORMATICS/BTW625Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. In Nature Reviews Genetics (Vol. 10, Issue 1, pp. 57–63). Nature Publishing Group. https://doi.org/10.1038/nrg2484Wilke, A. B. B., Beier, J. C., & Benelli, G. (2019). Complexity of the relationship between global warming and urbanization – an obscure future for predicting increases in vector-borne infectious diseases. Current Opinion in Insect Science, 35, 1–9. https://doi.org/10.1016/J.COIS.2019.06.002Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338. https://doi.org/10.12688/F1000RESEARCH.15931.2Wu, M., Zhang, W. H., Ma, C., & Zhou, J. Y. (2013). Changes in morphological, physiological, and biochemical responses to different levels of drought stress in chinese cork oak (Quercus variabilis Bl.) seedlings. Russian Journal of Plant Physiology 2013 60:5, 60(5), 681–692. https://doi.org/10.1134/S1021443713030151Wu, Y., Tian, Q., Huang, W., Liu, J., Xia, X., Yang, X., & Mou, H. (2020). Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Molecular Biology Reports, 47(4), 2951–2962. https://doi.org/10.1007/s11033-020-05385-8Xia, Z., Huang, D., Zhang, S., Wang, W., Ma, F., Wu, B., Xu, Y., Xu, B., Chen, D., Zou, M., Xu, H., Zhou, X., Zhan, R., & Song, S. (2021). Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit ( Passiflora edulis Sims). Horticulture Research 2021 8:1, 8(1), 1–14. https://doi.org/10.1038/s41438-020-00455-1Xiong, F., Li, X., Zheng, L., Hu, N., Cui, M., & Li, H. (2019). Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods. Carbohydrate Polymers, 218, 46–52. https://doi.org/10.1016/j.carbpol.2019.04.069Xu, J., & Scheres, B. (2005). Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell Polarity. The Plant Cell, 17(2), 525. https://doi.org/10.1105/TPC.104.028449Xu, M., Li, A., Teng, Y., & Sun, Z. (2019). Exploring the adaptive mechanism of Passiflora edulis in karst areas via an integrative analysis of nutrient elements and transcriptional profiles. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/s12870-019-1797-8Xu, W., Cui, K., Xu, A., Nie, L., Huang, J., & Peng, S. (2015). Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 37(2), 1–11. https://doi.org/10.1007/s11738-014-1760-0Xue, F., Liu, W., Cao, H., Song, L., Ji, S., Tong, L., & Ding, R. (2021). Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum, 172(4), 2070–2078. https://doi.org/10.1111/PPL.13441Yang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13(4), 119. https://doi.org/10.5808/GI.2015.13.4.119Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae 2021, Vol. 7, Page 50, 7(3), 50. https://doi.org/10.3390/HORTICULTURAE7030050Yi, X. P., Zhang, Y. L., Yao, H. S., Luo, H. H., Gou, L., Chow, W. S., & Zhang, W. F. (2016). Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23–34. https://doi.org/10.1016/J.JPLPH.2016.01.016Yordanov, I., Velikova, V., & Tsonev, T. (2000). Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica, 38(2), 171–186. https://doi.org/10.1023/A:1007201411474Yoshida, T., Mogami, J., & Yamaguchi-Shinozaki, K. (2015). Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant & Cell Physiology, 56(6), 1043–1052. https://doi.org/10.1093/PCP/PCV060You, J., Zhang, Y., Liu, A., Li, D., Wang, X., Dossa, K., Zhou, R., Yu, J., Zhang, Y., Wang, L., & Zhang, X. (2019). Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/S12870-019-1880-1/FIGURES/9Zaefyzadeh, M., Quliyev, R. A., Babayeva, S. M., & Abbasov, M. A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turkish Journal of Biology, 33(1), 1–7.Zeng, H., Zhang, Y., Zhang, X., Pi, E., & Zhu, Y. (2017). Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Frontiers in Plant Science, 8, 877. https://doi.org/10.3389/FPLS.2017.00877/BIBTEXZhang, X., & Cheng, X. (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure, 11(5), 509–520. https://doi.org/10.1016/S0969-2126(03)00071-6Zhang, X., Lei, L., Lai, J., Zhao, H., & Song, W. (2018). Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1), 1–16. https://doi.org/10.1186/S12870-018-1281-X/FIGURES/7Zhang, X., Yang, Z., Li, Z., Zhang, F., & Hao, L. (2019). De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress. Gene, 710, 375–386. https://doi.org/10.1016/j.gene.2019.05.055Zhao, P., Hou, S., Guo, X., Jia, J., Yang, W., Liu, Z., Chen, S., Li, X., Qi, D., Liu, G., & Cheng, L. (2019). A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC Plant Biology, 19(1), 1–15. https://doi.org/10.1186/S12870-019-2159-2/FIGURES/9Zhou, J.-J., Zhang, Y.-H., Han, Z.-M., Liu, X.-Y., Jian, Y.-F., Hu, C.-G., Dian, Y.-Y., Zhou, J.-J. ;, Zhang, Y.-H. ;, Han, Z.-M. ;, Liu, X.-Y. ;, Jian, Y.-F. ;, Hu, C.-G. ;, & Dian, Y.-Y. (2021). Evaluating the Performance of Hyperspectral Leaf Reflectance to Detect Water Stress and Estimation of Photosynthetic Capacities. Remote Sensing 2021, Vol. 13, Page 2160, 13(11), 2160. https://doi.org/10.3390/RS13112160Zhu, A., Ibrahim, J. G., & Love, M. I. (2019). Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics, 35(12), 2084–2092. https://doi.org/10.1093/BIOINFORMATICS/BTY895Zhuang, J., Wang, Y., Chi, Y., Zhou, L., Chen, J., Zhou, W., Song, J., Zhao, N., & Ding, J. (2020). Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ, 8, e10046. https://doi.org/10.7717/PEERJ.10046/SUPP-1Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M., Yang, X., & Allakhverdiev, S. I. (2013). Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynthesis Research, 117(1–3), 529–546. https://doi.org/10.1007/S11120-013-9885-3Zivcak, M., Olsovska, K., & Brestic, M. (2017). Photosynthetic responses under harmful and changing environment: Practical aspects in crop research. Photosynthesis: Structures, Mechanisms, and Applications, 203–248. https://doi.org/10.1007/978-3-319-48873-8_10Zolnierowicz, S. (2000). Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochemical Pharmacology, 60(8), 1225–1235. https://doi.org/10.1016/S0006-2952(00)00424-XMutz, K. O., Heilkenbrinker, A., Lönne, M., Walter, J. G., & Stahl, F. (2013). Transcriptome analysis using next-generation sequencing. In Current Opinion in Biotechnology (Vol. 24, Issue 1, pp. 22–30). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.09.004Morimoto, K., Mizoi, J., Qin, F., Kim, J.-S., Sato, H., Osakabe, Y., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2013). Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS ONE, 8(12), e80457. https://doi.org/10.1371/journal.pone.0080457Moreno, S. G., Vela, H. P., & Alvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119–129.Mohammadkhani, N., & Heidari, R. (2007). Effects of water stress on respiration, photosynthetic pigments and water content in two maize cultivars. Pakistan Journal of Biological Sciences, 10(22), 4022–4028. https://doi.org/10.3923/pjbs.2007.4022.4028Mofatto, L. S., Carneiro, F. de A., Vieira, N. G., Duarte, K. E., Vidal, R. O., Alekcevetch, J. C., Cotta, M. G., Verdeil, J. L., Lapeyre-Montes, F., Lartaud, M., Leroy, T., de Bellis, F., Pot, D., Rodrigues, G. C., Carazzolle, M. F., Pereira, G. A. G., Andrade, A. C., & Marraccini, P. (2016). Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biology, 16(1), 1–18. https://doi.org/10.1186/S12870-016-0777-5/FIGURES/7Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/NAR/GKAA913Ministerio de Agricultura. (2020). Informe Gulupa. https://www.minagricultura.gov.co/paginas/default.aspxMeza, K., Ruales, B., Maiguashca, J., & Rivadeneira, J. L. (2020). CARACTERIZACIÓN ESPECTRAL DE ESTRÉS HÍDRICO EN EL CULTIVO DE PEPINO DULCE (Solanum muricatum). Revista Geoespacial, 17(1), 14–24. https://doi.org/10.24133/geoespacial.v17i1.1492Meng, A., Wen, D., & Zhang, C. (2022). Maize Seed Germination Under Low-Temperature Stress Impacts Seedling Growth Under Normal Temperature by Modulating Photosynthesis and Antioxidant Metabolism. Frontiers in Plant Science, 13, 514. https://doi.org/10.3389/FPLS.2022.843033/BIBTEXMeneses, V. A. B., Téllez, J. M., & Velasquez, D. F. A. (2015). USO DE DRONES PARA EL ANALISIS DE IMÁGENES MULTIESPECTRALES EN AGRICULTURA DE PRECISIÓN. @limentech, Ciencia y Tecnología Alimentaria, 13(1), 28–40. https://doi.org/10.24054/16927125.V1.N1.2015.1647Melgarejo, L. M. (2011). Caracterizacion ecofisiologica de las plantas passiflora en areas arbolicolas de Colombia. Revista de Horticultura.Mehta, P., Allakhverdiev, S., & Jajoo, A. (2010). Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research, 105(3), 249–255. https://doi.org/10.1007/S11120-010-9588-YMaxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/JEXBOT/51.345.659Mashaki, K. M., Garg, V., Nasrollahnezhad Ghomi, A. A., Kudapa, H., Chitikineni, A., Nezhad, K. Z., Yamchi, A., Soltanloo, H., Varshney, R. K., & Thudi, M. (2018). RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLOS ONE, 13(6), e0199774. https://doi.org/10.1371/JOURNAL.PONE.0199774Maseda, P. H., & Fernández, R. J. (2006). Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 57(15), 3963–3977. https://doi.org/10.1093/JXB/ERL127Martínez-Barbáchano, R., & Solís-Miranda, G. A. (2018). Caracterización Espectral y Detección de Flecha Seca en Palma Africana en Puntarenas, Costa Rica. Revista Geográfica de América Central, 2(61), 349–377. https://doi.org/10.15359/RGAC.61-2.13Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T., Dziurka, M., Dziurka, K., Nowakowska, A., & Quarrie, S. A. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35(2), 451–461. https://doi.org/10.1007/S11738-012-1088-6/TABLES/2Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59(2), 141–149. https://doi.org/10.1016/J.COLSURFB.2007.05.002Mangena, P. (2019). Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). Protein & Peptide Letters, 27(2), 135–144. https://doi.org/10.2174/0929866526666191014125453Ma, P., Bai, T. hui, & Ma, F. wang. (2015). Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees. Journal of Integrative Agriculture, 14(4), 681–690. https://doi.org/10.1016/S2095-3119(14)60871-6Ma, D., Dong, S., Zhang, S., Wei, X., Xie, Q., Ding, Q., Xia, R., & Zhang, X. (2021). Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis). Molecular Ecology Resources, 21(3), 955–968. https://doi.org/10.1111/1755-0998.13310Lu, T., Lu, G., Fan, D., Zhu, C., Li, W., Zhao, Q., Feng, Q., Zhao, Y., Guo, Y., Li, W., Huang, X., & Han, B. (2010). Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research, 20(9), 1238–1249. https://doi.org/10.1101/GR.106120.110Lozano-Povis, A., Alvarez-Montalván, C. E., & Moggiano, N. (2021). Climate change in the Andes and its impact on agriculture: a systematic review. In Scientia Agropecuaria (Vol. 12, Issue 1, pp. 101–108). Universidad Nacional de Trujillo. https://doi.org/10.17268/SCI.AGROPECU.2021.012Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275, 109655. https://doi.org/10.1016/j.scienta.2020.109655Love, M. I., Huber, W., & Anders, S. (2014b). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/S13059-014-0550-8Love, M. I., Huber, W., & Anders, S. (2014a). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 2014 15:12, 15(12), 1–21. https://doi.org/10.1186/S13059-014-0550-8Love, M. I. (2021). Statistical Modeling of High Dimensional Counts. Methods in Molecular Biology, 2284, 97–134. https://doi.org/10.1007/978-1-0716-1307-8_7López-Hidalgo, C., Meijón, M., Lamelas, L., & Valledor, L. (2021). The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant, Cell & Environment, 44(6), 1977–1986. https://doi.org/10.1111/PCE.14007Lobos, G. A., & Hancock, J. F. (2015). Breeding blueberries for a changing global environment: A review. Frontiers in Plant Science, 6(SEPTEMBER), 782. https://doi.org/10.3389/FPLS.2015.00782/XML/NLMLiu, S., Li, A., Chen, C., Cai, G., Zhang, L., Guo, C., & Xu, M. (2017). De novo transcriptome sequencing in Passiflora edulis sims to identify genes and signaling pathways involved in cold tolerance. Forests, 8(11), 435. https://doi.org/10.3390/f8110435Lissina, E., Young, B., Urbanus, M. L., Guan, X. L., Lowenson, J., Hoon, S., Baryshnikova, A., Riezman, I., Michaut, M., Riezman, H., Cowen, L. E., Wenk, M. R., Clarke, S. G., Giaever, G., & Nislow, C. (2011). A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis. PLOS Genetics, 7(10), e1002332. https://doi.org/10.1371/JOURNAL.PGEN.1002332Lichtenthaler, H. K., Gitelson, A., & Lang, M. (1996). Non-Destructive Determination of Chlorophyll Content of Leaves of a Green and an Aurea Mutant of Tobacco by Reflectance Measurements. Journal of Plant Physiology, 148(3–4), 483–493. https://doi.org/10.1016/S0176-1617(96)80283-5Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/BIOINFORMATICS/BTP324Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011 12:1, 12(1), 1–16. https://doi.org/10.1186/1471-2105-12-323Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25(2), 275–294. https://doi.org/10.1046/J.0016-8025.2001.00814.XLauriano, J. A., Ramalho, J. C., Lidon, F. C., & do Céu Matos, M. (2006). Mechanisms of energy dissipation in peanut under water stress. Photosynthetica 2006 44:3, 44(3), 404–410. https://doi.org/10.1007/S11099-006-0043-4Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods 2012 9:4, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923Lamers, J., der Meer, T. van, & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624–1635. https://doi.org/10.1104/PP.19.01464Kusvuran, S., & Dasgan, H. Y. (2017). Drought induced physiological and biochemical responses in solanum lycopersicum genotypes differing to tolerance. Acta Scientiarum Polonorum, Hortorum Cultus, 16(6), 19–27. https://doi.org/10.24326/ASPHC.2017.6.2Kukurba, K. R., & Montgomery, S. B. (2015). RNA Sequencing and Analysis. Cold Spring Harbor Protocols, 2015(11), 951. https://doi.org/10.1101/PDB.TOP084970Koramutla, M. K., Negi, M., & Ayele, B. T. (2021). Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes 2021, Vol. 12, Page 1620, 12(10), 1620. https://doi.org/10.3390/GENES12101620Kohzuma, K., Cruz, J. A., Akashi, K., Hoshiyasu, S., Munekage, Y. N., Yokota, A., & Kramer, D. M. (2009). The long-term responses of the photosynthetic proton circuit to drought. Plant, Cell & Environment, 32(3), 209–219. https://doi.org/10.1111/J.1365-3040.2008.01912.XKim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root Response to Drought Stress in Rice (Oryza sativa L.). International Journal of Molecular Sciences 2020, Vol. 21, Page 1513, 21(4), 1513. https://doi.org/10.3390/IJMS21041513Kautsky, H., & Hirsch, A. (1931). Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 1931 19:48, 19(48), 964–964. https://doi.org/10.1007/BF01516164Katz, J. E., Dlakić, M., & Clarke, S. (2003). Automated identification of putative methyltransferases from genomic open reading frames. Molecular & Cellular Proteomics : MCP, 2(8), 525–540. https://doi.org/10.1074/mcp.M300037-MCP200Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V., & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 1–11. https://doi.org/10.1007/S11738-016-2113-Y/FIGURES/2Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7(2016JULY), 1029. https://doi.org/10.3389/FPLS.2016.01029/BIBTEXJoshi, R., Ramanarao, M. V., Lee, S., Kato, N., & Baisakh, N. (2014). Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell, Tissue and Organ Culture, 117(1), 17–30. https://doi.org/10.1007/S11240-013-0416-X/FIGURES/9Jiménez, A. M., Sierra, C. A., Rodríguez-Pulido, F. J., González-Miret, M. L., Heredia, F. J., & Osorio, C. (2011). Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Research International, 44(7), 1912–1918. https://doi.org/10.1016/j.foodres.2010.11.007Jiang, Y., & Carrow, R. N. (2007). Broadband Spectral Reflectance Models of Turfgrass Species and Cultivars to Drought Stress. Crop Science, 47(4), 1611–1618. https://doi.org/10.2135/CROPSCI2006.09.0617Jiang, C., Song, J., Huang, R., Huang, M., & Xu, L. (2013). Cloning and expression analysis of Chitinase genes from Populus canadensis. Russian Journal of Plant Physiology 2013 60:3, 60(3), 396–403. https://doi.org/10.1134/S1021443713030072Jia, H., Wang, C., Wang, F., Liu, S., Li, G., & Guo, X. (2015). GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE, 10(3). https://doi.org/10.1371/JOURNAL.PONE.0120646Hussain, S., Rao, M. J., Anjum, M. A., Ejaz, S., Zakir, I., Ali, M. A., Ahmad, N., & Ahmad, S. (2019). Oxidative stress and antioxidant defense in plants under drought conditions. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 207–219. https://doi.org/10.1007/978-3-030-06118-0_9/TABLES/3Hurtado-Salazar, A., Silva, D. F. P. da, Ceballos-Aguirre, N., Ocampo, J., & Bruckner, C. H. (2020). Promissory Passiflora species (Passifloraceae) for its tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/rcch.2020v14i1.10574Hurtado-Salazar, A., Pereira, D. F., Silva, D. A., Ceballos-Aguirre, N., Ocampo-Pérez, J., & Bruckner, C. H. (2020). Promissory Passiflora L. species (Passifloraceae) for tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/RCCH.2020V14I1.10574Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M. I., MaCdonald, J., Obenchain, V., Oles̈, A. K., … Morgan, M. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods 2015 12:2, 12(2), 115–121. https://doi.org/10.1038/nmeth.3252Huang, S. H., Zhang, J. Y., Wang, L. H., & Huang, L. Q. (2013). Effect of abiotic stress on the abundance of different vitamin B6 vitamers in tobacco plants. Plant Physiology and Biochemistry, 66, 63–67. https://doi.org/10.1016/J.PLAPHY.2013.02.010Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., & Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 12987–12992. https://doi.org/10.1073/PNAS.0604882103/SUPPL_FILE/04882FIG8.PDFHoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431–438. https://doi.org/10.1016/S1360-1385(01)02052-0Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3232–3237. https://doi.org/10.1073/PNAS.1109936109/SUPPL_FILE/PNAS.1109936109_SI.PDFHernández, A. (2003). ). Revision taxonomica de Passiflora, subgénero Decaloba (Passifloraceae) en Colombia [Tesis Pregrado]. Universidad Nacional de Colombia.He, Y., Zhang, Y., Pereira, A., Gómez, A., & Wang, J. (2005). Nondestructive Determination of Tomato Fruit Quality Characteristics Using Vis/NIR Spectroscopy Technique. International Journal of Information Technology, 11(11), 97–108. https://www.researchgate.net/publication/242488503_Nondestructive_Determination_of_Tomato_Fruit_Quality_Characteristics_Using_VisNIR_Spectroscopy_TechniqueHarb, A., Krishnan, A., Ambavaram, M. M. R., & Pereira, A. (2010). Molecular and Physiological Analysis of Drought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth. Plant Physiology, 154(3), 1254–1271. https://doi.org/10.1104/pp.110.161752Hansatech. (2006). Handy PEA+ - Hansatech Instruments Ltd. http://www.hansatech-instruments.com/product/handy-pea/Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/SCIENCE.AAZ7614/ASSET/85DF5D35-16C3-4F44-A8B6-6FBF05AF8557/ASSETS/GRAPHIC/368_266_F4.JPEGGuha, A., Sengupta, D., Kumar Rasineni, G., & Ramachandra Reddy, A. (2010). An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora: Morphology, Distribution, Functional Ecology of Plants, 205(2), 144–151. https://doi.org/10.1016/j.flora.2009.01.004Greenham, K., Guadagno, C. R., Gehan, M. A., Mockler, T. C., Weinig, C., Ewers, B. E., & McClung, C. R. (2017). Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in brassica rapa. ELife, 6. https://doi.org/10.7554/eLife.29655González-Fernández, A. B., Rodríguez-Pérez, J. R., Marcelo, V., & Valenciano, J. B. (2015). Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards. Agricultural Water Management, 156, 43–50. https://doi.org/10.1016/j.agwat.2015.03.024Gomes, M. T. G., da Luz, A. C., dos Santos, M. R., do Carmo Pimentel Batitucci, M., Silva, D. M., & Falqueto, A. R. (2012). Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142, 49–56. https://doi.org/10.1016/J.SCIENTA.2012.04.026Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887Gioppato, H. A., da Silva, M. B., Carrara, S., Palermo, B. R. Z., de Souza Moraes, T., & Dornelas, M. C. (2019). Genomic and transcriptomic approaches to understand Passiflora physiology and to contribute to passionfruit breeding. Theoretical and Experimental Plant Physiology, 31(1), 173–181. https://doi.org/10.1007/s40626-018-0134-1Gilbert, G., & McLeman, R. (2010). Household access to capital and its effects on drought adaptation and migration: A case study of rural Alberta in the 1930s. Population and Environment, 32(1), 3–26. https://doi.org/10.1007/S11111-010-0112-2/TABLES/4Gehring, W. J. (1992). The homeobox in perspective. Trends in Biochemical Sciences, 17(8), 277–280. https://doi.org/10.1016/0968-0004(92)90434-BGarcía-Castro, A., Volder, A., Restrepo-Diaz, H., Starman, T. W., & Lombardini, L. (2017). Evaluation of different drought stress regimens on growth, leaf gas exchange properties, and carboxylation activity in purple passionflower plants. Journal of the American Society for Horticultural Science, 142(1), 57–64. https://doi.org/10.21273/JASHS03961-16Gao, R., Liu, P., Yong, Y., & Wong, S.-M. (2016). Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana. Scientific Reports, 6. https://doi.org/10.1038/SREP24604Gamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997 112:4, 112(4), 492–501. https://doi.org/10.1007/S004420050337Gallino, J. P., Ruibal, C., Casaretto, E., Fleitas, A. L., Bonnecarrère, V., Borsani, O., & Vidal, S. (2018). A dehydration-induced eukaryotic translation initiation factor iso4G identified in a slow wilting soybean cultivar enhances abiotic stress tolerance in Arabidopsis. Frontiers in Plant Science, 9, 262. https://doi.org/10.3389/FPLS.2018.00262/BIBTEXGallie, D. R. (2016). Eukaryotic initiation factor eIFiso4G1 and eIFiso4G2 are isoforms exhibiting distinct functional differences in supporting translation in arabidopsis. Journal of Biological Chemistry, 291(3), 1501–1513. https://doi.org/10.1074/jbc.M115.692939Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17(12), 3470–3488. https://doi.org/10.1105/tpc.105.035659Frank, H. A., & Brudvig, G. W. (2004). Redox functions of carotenoids in photosynthesis. Biochemistry, 43(27), 8607–8615. https://doi.org/10.1021/BI0492096Flach, J., Pilet, P. E., & Jollès, P. (1992). What’s new in chitinase research? Experientia, 48(8), 701–716. https://doi.org/10.1007/BF02124285Filichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., Wong, W. K., & Mockler, T. C. (2010). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20(1), 45–58. https://doi.org/10.1101/GR.093302.109Fernandes, A. M., Fortini, E. A., Müller, L. A. de C., Batista, D. S., Vieira, L. M., Silva, P. O., Amaral, C. H. do, Poethig, R. S., & Otoni, W. C. (2020). Leaf development stages and ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by narrowband spectral signal. Journal of Photochemistry and Photobiology B: Biology, 209, 111931. https://doi.org/10.1016/J.JPHOTOBIOL.2020.111931Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 2009 29:1, 29(1), 185–212. https://doi.org/10.1051/AGRO:2008021Fang, H., & Gough, J. (2013b). A domain-centric solution to functional genomics via dcGO Predictor. BMC Bioinformatics, 14(SUPPL.3), 1–11. https://doi.org/10.1186/1471-2105-14-S3-S9/FIGURES/3Fang, H., & Gough, J. (2013a). dcGO: database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Research, 41(Database issue), D536. https://doi.org/10.1093/NAR/GKS1080Fàbregas, N., & Fernie, A. R. (2019). The metabolic response to drought. Journal of Experimental Botany, 70(4), 1077–1085. https://doi.org/10.1093/JXB/ERY437Emerson, R., & Arnold, W. (1932). THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS. Journal of General Physiology, 16(2), 191–205. https://doi.org/10.1085/JGP.16.2.191Dubois, M., & Inzé, D. (2020). Plant growth under suboptimal water conditions: early responses and methods to study them. Journal of Experimental Botany, 71(5), 1706–1722. https://doi.org/10.1093/JXB/ERAA037Dubey, A. K., Kumar, N., & Sanyal, I. (2022). Targets of NO in plastids. Nitric Oxide in Plant Biology: An Ancient Molecule with Emerging Roles, 331–344. https://doi.org/10.1016/B978-0-12-818797-5.00032-7Drewke, C., & Leistner, E. (2001). Biosynthesis of vitamin B6 and structurally related derivatives. Vitamins and Hormones, 61, 121–155. https://doi.org/10.1016/S0083-6729(01)61004-5de Brito, G. G., Sofiatti, V., de Andrade Lima, M. M., de Carvalho, L. P., & Filho, J. L. da S. (2011). Traços fisiológicos para fenotipagem de algodoeiro sob seca. Acta Scientiarum - Agronomy, 33(1), 117–125. https://doi.org/10.4025/ACTASCIAGRON.V33I1.9839Day, I. S., Reddy, V. S., Shad Ali, G., & Reddy, A. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biology 2002 3:10, 3(10), 1–24. https://doi.org/10.1186/GB-2002-3-10-RESEARCH0056Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993), 3(9), 853–859. https://doi.org/10.1016/S0969-2126(01)00220-9Datt, B. (1999). A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. Journal of Plant Physiology, 154(1), 30–36. https://doi.org/10.1016/S0176-1617(99)80314-9Dalal, M., Sahu, S., Tiwari, S., Rao, A. R., & Gaikwad, K. (2018). Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130, 482–492. https://doi.org/10.1016/J.PLAPHY.2018.07.035Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology 2016 17:1, 17(1), 1–19. https://doi.org/10.1186/S13059-016-0881-8Comstock, J. P. (2002). Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. Journal of Experimental Botany, 53(367), 195–200. https://doi.org/10.1093/JEXBOT/53.367.195Çiçek, N., Pekcan, V., Arslan, Ö., Çulha Erdal, Ş., Balkan Nalçaiyi, A. S., Çil, A. N., Şahin, V., Kaya, Y., & Ekmekçi, Y. (2019). Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Revista Brasileira de Botanica, 42(2), 249–260. https://doi.org/10.1007/S40415-019-00534-1/FIGURES/5Chuvieco-Salinero, E. (2010). Teledetección ambiental : la observación de la tierra desde el espacio (Ariel, Ed.; 1st ed.). https://bibliotecadigital.uchile.cl/discovery/fulldisplay?vid=56UDC_INST:56UDC_INST&search_scope=MyInst_and_CI&tab=Everything&docid=alma991001205769703936&lang=es&context=L&adaptor=Local%20Search%20Engine&query=any,contains,the%20new%20nature%20of%20maps&facet=library,include,56UDC_INSTAQ06&offset=0Chen, Y.-C. (2020). Introductory Chapter: Gene Expression and Phenotypic Traits. Gene Expression and Phenotypic Traits. https://doi.org/10.5772/INTECHOPEN.89863Chen, P., Ran, S., Li, R., Huang, Z., Qian, J., Yu, M., & Zhou, R. (2014). Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Molecular Breeding, 34(4), 1879–1891. https://doi.org/10.1007/s11032-014-0146-8Chen, D., He, L., Lin, M., Jing, Y., Liang, C., Liu, H., Gao, J., Zhang, W., & Wang, M. (2021). A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. Plant Science, 306, 110858. https://doi.org/10.1016/J.PLANTSCI.2021.110858Caturegli, L., Matteoli, S., Gaetani, M., Grossi, N., Magni, S., Minelli, A., Corsini, G., Remorini, D., & Volterrani, M. (2020). Effects of water stress on spectral reflectance of bermudagrass. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/s41598-020-72006-6Castillo, N. C. R., Wu, X., Chacón, M. I., Melgarejo, L. M., & Blair, M. W. (2021). Genetic Diversity of Purple Passion Fruit, Passiflora edulis f. edulis, Based on Single-Nucleotide Polymorphism Markers Discovered through Genotyping by Sequencing. Diversity 2021, Vol. 13, Page 144, 13(4), 144. https://doi.org/10.3390/D13040144Carr, M. K. V. (2013). The water relations and irrigation requirements of passion fruit (passiflora edulis sims): A review. In Experimental Agriculture (Vol. 49, Issue 4, pp. 585–596). https://doi.org/10.1017/S0014479713000240Cardoso, A. A., Gori, A., Da-Silva, C. J., & Brunetti, C. (2020). Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. Applied Sciences 2020, Vol. 10, Page 6322, 10(18), 6322. https://doi.org/10.3390/APP10186322Cao, S., Wang, Y., Li, Z., Shi, W., Gao, F., Zhou, Y., Zhang, G., & Feng, J. (2019). Genome-Wide Identification and Expression Analyses of the Chitinases under Cold and Osmotic Stress in Ammopiptanthus nanus. Genes 2019, Vol. 10, Page 472, 10(6), 472. https://doi.org/10.3390/GENES10060472Cai, W., Zhang, C., Suen, H. P., Ai, S., Bai, Y., Bao, J., Chen, B., Cheng, L., Cui, X., Dai, H., Di, Q., Dong, W., Dou, D., Fan, W., Fan, X., Gao, T., Geng, Y., Guan, D., Guo, Y., … Gong, P. (2021). The 2020 China report of the Lancet Countdown on health and climate change. The Lancet Public Health, 6(1), e64–e81. https://doi.org/10.1016/S2468-2667(20)30256-5Caballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero, cambio climático, calentamiento global. (Vol. 8). Revista Digital Universitaria.Browning, K. S., & Bailey-Serres, J. (2015). Mechanism of Cytoplasmic mRNA Translation. The Arabidopsis Book / American Society of Plant Biologists, 13, e0176. https://doi.org/10.1199/TAB.0176Boman, A. L., & Kahn, R. A. (1995). Arf proteins: the membrane traffic police? Trends in Biochemical Sciences, 20(4), 147–150. https://doi.org/10.1016/S0968-0004(00)88991-4Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: a review. Agronomy for Sustainable Development, 35(2), 401–442. https://doi.org/10.1007/S13593-015-0283-4/FIGURES/5Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132(1), 21–32. https://doi.org/10.1111/PBR.12004Basu, S., & Rabara, R. (2017). Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. Plant Gene, 11, 90–98. https://doi.org/10.1016/J.PLGENE.2017.04.008Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses 2014, Vol. 6, Pages 106-136, 6(1), 106–136. https://doi.org/10.3390/V6010106Bano, H., Athar, H. ur R., Zafar, Z. U., Kalaji, H. M., & Ashraf, M. (2021). Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiologia Plantarum, 172(2), 1244–1254. https://doi.org/10.1111/PPL.13327Banks, J. M. (2017). Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiology, 37(8), 1128–1136. https://doi.org/10.1093/TREEPHYS/TPX059Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/ANNUREV.ARPLANT.59.032607.092759ASOHOFRUCOL. (2020). Cartilla Producción Hortofrutícola . https://www.asohofrucol.com.co/biblioteca?paginalib=2#librosAshraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/J.ENVEXPBOT.2005.12.006Arslan, Balkan Nalçaiyi, A. S., Çulha Erdal, Pekcan, V., Kaya, Y., Çiçek, N., & Ekmekçi, Y. (2020). Special issue in honour of Prof. Reto J. Strasser – Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Http://Ps.Ueb.Cas.Cz/Doi/10.32615/Ps.2019.171.Html, 58(SPECIAL ISSUE), 348–357. https://doi.org/10.32615/PS.2019.171Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/ANNUREV.ARPLANT.55.031903.141701Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide Application Improves the Drought Tolerance in Maize Through Modulation of Enzymatic Antioxidants and Leaf Gas Exchange. Journal of Agronomy and Crop Science, 197(3), 177–185. https://doi.org/10.1111/j.1439-037X.2010.00459.xAnjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology 2010 11:10, 11(10), 1–12. https://doi.org/10.1186/GB-2010-11-10-R106Amrhein, N., Apel, K., Baginsky, S., Buchmann, N., Geisler, M., Keller, F., Körner, C., Martinoia, E., Merbold, L., Müller, C., Paschke, M., & Schmid, B. (2013). Plant response to stress. https://doi.org/10.3929/ETHZ-A-009779047Ali, S., Hayat, K., Iqbal, A., & Xie, L. (2020). Implications of Abscisic Acid in the Drought Stress Tolerance of Plants. Agronomy 2020, Vol. 10, Page 1323, 10(9), 1323. https://doi.org/10.3390/AGRONOMY10091323Alborzi, S. Z., Devignes, M. D., & Ritchie, D. W. (2017). Associating gene ontology terms with pfam protein domains. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10209 LNCS, 127–138. https://doi.org/10.1007/978-3-319-56154-7_13/TABLES/2Alam Khan, M., Iqbal, M., Jameel, M., Nazeer, W., Shakir, S., Aslam, M. T., & Iqbal, B. (2013). Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). African Journal of Biotechnology, 10(55), 11340–11344. https://doi.org/10.4314/ajb.v10i55.Ahmad, Z., Anjum, S., Waraich, E. A., Ayub, M. A., Ahmad, T., Tariq, R. M. S., Ahmad, R., & Iqbal, M. A. (2018). Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress – a review. Https://Doi.Org/10.1080/01904167.2018.1459688, 41(13), 1734–1743. https://doi.org/10.1080/01904167.2018.1459688Recursos bioinformáticos para el cultivo de gulupa en la postpandemia: Ensamblaje de novo del transcriptoma de Passiflora edulis Sims f. edulis durante la respuesta temprana ante el estrés por déficit hídrico.”DIEBEstudiantesORIGINALTesis MSc Paula Andrea Lozano Montaña.pdfTesis MSc Paula Andrea Lozano Montaña.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf1538116https://repositorio.unal.edu.co/bitstream/unal/83364/4/Tesis%20MSc%20Paula%20Andrea%20Lozano%20Monta%c3%b1a.pdf9699d2b7bbe05a0ed6eef6c55a164fccMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83364/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAILTesis MSc Paula Andrea Lozano Montaña.pdf.jpgTesis MSc Paula Andrea Lozano Montaña.pdf.jpgGenerated Thumbnailimage/jpeg3961https://repositorio.unal.edu.co/bitstream/unal/83364/5/Tesis%20MSc%20Paula%20Andrea%20Lozano%20Monta%c3%b1a.pdf.jpg14a048e53b5cf9b9d9b9f5f788e05e0dMD55unal/83364oai:repositorio.unal.edu.co:unal/833642024-08-17 23:13:02.513Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |