Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa

ilustraciones

Autores:
Lozano Montaña, Paula Andrea
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83364
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83364
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
570 - Biología::571 - Fisiología y temas relacionados
Seguridad alimenticia
Producción alimenticia
Food security
Food production
Déficit hídrico
Conductancia estomática
Expresión diferencial
ABA
ROS
Stomatal conductance
Differential expression
ABA
ROS
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_0e8543cc8abfb314d7a2bd1a95e231f3
oai_identifier_str oai:repositorio.unal.edu.co:unal/83364
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa
dc.title.translated.eng.fl_str_mv Transcriptional and physiological dynamics of the response to progressive water deficit in gulupa
title Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa
spellingShingle Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa
570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
570 - Biología::571 - Fisiología y temas relacionados
Seguridad alimenticia
Producción alimenticia
Food security
Food production
Déficit hídrico
Conductancia estomática
Expresión diferencial
ABA
ROS
Stomatal conductance
Differential expression
ABA
ROS
title_short Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa
title_full Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa
title_fullStr Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa
title_full_unstemmed Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa
title_sort Dinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupa
dc.creator.fl_str_mv Lozano Montaña, Paula Andrea
dc.contributor.advisor.none.fl_str_mv Sarmiento Salazar, Felipe
Melgarejo Muñoz, Luz Marina
dc.contributor.author.none.fl_str_mv Lozano Montaña, Paula Andrea
dc.contributor.researchgroup.spa.fl_str_mv Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos
dc.contributor.cvlac.spa.fl_str_mv Lozano-Montaña, P.
dc.subject.ddc.spa.fl_str_mv 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
570 - Biología::571 - Fisiología y temas relacionados
topic 570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas
570 - Biología::571 - Fisiología y temas relacionados
Seguridad alimenticia
Producción alimenticia
Food security
Food production
Déficit hídrico
Conductancia estomática
Expresión diferencial
ABA
ROS
Stomatal conductance
Differential expression
ABA
ROS
dc.subject.lemb.spa.fl_str_mv Seguridad alimenticia
Producción alimenticia
dc.subject.lemb.eng.fl_str_mv Food security
Food production
dc.subject.proposal.spa.fl_str_mv Déficit hídrico
Conductancia estomática
Expresión diferencial
ABA
ROS
dc.subject.proposal.eng.fl_str_mv Stomatal conductance
Differential expression
ABA
ROS
description ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-07
dc.date.accessioned.none.fl_str_mv 2023-02-07T19:16:41Z
dc.date.available.none.fl_str_mv 2023-02-07T19:16:41Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83364
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83364
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88–95. https://doi.org/10.1104/PP.108.129791
Nakayama, S., Moncrief, N. D., & Kretsinger, R. H. (1992). Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. Journal of Molecular Evolution, 34(5), 416–448. https://doi.org/10.1007/BF00162998
Naramoto, S., Kleine-Vehn, J., Robert, S., Fujimoto, M., Dainobu, T., Paciorek, T., Ueda, T., Nakano, A., van Montagu, M. C. E., Fukuda, H., & Friml, J. (2010). ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21890–21895. https://doi.org/10.1073/PNAS.1016260107/-/DCSUPPLEMENTAL
Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. TheScientificWorldJournal, 2013. https://doi.org/10.1155/2013/610721
Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C., & Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology, 224–225, 30–48. https://doi.org/10.1016/J.JPLPH.2018.03.001
Noodén, L. D. (2004). Plant cell death processes. 392.
Ocampo Pérez, J., & Wyckhuys, K. (2012). Tecnología para el cultivo de la gulupa en Colombia. :(Passiflora edulis f. edulis sims). Centro de Bio-Sistemas de la Universidad Jorge Tadeo Lozano, Centro Internacional de Agricultura Tropical - CIAT y Ministerio de Agricultura y Desarrollo Rural, República de Colombia. https://repository.agrosavia.co/handle/20.500.12324/13557?locale-attribute=es
Ostberg, S., Schewe, J., Childers, K., & Frieler, K. (2018). Changes in crop yields and their variability at different levels of global warming. Earth System Dynamics, 9(2), 479–496. https://doi.org/10.5194/ESD-9-479-2018
Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80–85. https://doi.org/10.1016/J.ECOENV.2011.11.012
Passioura, J. B. (2002). ‘Soil conditions and plant growth.’ Plant, Cell & Environment, 25(2), 311–318. https://doi.org/10.1046/J.0016-8025.2001.00802.X
Peñuelas, J., & Inoue, Y. (1999). Reflectance Indices Indicative of Changes in Water and Pigment Contents of Peanut and Wheat Leaves. Photosynthetica 1999 36:3, 36(3), 355–360. https://doi.org/10.1023/A:1007033503276
Penuelas, J., Pinol, J., Ogaya, R., & Filella, I. (2010). Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Http://Dx.Doi.Org/10.1080/014311697217396, 18(13), 2869–2875. https://doi.org/10.1080/014311697217396
Perea Dallos, M., Matallana Ramirez, L., & Tirado Perea, A. (2010). Biotecnologia aplicada al mejoramiento de los cultivos de frutas tropicales. Universidad Nacional de Colombia
Perez Martinez, L. V., & Melgarejo, L. M. (2015). Photosynthetic performance and leaf water potential og gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the Colombian Andes. Acta Biológica Colombiana, 20(1), 183–194. https://doi.org/10.15446/ABC.V20N1.42196
Pierre, Y., Breyton, C., Kramer, D., & Popot, J. L. (1995). Purification and characterization of the cytochrome b6 f complex from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 270(49), 29342–29349. https://doi.org/10.1074/jbc.270.49.29342
Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869–882. https://doi.org/10.1093/jxb/erq340
Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., & Upchurch, D. R. (2003). Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69(6), 647–664. https://doi.org/10.14358/PERS.69.6.647
Pnueli, L., Hallak-Herr, E., Rozenberg, M., Cohen, M., Goloubinoff, P., Kaplan, A., & Mittler, R. (2002). Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. The Plant Journal, 31(3), 319–330. https://doi.org/10.1046/J.1365-313X.2002.01364.X
Polosoro, A., Enggarini, W., & Ohmido, N. (2019). Global epigenetic changes of histone modification under environmental stresses in rice root. Chromosome Research, 27(4), 287–298. https://doi.org/10.1007/S10577-019-09611-3/FIGURES/5
Ponce, C. (2020). Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: A word of caution on the sustainability of adaptation to climate change. World Development, 127. https://doi.org/10.1016/j.worlddev.2019.104740
Posada, C. C., & Posada, C. C. (2007). La adaptación al cambio climático en Colombia. Revista de Ingeniería, 0(26), 74–80. https://doi.org/10.16924/riua.v0i26.298
Qi, J., Song, C. P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J. K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9), 805–826. https://doi.org/10.1111/JIPB.12654
Qiu, W., Su, W., Cai, Z., Dong, L., Li, C., Xin, M., Fang, W., Liu, Y., Wang, X., Huang, Z., Ren, H., & Wu, Z. (2020). Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis sims. Journal of Agricultural and Food Chemistry, 68(43), 12096–12106. https://doi.org/10.1021/acs.jafc.0c03619
Raja, V., Majeed, U., Kang, H., Andrabi, K. I., & John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157. https://doi.org/10.1016/J.ENVEXPBOT.2017.02.010
Rallo, G., Minacapilli, M., Ciraolo, G., & Provenzano, G. (2014). Detecting crop water status in mature olive groves using vegetation spectral measurements. Biosystems Engineering, 128, 52–68. https://doi.org/10.1016/J.BIOSYSTEMSENG.2014.08.012
Razi, K., & Muneer, S. (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Https://Doi.Org/10.1080/07388551.2021.1874280, 41(5), 669–691. https://doi.org/10.1080/07388551.2021.1874280
Reddy, A. S. N. (2001). Calcium: silver bullet in signaling. Plant Science, 160(3), 381–404. https://doi.org/10.1016/S0168-9452(00)00386-1
Redillas, M. C. F. R., Kim, J.-K., Strasser, R. J., Jeong, J. S., & Kim, Y.-S. (2011). The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. Plant Biotechnology Reports, 5(2), 169–175.
Rivas-Ubach, A., Sardans, J., Peŕez-Trujillo, M., Estiarte, M., & Penũelas, J. (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4181–4186.
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/BIOINFORMATICS/BTP616
Rodrigues, D. L., Viana, A. P., Vieira, H. D., Santos, E. A., de Lima e Silva, F. H., & Santos, C. L. (2017). Contribution of production and seed variables to the genetic divergence in passion fruit under different nutrient availabilities. Pesquisa Agropecuária Brasileira, 52(8), 607–614. https://doi.org/10.1590/S0100-204X2017000800006
Rodríguez, N., Armenteras, D., & Retana, J. (2015). National ecosystems services priorities for planning carbon and water resource management in Colombia. Land Use Policy, 42, 609–618. https://doi.org/10.1016/J.LANDUSEPOL.2014.09.013
Rolly, N. K., Mun, B. G., & Yun, B. W. (2021a). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes, 12(2), 1–17. https://doi.org/10.3390/GENES12020298
Rolly, N. K., Mun, B.-G., & Yun, B.-W. (2021b). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes 2021, Vol. 12, Page 298, 12(2), 298. https://doi.org/10.3390/GENES12020298
Safriel, U., Lead, Z. A., Niemeijer, D., Puigdefabregas, J., White, R., Lal, R., Winslow, M., Ziedler, J., Prince, S., Archer, E., King, C., Shapiro, B., Wessels, K., Nielsen, T., Portnov, B., Reshef, I., Thonell, J., Lachman, E., & Mcnab, D. (2005). Dryland Systems. In M. El-Kassas & E. Ezcurra (Eds.), Millennium Ecosystem Assessment – Ecosystems and Human well-being. . World Resources Institute.
Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought Stress in Plants: Causes, Consequences, and Tolerance BT - Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry. 1–16. https://doi.org/10.1007/978-3-319-28899-4_1
Schulze, E. D. (2003). Carbon Dioxide and Water Vapor Exchange in Response to Drought in the Atmosphere and in the Soil. Annual Review of Plant Physiology, 37(1), 247–274. https://doi.org/10.1146/ANNUREV.PP.37.060186.001335
Seo, P. J., Lee, S. B., Suh, M. C., Park, M. J., & Park, C. M. (2011). The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in arabidopsis. Plant Cell, 23(3), 1138–1152. https://doi.org/10.1105/tpc.111.083485
Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221–227. https://doi.org/10.1093/JXB/ERL164
Sousa, A., Souza, M., Melo, C., & Sodré, G. (2015). ISSR markers in wild species of Passiflora L. (Passifloraceae) as a tool for taxon selection in ornamental breeding. Genetics and Molecular Research : GMR, 14(4), 18534–18545. https://doi.org/10.4238/2015.DECEMBER.23.41
Souza, P. U., Lima, L. K. S., Soares, T. L., Jesus, O. N. de, Coelho Filho, M. A., & Girardi, E. A. (2018). Biometric, physiological and anatomical responses of Passiflora spp. to controlled water deficit. Scientia Horticulturae, 229, 77–90. https://doi.org/10.1016/j.scienta.2017.10.019
Spang, A., Shiba, Y., & Randazzo, P. A. (2010). ArfGAPs: gatekeepers of vesicle generation. FEBS Letters, 584(12), 2646. https://doi.org/10.1016/J.FEBSLET.2010.04.005
Sposito, V., Faggian, R., Romeijn, H., & Downey, M. (2013). Expert Systems Modeling for Assessing Climate Change Impacts and Adaptation in Agricultural Systems at Regional Level. Open Journal of Applied Sciences, 03, 369–380. https://doi.org/10.4236/OJAPPS.2013.36047
Stamm, M. D., Enders, L. S., Donze-Reiner, T. J., Baxendale, F. P., Siegfried, B. D., & Heng-Moss, T. M. (2014). Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress. BMC Genomics, 15(1), 1–13. https://doi.org/10.1186/1471-2164-15-1055/FIGURES/2
Sterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156(4), 1063–1076. https://doi.org/10.1007/S10658-020-01961-7/TABLES/4
Strauss, A. J., Krüger, G. H. J., Strasser, R. J., & Heerden, P. D. R. V. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), 147–157. https://doi.org/10.1016/J.ENVEXPBOT.2005.01.011
Suseela, V., Tharayil, N., Xing, B., & Dukes, J. S. (2015). Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Global Change Biology, 21(11), 4177–4195. https://doi.org/10.1111/GCB.13033
Svensson, B., Svendsen, I., Poulsen, F. M., Højrup, P., Roepstorff, P., & Ludvigsen, S. (1992). Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry, 31(37), 8767–8770. https://doi.org/10.1021/BI00152A012
Taiz, L., & Zeiger, E. (2006). FISIOLOGIA VEGETAL . www.sinauer.com
Takizawa, K., Kanazawa, A., & Kramer, D. M. (2008). Depletion of stromal P(i) induces high “energy-dependent” antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase. Plant, Cell & Environment, 31(2), 235–243. https://doi.org/10.1111/J.1365-3040.2007.01753.X
Tang, S., Liang, H., Yan, D., Zhao, Y., Han, X., Carlson, J. E., Xia, X., & Yin, W. (2013). Populus euphratica: The transcriptomic response to drought stress. Plant Molecular Biology, 83(6), 539–557. https://doi.org/10.1007/S11103-013-0107-3/TABLES/4
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research Atmospheres, 114(2). https://doi.org/10.1029/2008JD011021
Vancostenoble, B., Blanchet, N., Langlade, N. B., & Bailly, C. (2022). Maternal drought stress induces abiotic stress tolerance to the progeny at the germination stage in sunflower. Environmental and Experimental Botany, 201, 104939. https://doi.org/10.1016/J.ENVEXPBOT.2022.104939
Vanwallendael, A., Soltani, A., Emery, N. C., Peixoto, M. M., Olsen, J., & Lowry, D. B. (2019). A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. In Annual Review of Plant Biology (Vol. 70, pp. 559–583). Annual Reviews Inc. https://doi.org/10.1146/annurev-arplant-050718-100114
Vicente, M. J., Martínez-Díaz, E., Martínez-Sánchez, J. J., Franco, J. A., Bañón, S., & Conesa, E. (2020). Effect of light, temperature, and salinity and drought stresses on seed germination of Hypericum ericoides, a wild plant with ornamental potential. Scientia Horticulturae, 270, 109433. https://doi.org/10.1016/J.SCIENTA.2020.109433
Vila, H. F., Hugalde, I. P., & di Filippo, M. L. (2011). Estimación de potencial hídrico en vid por medio de medidas termográficas y espectrales. RIA 37 (1) : 46-53 (Abril 2011). http://repositorio.inta.gob.ar:80/handle/20.500.12123/6387
Vitousek, P. (2015). Nutrient Cycling and Nutrient Use Efficiency. Https://Doi.Org/10.1086/283931, 119(4), 553–572. https://doi.org/10.1086/283931
Wang, M., Newsham, I., Wu, Y. Q., Dinh, H., Kovar, C., Santibanez, J., Sabo, A., Reid, J., Bainbridge, M., Boerwinkle, E., Albert, T., Gibbs, R., & Muzny, D. (2011). High-Throughput Next Generation Sequencing Methods and Applications. Journal of Biomolecular Techniques : JBT, 22(Suppl), S7. /pmc/articles/PMC3186667/?report=abstract
Wang, N., Xiao, B., & Xiong, L. (2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 168(18), 2212–2224. https://doi.org/10.1016/J.JPLPH.2011.07.013
Wang, S., & Gribskov, M. (2017). Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Bioinformatics, 33(3), 327–333. https://doi.org/10.1093/BIOINFORMATICS/BTW625
Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. In Nature Reviews Genetics (Vol. 10, Issue 1, pp. 57–63). Nature Publishing Group. https://doi.org/10.1038/nrg2484
Wilke, A. B. B., Beier, J. C., & Benelli, G. (2019). Complexity of the relationship between global warming and urbanization – an obscure future for predicting increases in vector-borne infectious diseases. Current Opinion in Insect Science, 35, 1–9. https://doi.org/10.1016/J.COIS.2019.06.002
Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338. https://doi.org/10.12688/F1000RESEARCH.15931.2
Wu, M., Zhang, W. H., Ma, C., & Zhou, J. Y. (2013). Changes in morphological, physiological, and biochemical responses to different levels of drought stress in chinese cork oak (Quercus variabilis Bl.) seedlings. Russian Journal of Plant Physiology 2013 60:5, 60(5), 681–692. https://doi.org/10.1134/S1021443713030151
Wu, Y., Tian, Q., Huang, W., Liu, J., Xia, X., Yang, X., & Mou, H. (2020). Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Molecular Biology Reports, 47(4), 2951–2962. https://doi.org/10.1007/s11033-020-05385-8
Xia, Z., Huang, D., Zhang, S., Wang, W., Ma, F., Wu, B., Xu, Y., Xu, B., Chen, D., Zou, M., Xu, H., Zhou, X., Zhan, R., & Song, S. (2021). Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit ( Passiflora edulis Sims). Horticulture Research 2021 8:1, 8(1), 1–14. https://doi.org/10.1038/s41438-020-00455-1
Xiong, F., Li, X., Zheng, L., Hu, N., Cui, M., & Li, H. (2019). Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods. Carbohydrate Polymers, 218, 46–52. https://doi.org/10.1016/j.carbpol.2019.04.069
Xu, J., & Scheres, B. (2005). Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell Polarity. The Plant Cell, 17(2), 525. https://doi.org/10.1105/TPC.104.028449
Xu, M., Li, A., Teng, Y., & Sun, Z. (2019). Exploring the adaptive mechanism of Passiflora edulis in karst areas via an integrative analysis of nutrient elements and transcriptional profiles. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/s12870-019-1797-8
Xu, W., Cui, K., Xu, A., Nie, L., Huang, J., & Peng, S. (2015). Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 37(2), 1–11. https://doi.org/10.1007/s11738-014-1760-0
Xue, F., Liu, W., Cao, H., Song, L., Ji, S., Tong, L., & Ding, R. (2021). Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum, 172(4), 2070–2078. https://doi.org/10.1111/PPL.13441
Yang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13(4), 119. https://doi.org/10.5808/GI.2015.13.4.119
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae 2021, Vol. 7, Page 50, 7(3), 50. https://doi.org/10.3390/HORTICULTURAE7030050
Yi, X. P., Zhang, Y. L., Yao, H. S., Luo, H. H., Gou, L., Chow, W. S., & Zhang, W. F. (2016). Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23–34. https://doi.org/10.1016/J.JPLPH.2016.01.016
Yordanov, I., Velikova, V., & Tsonev, T. (2000). Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica, 38(2), 171–186. https://doi.org/10.1023/A:1007201411474
Yoshida, T., Mogami, J., & Yamaguchi-Shinozaki, K. (2015). Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant & Cell Physiology, 56(6), 1043–1052. https://doi.org/10.1093/PCP/PCV060
You, J., Zhang, Y., Liu, A., Li, D., Wang, X., Dossa, K., Zhou, R., Yu, J., Zhang, Y., Wang, L., & Zhang, X. (2019). Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/S12870-019-1880-1/FIGURES/9
Zaefyzadeh, M., Quliyev, R. A., Babayeva, S. M., & Abbasov, M. A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turkish Journal of Biology, 33(1), 1–7.
Zeng, H., Zhang, Y., Zhang, X., Pi, E., & Zhu, Y. (2017). Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Frontiers in Plant Science, 8, 877. https://doi.org/10.3389/FPLS.2017.00877/BIBTEX
Zhang, X., & Cheng, X. (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure, 11(5), 509–520. https://doi.org/10.1016/S0969-2126(03)00071-6
Zhang, X., Lei, L., Lai, J., Zhao, H., & Song, W. (2018). Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1), 1–16. https://doi.org/10.1186/S12870-018-1281-X/FIGURES/7
Zhang, X., Yang, Z., Li, Z., Zhang, F., & Hao, L. (2019). De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress. Gene, 710, 375–386. https://doi.org/10.1016/j.gene.2019.05.055
Zhao, P., Hou, S., Guo, X., Jia, J., Yang, W., Liu, Z., Chen, S., Li, X., Qi, D., Liu, G., & Cheng, L. (2019). A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC Plant Biology, 19(1), 1–15. https://doi.org/10.1186/S12870-019-2159-2/FIGURES/9
Zhou, J.-J., Zhang, Y.-H., Han, Z.-M., Liu, X.-Y., Jian, Y.-F., Hu, C.-G., Dian, Y.-Y., Zhou, J.-J. ;, Zhang, Y.-H. ;, Han, Z.-M. ;, Liu, X.-Y. ;, Jian, Y.-F. ;, Hu, C.-G. ;, & Dian, Y.-Y. (2021). Evaluating the Performance of Hyperspectral Leaf Reflectance to Detect Water Stress and Estimation of Photosynthetic Capacities. Remote Sensing 2021, Vol. 13, Page 2160, 13(11), 2160. https://doi.org/10.3390/RS13112160
Zhu, A., Ibrahim, J. G., & Love, M. I. (2019). Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics, 35(12), 2084–2092. https://doi.org/10.1093/BIOINFORMATICS/BTY895
Zhuang, J., Wang, Y., Chi, Y., Zhou, L., Chen, J., Zhou, W., Song, J., Zhao, N., & Ding, J. (2020). Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ, 8, e10046. https://doi.org/10.7717/PEERJ.10046/SUPP-1
Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M., Yang, X., & Allakhverdiev, S. I. (2013). Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynthesis Research, 117(1–3), 529–546. https://doi.org/10.1007/S11120-013-9885-3
Zivcak, M., Olsovska, K., & Brestic, M. (2017). Photosynthetic responses under harmful and changing environment: Practical aspects in crop research. Photosynthesis: Structures, Mechanisms, and Applications, 203–248. https://doi.org/10.1007/978-3-319-48873-8_10
Zolnierowicz, S. (2000). Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochemical Pharmacology, 60(8), 1225–1235. https://doi.org/10.1016/S0006-2952(00)00424-X
Mutz, K. O., Heilkenbrinker, A., Lönne, M., Walter, J. G., & Stahl, F. (2013). Transcriptome analysis using next-generation sequencing. In Current Opinion in Biotechnology (Vol. 24, Issue 1, pp. 22–30). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.09.004
Morimoto, K., Mizoi, J., Qin, F., Kim, J.-S., Sato, H., Osakabe, Y., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2013). Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS ONE, 8(12), e80457. https://doi.org/10.1371/journal.pone.0080457
Moreno, S. G., Vela, H. P., & Alvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119–129.
Mohammadkhani, N., & Heidari, R. (2007). Effects of water stress on respiration, photosynthetic pigments and water content in two maize cultivars. Pakistan Journal of Biological Sciences, 10(22), 4022–4028. https://doi.org/10.3923/pjbs.2007.4022.4028
Mofatto, L. S., Carneiro, F. de A., Vieira, N. G., Duarte, K. E., Vidal, R. O., Alekcevetch, J. C., Cotta, M. G., Verdeil, J. L., Lapeyre-Montes, F., Lartaud, M., Leroy, T., de Bellis, F., Pot, D., Rodrigues, G. C., Carazzolle, M. F., Pereira, G. A. G., Andrade, A. C., & Marraccini, P. (2016). Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biology, 16(1), 1–18. https://doi.org/10.1186/S12870-016-0777-5/FIGURES/7
Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/NAR/GKAA913
Ministerio de Agricultura. (2020). Informe Gulupa. https://www.minagricultura.gov.co/paginas/default.aspx
Meza, K., Ruales, B., Maiguashca, J., & Rivadeneira, J. L. (2020). CARACTERIZACIÓN ESPECTRAL DE ESTRÉS HÍDRICO EN EL CULTIVO DE PEPINO DULCE (Solanum muricatum). Revista Geoespacial, 17(1), 14–24. https://doi.org/10.24133/geoespacial.v17i1.1492
Meng, A., Wen, D., & Zhang, C. (2022). Maize Seed Germination Under Low-Temperature Stress Impacts Seedling Growth Under Normal Temperature by Modulating Photosynthesis and Antioxidant Metabolism. Frontiers in Plant Science, 13, 514. https://doi.org/10.3389/FPLS.2022.843033/BIBTEX
Meneses, V. A. B., Téllez, J. M., & Velasquez, D. F. A. (2015). USO DE DRONES PARA EL ANALISIS DE IMÁGENES MULTIESPECTRALES EN AGRICULTURA DE PRECISIÓN. @limentech, Ciencia y Tecnología Alimentaria, 13(1), 28–40. https://doi.org/10.24054/16927125.V1.N1.2015.1647
Melgarejo, L. M. (2011). Caracterizacion ecofisiologica de las plantas passiflora en areas arbolicolas de Colombia. Revista de Horticultura.
Mehta, P., Allakhverdiev, S., & Jajoo, A. (2010). Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research, 105(3), 249–255. https://doi.org/10.1007/S11120-010-9588-Y
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/JEXBOT/51.345.659
Mashaki, K. M., Garg, V., Nasrollahnezhad Ghomi, A. A., Kudapa, H., Chitikineni, A., Nezhad, K. Z., Yamchi, A., Soltanloo, H., Varshney, R. K., & Thudi, M. (2018). RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLOS ONE, 13(6), e0199774. https://doi.org/10.1371/JOURNAL.PONE.0199774
Maseda, P. H., & Fernández, R. J. (2006). Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 57(15), 3963–3977. https://doi.org/10.1093/JXB/ERL127
Martínez-Barbáchano, R., & Solís-Miranda, G. A. (2018). Caracterización Espectral y Detección de Flecha Seca en Palma Africana en Puntarenas, Costa Rica. Revista Geográfica de América Central, 2(61), 349–377. https://doi.org/10.15359/RGAC.61-2.13
Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T., Dziurka, M., Dziurka, K., Nowakowska, A., & Quarrie, S. A. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35(2), 451–461. https://doi.org/10.1007/S11738-012-1088-6/TABLES/2
Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59(2), 141–149. https://doi.org/10.1016/J.COLSURFB.2007.05.002
Mangena, P. (2019). Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). Protein & Peptide Letters, 27(2), 135–144. https://doi.org/10.2174/0929866526666191014125453
Ma, P., Bai, T. hui, & Ma, F. wang. (2015). Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees. Journal of Integrative Agriculture, 14(4), 681–690. https://doi.org/10.1016/S2095-3119(14)60871-6
Ma, D., Dong, S., Zhang, S., Wei, X., Xie, Q., Ding, Q., Xia, R., & Zhang, X. (2021). Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis). Molecular Ecology Resources, 21(3), 955–968. https://doi.org/10.1111/1755-0998.13310
Lu, T., Lu, G., Fan, D., Zhu, C., Li, W., Zhao, Q., Feng, Q., Zhao, Y., Guo, Y., Li, W., Huang, X., & Han, B. (2010). Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research, 20(9), 1238–1249. https://doi.org/10.1101/GR.106120.110
Lozano-Povis, A., Alvarez-Montalván, C. E., & Moggiano, N. (2021). Climate change in the Andes and its impact on agriculture: a systematic review. In Scientia Agropecuaria (Vol. 12, Issue 1, pp. 101–108). Universidad Nacional de Trujillo. https://doi.org/10.17268/SCI.AGROPECU.2021.012
Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275, 109655. https://doi.org/10.1016/j.scienta.2020.109655
Love, M. I., Huber, W., & Anders, S. (2014b). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/S13059-014-0550-8
Love, M. I., Huber, W., & Anders, S. (2014a). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 2014 15:12, 15(12), 1–21. https://doi.org/10.1186/S13059-014-0550-8
Love, M. I. (2021). Statistical Modeling of High Dimensional Counts. Methods in Molecular Biology, 2284, 97–134. https://doi.org/10.1007/978-1-0716-1307-8_7
López-Hidalgo, C., Meijón, M., Lamelas, L., & Valledor, L. (2021). The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant, Cell & Environment, 44(6), 1977–1986. https://doi.org/10.1111/PCE.14007
Lobos, G. A., & Hancock, J. F. (2015). Breeding blueberries for a changing global environment: A review. Frontiers in Plant Science, 6(SEPTEMBER), 782. https://doi.org/10.3389/FPLS.2015.00782/XML/NLM
Liu, S., Li, A., Chen, C., Cai, G., Zhang, L., Guo, C., & Xu, M. (2017). De novo transcriptome sequencing in Passiflora edulis sims to identify genes and signaling pathways involved in cold tolerance. Forests, 8(11), 435. https://doi.org/10.3390/f8110435
Lissina, E., Young, B., Urbanus, M. L., Guan, X. L., Lowenson, J., Hoon, S., Baryshnikova, A., Riezman, I., Michaut, M., Riezman, H., Cowen, L. E., Wenk, M. R., Clarke, S. G., Giaever, G., & Nislow, C. (2011). A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis. PLOS Genetics, 7(10), e1002332. https://doi.org/10.1371/JOURNAL.PGEN.1002332
Lichtenthaler, H. K., Gitelson, A., & Lang, M. (1996). Non-Destructive Determination of Chlorophyll Content of Leaves of a Green and an Aurea Mutant of Tobacco by Reflectance Measurements. Journal of Plant Physiology, 148(3–4), 483–493. https://doi.org/10.1016/S0176-1617(96)80283-5
Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/BIOINFORMATICS/BTP324
Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011 12:1, 12(1), 1–16. https://doi.org/10.1186/1471-2105-12-323
Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25(2), 275–294. https://doi.org/10.1046/J.0016-8025.2001.00814.X
Lauriano, J. A., Ramalho, J. C., Lidon, F. C., & do Céu Matos, M. (2006). Mechanisms of energy dissipation in peanut under water stress. Photosynthetica 2006 44:3, 44(3), 404–410. https://doi.org/10.1007/S11099-006-0043-4
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods 2012 9:4, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
Lamers, J., der Meer, T. van, & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624–1635. https://doi.org/10.1104/PP.19.01464
Kusvuran, S., & Dasgan, H. Y. (2017). Drought induced physiological and biochemical responses in solanum lycopersicum genotypes differing to tolerance. Acta Scientiarum Polonorum, Hortorum Cultus, 16(6), 19–27. https://doi.org/10.24326/ASPHC.2017.6.2
Kukurba, K. R., & Montgomery, S. B. (2015). RNA Sequencing and Analysis. Cold Spring Harbor Protocols, 2015(11), 951. https://doi.org/10.1101/PDB.TOP084970
Koramutla, M. K., Negi, M., & Ayele, B. T. (2021). Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes 2021, Vol. 12, Page 1620, 12(10), 1620. https://doi.org/10.3390/GENES12101620
Kohzuma, K., Cruz, J. A., Akashi, K., Hoshiyasu, S., Munekage, Y. N., Yokota, A., & Kramer, D. M. (2009). The long-term responses of the photosynthetic proton circuit to drought. Plant, Cell & Environment, 32(3), 209–219. https://doi.org/10.1111/J.1365-3040.2008.01912.X
Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root Response to Drought Stress in Rice (Oryza sativa L.). International Journal of Molecular Sciences 2020, Vol. 21, Page 1513, 21(4), 1513. https://doi.org/10.3390/IJMS21041513
Kautsky, H., & Hirsch, A. (1931). Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 1931 19:48, 19(48), 964–964. https://doi.org/10.1007/BF01516164
Katz, J. E., Dlakić, M., & Clarke, S. (2003). Automated identification of putative methyltransferases from genomic open reading frames. Molecular & Cellular Proteomics : MCP, 2(8), 525–540. https://doi.org/10.1074/mcp.M300037-MCP200
Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V., & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 1–11. https://doi.org/10.1007/S11738-016-2113-Y/FIGURES/2
Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7(2016JULY), 1029. https://doi.org/10.3389/FPLS.2016.01029/BIBTEX
Joshi, R., Ramanarao, M. V., Lee, S., Kato, N., & Baisakh, N. (2014). Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell, Tissue and Organ Culture, 117(1), 17–30. https://doi.org/10.1007/S11240-013-0416-X/FIGURES/9
Jiménez, A. M., Sierra, C. A., Rodríguez-Pulido, F. J., González-Miret, M. L., Heredia, F. J., & Osorio, C. (2011). Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Research International, 44(7), 1912–1918. https://doi.org/10.1016/j.foodres.2010.11.007
Jiang, Y., & Carrow, R. N. (2007). Broadband Spectral Reflectance Models of Turfgrass Species and Cultivars to Drought Stress. Crop Science, 47(4), 1611–1618. https://doi.org/10.2135/CROPSCI2006.09.0617
Jiang, C., Song, J., Huang, R., Huang, M., & Xu, L. (2013). Cloning and expression analysis of Chitinase genes from Populus canadensis. Russian Journal of Plant Physiology 2013 60:3, 60(3), 396–403. https://doi.org/10.1134/S1021443713030072
Jia, H., Wang, C., Wang, F., Liu, S., Li, G., & Guo, X. (2015). GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE, 10(3). https://doi.org/10.1371/JOURNAL.PONE.0120646
Hussain, S., Rao, M. J., Anjum, M. A., Ejaz, S., Zakir, I., Ali, M. A., Ahmad, N., & Ahmad, S. (2019). Oxidative stress and antioxidant defense in plants under drought conditions. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 207–219. https://doi.org/10.1007/978-3-030-06118-0_9/TABLES/3
Hurtado-Salazar, A., Silva, D. F. P. da, Ceballos-Aguirre, N., Ocampo, J., & Bruckner, C. H. (2020). Promissory Passiflora species (Passifloraceae) for its tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/rcch.2020v14i1.10574
Hurtado-Salazar, A., Pereira, D. F., Silva, D. A., Ceballos-Aguirre, N., Ocampo-Pérez, J., & Bruckner, C. H. (2020). Promissory Passiflora L. species (Passifloraceae) for tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/RCCH.2020V14I1.10574
Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5
Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M. I., MaCdonald, J., Obenchain, V., Oles̈, A. K., … Morgan, M. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods 2015 12:2, 12(2), 115–121. https://doi.org/10.1038/nmeth.3252
Huang, S. H., Zhang, J. Y., Wang, L. H., & Huang, L. Q. (2013). Effect of abiotic stress on the abundance of different vitamin B6 vitamers in tobacco plants. Plant Physiology and Biochemistry, 66, 63–67. https://doi.org/10.1016/J.PLAPHY.2013.02.010
Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., & Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 12987–12992. https://doi.org/10.1073/PNAS.0604882103/SUPPL_FILE/04882FIG8.PDF
Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431–438. https://doi.org/10.1016/S1360-1385(01)02052-0
Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3232–3237. https://doi.org/10.1073/PNAS.1109936109/SUPPL_FILE/PNAS.1109936109_SI.PDF
Hernández, A. (2003). ). Revision taxonomica de Passiflora, subgénero Decaloba (Passifloraceae) en Colombia [Tesis Pregrado]. Universidad Nacional de Colombia.
He, Y., Zhang, Y., Pereira, A., Gómez, A., & Wang, J. (2005). Nondestructive Determination of Tomato Fruit Quality Characteristics Using Vis/NIR Spectroscopy Technique. International Journal of Information Technology, 11(11), 97–108. https://www.researchgate.net/publication/242488503_Nondestructive_Determination_of_Tomato_Fruit_Quality_Characteristics_Using_VisNIR_Spectroscopy_Technique
Harb, A., Krishnan, A., Ambavaram, M. M. R., & Pereira, A. (2010). Molecular and Physiological Analysis of Drought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth. Plant Physiology, 154(3), 1254–1271. https://doi.org/10.1104/pp.110.161752
Hansatech. (2006). Handy PEA+ - Hansatech Instruments Ltd. http://www.hansatech-instruments.com/product/handy-pea/
Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/SCIENCE.AAZ7614/ASSET/85DF5D35-16C3-4F44-A8B6-6FBF05AF8557/ASSETS/GRAPHIC/368_266_F4.JPEG
Guha, A., Sengupta, D., Kumar Rasineni, G., & Ramachandra Reddy, A. (2010). An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora: Morphology, Distribution, Functional Ecology of Plants, 205(2), 144–151. https://doi.org/10.1016/j.flora.2009.01.004
Greenham, K., Guadagno, C. R., Gehan, M. A., Mockler, T. C., Weinig, C., Ewers, B. E., & McClung, C. R. (2017). Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in brassica rapa. ELife, 6. https://doi.org/10.7554/eLife.29655
González-Fernández, A. B., Rodríguez-Pérez, J. R., Marcelo, V., & Valenciano, J. B. (2015). Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards. Agricultural Water Management, 156, 43–50. https://doi.org/10.1016/j.agwat.2015.03.024
Gomes, M. T. G., da Luz, A. C., dos Santos, M. R., do Carmo Pimentel Batitucci, M., Silva, D. M., & Falqueto, A. R. (2012). Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142, 49–56. https://doi.org/10.1016/J.SCIENTA.2012.04.026
Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887
Gioppato, H. A., da Silva, M. B., Carrara, S., Palermo, B. R. Z., de Souza Moraes, T., & Dornelas, M. C. (2019). Genomic and transcriptomic approaches to understand Passiflora physiology and to contribute to passionfruit breeding. Theoretical and Experimental Plant Physiology, 31(1), 173–181. https://doi.org/10.1007/s40626-018-0134-1
Gilbert, G., & McLeman, R. (2010). Household access to capital and its effects on drought adaptation and migration: A case study of rural Alberta in the 1930s. Population and Environment, 32(1), 3–26. https://doi.org/10.1007/S11111-010-0112-2/TABLES/4
Gehring, W. J. (1992). The homeobox in perspective. Trends in Biochemical Sciences, 17(8), 277–280. https://doi.org/10.1016/0968-0004(92)90434-B
García-Castro, A., Volder, A., Restrepo-Diaz, H., Starman, T. W., & Lombardini, L. (2017). Evaluation of different drought stress regimens on growth, leaf gas exchange properties, and carboxylation activity in purple passionflower plants. Journal of the American Society for Horticultural Science, 142(1), 57–64. https://doi.org/10.21273/JASHS03961-16
Gao, R., Liu, P., Yong, Y., & Wong, S.-M. (2016). Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana. Scientific Reports, 6. https://doi.org/10.1038/SREP24604
Gamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997 112:4, 112(4), 492–501. https://doi.org/10.1007/S004420050337
Gallino, J. P., Ruibal, C., Casaretto, E., Fleitas, A. L., Bonnecarrère, V., Borsani, O., & Vidal, S. (2018). A dehydration-induced eukaryotic translation initiation factor iso4G identified in a slow wilting soybean cultivar enhances abiotic stress tolerance in Arabidopsis. Frontiers in Plant Science, 9, 262. https://doi.org/10.3389/FPLS.2018.00262/BIBTEX
Gallie, D. R. (2016). Eukaryotic initiation factor eIFiso4G1 and eIFiso4G2 are isoforms exhibiting distinct functional differences in supporting translation in arabidopsis. Journal of Biological Chemistry, 291(3), 1501–1513. https://doi.org/10.1074/jbc.M115.692939
Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17(12), 3470–3488. https://doi.org/10.1105/tpc.105.035659
Frank, H. A., & Brudvig, G. W. (2004). Redox functions of carotenoids in photosynthesis. Biochemistry, 43(27), 8607–8615. https://doi.org/10.1021/BI0492096
Flach, J., Pilet, P. E., & Jollès, P. (1992). What’s new in chitinase research? Experientia, 48(8), 701–716. https://doi.org/10.1007/BF02124285
Filichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., Wong, W. K., & Mockler, T. C. (2010). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20(1), 45–58. https://doi.org/10.1101/GR.093302.109
Fernandes, A. M., Fortini, E. A., Müller, L. A. de C., Batista, D. S., Vieira, L. M., Silva, P. O., Amaral, C. H. do, Poethig, R. S., & Otoni, W. C. (2020). Leaf development stages and ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by narrowband spectral signal. Journal of Photochemistry and Photobiology B: Biology, 209, 111931. https://doi.org/10.1016/J.JPHOTOBIOL.2020.111931
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 2009 29:1, 29(1), 185–212. https://doi.org/10.1051/AGRO:2008021
Fang, H., & Gough, J. (2013b). A domain-centric solution to functional genomics via dcGO Predictor. BMC Bioinformatics, 14(SUPPL.3), 1–11. https://doi.org/10.1186/1471-2105-14-S3-S9/FIGURES/3
Fang, H., & Gough, J. (2013a). dcGO: database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Research, 41(Database issue), D536. https://doi.org/10.1093/NAR/GKS1080
Fàbregas, N., & Fernie, A. R. (2019). The metabolic response to drought. Journal of Experimental Botany, 70(4), 1077–1085. https://doi.org/10.1093/JXB/ERY437
Emerson, R., & Arnold, W. (1932). THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS. Journal of General Physiology, 16(2), 191–205. https://doi.org/10.1085/JGP.16.2.191
Dubois, M., & Inzé, D. (2020). Plant growth under suboptimal water conditions: early responses and methods to study them. Journal of Experimental Botany, 71(5), 1706–1722. https://doi.org/10.1093/JXB/ERAA037
Dubey, A. K., Kumar, N., & Sanyal, I. (2022). Targets of NO in plastids. Nitric Oxide in Plant Biology: An Ancient Molecule with Emerging Roles, 331–344. https://doi.org/10.1016/B978-0-12-818797-5.00032-7
Drewke, C., & Leistner, E. (2001). Biosynthesis of vitamin B6 and structurally related derivatives. Vitamins and Hormones, 61, 121–155. https://doi.org/10.1016/S0083-6729(01)61004-5
de Brito, G. G., Sofiatti, V., de Andrade Lima, M. M., de Carvalho, L. P., & Filho, J. L. da S. (2011). Traços fisiológicos para fenotipagem de algodoeiro sob seca. Acta Scientiarum - Agronomy, 33(1), 117–125. https://doi.org/10.4025/ACTASCIAGRON.V33I1.9839
Day, I. S., Reddy, V. S., Shad Ali, G., & Reddy, A. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biology 2002 3:10, 3(10), 1–24. https://doi.org/10.1186/GB-2002-3-10-RESEARCH0056
Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993), 3(9), 853–859. https://doi.org/10.1016/S0969-2126(01)00220-9
Datt, B. (1999). A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. Journal of Plant Physiology, 154(1), 30–36. https://doi.org/10.1016/S0176-1617(99)80314-9
Dalal, M., Sahu, S., Tiwari, S., Rao, A. R., & Gaikwad, K. (2018). Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130, 482–492. https://doi.org/10.1016/J.PLAPHY.2018.07.035
Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology 2016 17:1, 17(1), 1–19. https://doi.org/10.1186/S13059-016-0881-8
Comstock, J. P. (2002). Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. Journal of Experimental Botany, 53(367), 195–200. https://doi.org/10.1093/JEXBOT/53.367.195
Çiçek, N., Pekcan, V., Arslan, Ö., Çulha Erdal, Ş., Balkan Nalçaiyi, A. S., Çil, A. N., Şahin, V., Kaya, Y., & Ekmekçi, Y. (2019). Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Revista Brasileira de Botanica, 42(2), 249–260. https://doi.org/10.1007/S40415-019-00534-1/FIGURES/5
Chuvieco-Salinero, E. (2010). Teledetección ambiental : la observación de la tierra desde el espacio (Ariel, Ed.; 1st ed.). https://bibliotecadigital.uchile.cl/discovery/fulldisplay?vid=56UDC_INST:56UDC_INST&search_scope=MyInst_and_CI&tab=Everything&docid=alma991001205769703936&lang=es&context=L&adaptor=Local%20Search%20Engine&query=any,contains,the%20new%20nature%20of%20maps&facet=library,include,56UDC_INSTAQ06&offset=0
Chen, Y.-C. (2020). Introductory Chapter: Gene Expression and Phenotypic Traits. Gene Expression and Phenotypic Traits. https://doi.org/10.5772/INTECHOPEN.89863
Chen, P., Ran, S., Li, R., Huang, Z., Qian, J., Yu, M., & Zhou, R. (2014). Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Molecular Breeding, 34(4), 1879–1891. https://doi.org/10.1007/s11032-014-0146-8
Chen, D., He, L., Lin, M., Jing, Y., Liang, C., Liu, H., Gao, J., Zhang, W., & Wang, M. (2021). A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. Plant Science, 306, 110858. https://doi.org/10.1016/J.PLANTSCI.2021.110858
Caturegli, L., Matteoli, S., Gaetani, M., Grossi, N., Magni, S., Minelli, A., Corsini, G., Remorini, D., & Volterrani, M. (2020). Effects of water stress on spectral reflectance of bermudagrass. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/s41598-020-72006-6
Castillo, N. C. R., Wu, X., Chacón, M. I., Melgarejo, L. M., & Blair, M. W. (2021). Genetic Diversity of Purple Passion Fruit, Passiflora edulis f. edulis, Based on Single-Nucleotide Polymorphism Markers Discovered through Genotyping by Sequencing. Diversity 2021, Vol. 13, Page 144, 13(4), 144. https://doi.org/10.3390/D13040144
Carr, M. K. V. (2013). The water relations and irrigation requirements of passion fruit (passiflora edulis sims): A review. In Experimental Agriculture (Vol. 49, Issue 4, pp. 585–596). https://doi.org/10.1017/S0014479713000240
Cardoso, A. A., Gori, A., Da-Silva, C. J., & Brunetti, C. (2020). Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. Applied Sciences 2020, Vol. 10, Page 6322, 10(18), 6322. https://doi.org/10.3390/APP10186322
Cao, S., Wang, Y., Li, Z., Shi, W., Gao, F., Zhou, Y., Zhang, G., & Feng, J. (2019). Genome-Wide Identification and Expression Analyses of the Chitinases under Cold and Osmotic Stress in Ammopiptanthus nanus. Genes 2019, Vol. 10, Page 472, 10(6), 472. https://doi.org/10.3390/GENES10060472
Cai, W., Zhang, C., Suen, H. P., Ai, S., Bai, Y., Bao, J., Chen, B., Cheng, L., Cui, X., Dai, H., Di, Q., Dong, W., Dou, D., Fan, W., Fan, X., Gao, T., Geng, Y., Guan, D., Guo, Y., … Gong, P. (2021). The 2020 China report of the Lancet Countdown on health and climate change. The Lancet Public Health, 6(1), e64–e81. https://doi.org/10.1016/S2468-2667(20)30256-5
Caballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero, cambio climático, calentamiento global. (Vol. 8). Revista Digital Universitaria.
Browning, K. S., & Bailey-Serres, J. (2015). Mechanism of Cytoplasmic mRNA Translation. The Arabidopsis Book / American Society of Plant Biologists, 13, e0176. https://doi.org/10.1199/TAB.0176
Boman, A. L., & Kahn, R. A. (1995). Arf proteins: the membrane traffic police? Trends in Biochemical Sciences, 20(4), 147–150. https://doi.org/10.1016/S0968-0004(00)88991-4
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170
Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: a review. Agronomy for Sustainable Development, 35(2), 401–442. https://doi.org/10.1007/S13593-015-0283-4/FIGURES/5
Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132(1), 21–32. https://doi.org/10.1111/PBR.12004
Basu, S., & Rabara, R. (2017). Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. Plant Gene, 11, 90–98. https://doi.org/10.1016/J.PLGENE.2017.04.008
Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses 2014, Vol. 6, Pages 106-136, 6(1), 106–136. https://doi.org/10.3390/V6010106
Bano, H., Athar, H. ur R., Zafar, Z. U., Kalaji, H. M., & Ashraf, M. (2021). Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiologia Plantarum, 172(2), 1244–1254. https://doi.org/10.1111/PPL.13327
Banks, J. M. (2017). Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiology, 37(8), 1128–1136. https://doi.org/10.1093/TREEPHYS/TPX059
Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/ANNUREV.ARPLANT.59.032607.092759
ASOHOFRUCOL. (2020). Cartilla Producción Hortofrutícola . https://www.asohofrucol.com.co/biblioteca?paginalib=2#libros
Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/J.ENVEXPBOT.2005.12.006
Arslan, Balkan Nalçaiyi, A. S., Çulha Erdal, Pekcan, V., Kaya, Y., Çiçek, N., & Ekmekçi, Y. (2020). Special issue in honour of Prof. Reto J. Strasser – Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Http://Ps.Ueb.Cas.Cz/Doi/10.32615/Ps.2019.171.Html, 58(SPECIAL ISSUE), 348–357. https://doi.org/10.32615/PS.2019.171
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/ANNUREV.ARPLANT.55.031903.141701
Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide Application Improves the Drought Tolerance in Maize Through Modulation of Enzymatic Antioxidants and Leaf Gas Exchange. Journal of Agronomy and Crop Science, 197(3), 177–185. https://doi.org/10.1111/j.1439-037X.2010.00459.x
Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034
Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology 2010 11:10, 11(10), 1–12. https://doi.org/10.1186/GB-2010-11-10-R106
Amrhein, N., Apel, K., Baginsky, S., Buchmann, N., Geisler, M., Keller, F., Körner, C., Martinoia, E., Merbold, L., Müller, C., Paschke, M., & Schmid, B. (2013). Plant response to stress. https://doi.org/10.3929/ETHZ-A-009779047
Ali, S., Hayat, K., Iqbal, A., & Xie, L. (2020). Implications of Abscisic Acid in the Drought Stress Tolerance of Plants. Agronomy 2020, Vol. 10, Page 1323, 10(9), 1323. https://doi.org/10.3390/AGRONOMY10091323
Alborzi, S. Z., Devignes, M. D., & Ritchie, D. W. (2017). Associating gene ontology terms with pfam protein domains. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10209 LNCS, 127–138. https://doi.org/10.1007/978-3-319-56154-7_13/TABLES/2
Alam Khan, M., Iqbal, M., Jameel, M., Nazeer, W., Shakir, S., Aslam, M. T., & Iqbal, B. (2013). Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). African Journal of Biotechnology, 10(55), 11340–11344. https://doi.org/10.4314/ajb.v10i55.
Ahmad, Z., Anjum, S., Waraich, E. A., Ayub, M. A., Ahmad, T., Tariq, R. M. S., Ahmad, R., & Iqbal, M. A. (2018). Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress – a review. Https://Doi.Org/10.1080/01904167.2018.1459688, 41(13), 1734–1743. https://doi.org/10.1080/01904167.2018.1459688
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 111 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83364/4/Tesis%20MSc%20Paula%20Andrea%20Lozano%20Monta%c3%b1a.pdf
https://repositorio.unal.edu.co/bitstream/unal/83364/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83364/5/Tesis%20MSc%20Paula%20Andrea%20Lozano%20Monta%c3%b1a.pdf.jpg
bitstream.checksum.fl_str_mv 9699d2b7bbe05a0ed6eef6c55a164fcc
eb34b1cf90b7e1103fc9dfd26be24b4a
14a048e53b5cf9b9d9b9f5f788e05e0d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090193320280064
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarmiento Salazar, Felipe97400f5ef687d1b92cbb7c10c002339cMelgarejo Muñoz, Luz Marinac13b62e709cbe2df09a40b59645414d3Lozano Montaña, Paula Andrea84c93a10648de538c448542c5551efe1Fisiología del Estrés y Biodiversidad en Plantas y MicroorganismosLozano-Montaña, P.2023-02-07T19:16:41Z2023-02-07T19:16:41Z2022-10-07https://repositorio.unal.edu.co/handle/unal/83364Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEl cambio climático, especialmente de la escasez de agua, ha tenido dentro de sus consecuencias, algunas devastadoras para la agricultura en los últimos 50 años; amenazando directamente la seguridad alimentaria de las comunidades involucradas en producción de alimentos y demás consumidores. Para el siglo 21 se espera un aumento de la sequía en distintas zonas del mundo, resultado de un aumento de la evapotranspiración, acompañado de una reducción en la precipitación. En la zona Andina su efecto se ha visto principalmente en el retroceso acelerado de los glaciares, que proveen de agua a los sistemas agrícolas circundantes, por lo que se espera una disminución en la capacidad de abastecimiento hídrico de las comunidades andinas y de sus sistemas agrícolas. Colombia es un país que está intentado posicionarse en exportaciones agrícolas pero debido a eventos climáticos como el déficit hídrico, muchos de estos cultivos se ven amenazados. Dentro de estos se encuentra el cultivo de gulupa o fruta de la pasión (Passiflora edulis Sims f. edulis), fruta cuya exportación ha crecido considerablemente en la última década, generándole entradas económicas al país anuales alrededor de los 35 millones de dólares. Este cultivo al verse enfrentado a cambios en las condiciones de riego puede reducir su crecimiento y comprometer su producción, es por eso que realizar estudios sobre su respuesta frente al estrés por déficit hídrico es necesario, además de seguir profundizando en los mecanismos de respuesta de las plantas frente a la escasez de agua en búsqueda de posibles soluciones. Es por esto por lo que se planteó el objetivo de analizar la respuesta fisiológica y transcriptómica de gulupa frente al déficit hídrico. Se midieron variables fisiológicas como: conductancia estomática (gs), temperatura foliar (Tf), contenido de fotopigmentos, fluorescencia de la clorofila a y reflectancia foliar, de donde se encontró una respuesta con rasgos de evitación, así como con rasgos de tolerancia, en donde en búsqueda de mantener las condiciones hídricas se sacrifican procesos como el crecimiento. Por otra parte, y con ayudas de herramientas de secuenciación de nueva generación, se obtuvo una lista de genes diferencialmente expresados de las plantas sometidas a déficit. Los cambios en la expresión que se generan participan en la modulación de distintos procesos en toda la planta, principalmente relacionados con señalización mediada por ABA, crecimiento, el sistema antioxidante. Estos procesos se reportan dentro de los rasgos asociados a la tolerancia al estrés. Entender los distintos mecanismos de respuesta y poder integrar los distintos niveles, moleculares, bioquímicos y fisiológicos, es una propuesta actualmente muy utilizada para alimentar las bases de los programas de mejoramiento, de esta manera protegiendo la seguridad alimentaria. (Texto tomado de la fuente)Climate change, especially water scarcity, has had some devastating consequences for agriculture in the last 50 years, directly threatening the food security of communities involved in food production and other consumers. For the 21st century, an increase in drought is expected in different areas of the world, because of an increase in evapotranspiration, accompanied by a reduction in precipitation. In the Andean zone, its effect has been seen mainly in the accelerated retreat of glaciers, which provide water to the surrounding agricultural systems, so a decrease in the water supply capacity of Andean communities and their agricultural systems is expected. Colombia is a country that is trying to position itself in agricultural exports, but due to climatic events such as the water deficit, many of these crops are threatened, including the gulupa or passion fruit (Passiflora edulis Sims f. edulis), a fruit whose export has grown considerably in the last decade, generating annual economic income for the country of around US$35 million. This crop, when faced with changes in irrigation conditions, can reduce its growth and compromise its production, which is why it is necessary to conduct studies on its response to water stress, as well as to continue delving into the mechanisms of plant response to water scarcity in search of possible solutions. For this reason, the objective was to analyze the physiological and transcriptomic response of gulupa to water deficit. Physiological variables such as stomatal conductance (gs), leaf temperature (Tf), photopigment content, chlorophyll fluorescence, and leaf reflectance were measured, from which a response with avoidance traits was found, as well as tolerance traits, where processes such as growth are sacrificed in the search to maintain water conditions. On the other hand, a list of differentially expressed genes of plants subjected to deficit was obtained with the aid of new-generation sequencing tools. The change in expression participates in the modulation of different processes in the whole plant, mainly related to ABA-mediated signaling, growth, and the antioxidant system. These processes are reported within the traits associated with stress tolerance. Understanding the different response mechanisms and being able to integrate the different molecular, biochemical, and physiological levels is a widely used breeding program approached, thus protecting food security.MaestríaMaestría en ciencias - BiologíaFisiología del estrésTranscriptomica111 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantas570 - Biología::571 - Fisiología y temas relacionadosSeguridad alimenticiaProducción alimenticiaFood securityFood productionDéficit hídricoConductancia estomáticaExpresión diferencialABAROSStomatal conductanceDifferential expressionABAROSDinámicas transcripcionales y fisiológicas de la respuesta a déficit hídrico progresivo en gulupaTranscriptional and physiological dynamics of the response to progressive water deficit in gulupaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMNakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88–95. https://doi.org/10.1104/PP.108.129791Nakayama, S., Moncrief, N. D., & Kretsinger, R. H. (1992). Evolution of EF-hand calcium-modulated proteins. II. Domains of several subfamilies have diverse evolutionary histories. Journal of Molecular Evolution, 34(5), 416–448. https://doi.org/10.1007/BF00162998Naramoto, S., Kleine-Vehn, J., Robert, S., Fujimoto, M., Dainobu, T., Paciorek, T., Ueda, T., Nakano, A., van Montagu, M. C. E., Fukuda, H., & Friml, J. (2010). ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21890–21895. https://doi.org/10.1073/PNAS.1016260107/-/DCSUPPLEMENTALNezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. TheScientificWorldJournal, 2013. https://doi.org/10.1155/2013/610721Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C., & Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology, 224–225, 30–48. https://doi.org/10.1016/J.JPLPH.2018.03.001Noodén, L. D. (2004). Plant cell death processes. 392.Ocampo Pérez, J., & Wyckhuys, K. (2012). Tecnología para el cultivo de la gulupa en Colombia. :(Passiflora edulis f. edulis sims). Centro de Bio-Sistemas de la Universidad Jorge Tadeo Lozano, Centro Internacional de Agricultura Tropical - CIAT y Ministerio de Agricultura y Desarrollo Rural, República de Colombia. https://repository.agrosavia.co/handle/20.500.12324/13557?locale-attribute=esOstberg, S., Schewe, J., Childers, K., & Frieler, K. (2018). Changes in crop yields and their variability at different levels of global warming. Earth System Dynamics, 9(2), 479–496. https://doi.org/10.5194/ESD-9-479-2018Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80–85. https://doi.org/10.1016/J.ECOENV.2011.11.012Passioura, J. B. (2002). ‘Soil conditions and plant growth.’ Plant, Cell & Environment, 25(2), 311–318. https://doi.org/10.1046/J.0016-8025.2001.00802.XPeñuelas, J., & Inoue, Y. (1999). Reflectance Indices Indicative of Changes in Water and Pigment Contents of Peanut and Wheat Leaves. Photosynthetica 1999 36:3, 36(3), 355–360. https://doi.org/10.1023/A:1007033503276Penuelas, J., Pinol, J., Ogaya, R., & Filella, I. (2010). Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Http://Dx.Doi.Org/10.1080/014311697217396, 18(13), 2869–2875. https://doi.org/10.1080/014311697217396Perea Dallos, M., Matallana Ramirez, L., & Tirado Perea, A. (2010). Biotecnologia aplicada al mejoramiento de los cultivos de frutas tropicales. Universidad Nacional de ColombiaPerez Martinez, L. V., & Melgarejo, L. M. (2015). Photosynthetic performance and leaf water potential og gulupa (Passiflora edulis Sims, Passifloraceae) in the reproductive phase in three locations in the Colombian Andes. Acta Biológica Colombiana, 20(1), 183–194. https://doi.org/10.15446/ABC.V20N1.42196Pierre, Y., Breyton, C., Kramer, D., & Popot, J. L. (1995). Purification and characterization of the cytochrome b6 f complex from Chlamydomonas reinhardtii. Journal of Biological Chemistry, 270(49), 29342–29349. https://doi.org/10.1074/jbc.270.49.29342Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869–882. https://doi.org/10.1093/jxb/erq340Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., & Upchurch, D. R. (2003). Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69(6), 647–664. https://doi.org/10.14358/PERS.69.6.647Pnueli, L., Hallak-Herr, E., Rozenberg, M., Cohen, M., Goloubinoff, P., Kaplan, A., & Mittler, R. (2002). Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. The Plant Journal, 31(3), 319–330. https://doi.org/10.1046/J.1365-313X.2002.01364.XPolosoro, A., Enggarini, W., & Ohmido, N. (2019). Global epigenetic changes of histone modification under environmental stresses in rice root. Chromosome Research, 27(4), 287–298. https://doi.org/10.1007/S10577-019-09611-3/FIGURES/5Ponce, C. (2020). Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: A word of caution on the sustainability of adaptation to climate change. World Development, 127. https://doi.org/10.1016/j.worlddev.2019.104740Posada, C. C., & Posada, C. C. (2007). La adaptación al cambio climático en Colombia. Revista de Ingeniería, 0(26), 74–80. https://doi.org/10.16924/riua.v0i26.298Qi, J., Song, C. P., Wang, B., Zhou, J., Kangasjärvi, J., Zhu, J. K., & Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9), 805–826. https://doi.org/10.1111/JIPB.12654Qiu, W., Su, W., Cai, Z., Dong, L., Li, C., Xin, M., Fang, W., Liu, Y., Wang, X., Huang, Z., Ren, H., & Wu, Z. (2020). Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis sims. Journal of Agricultural and Food Chemistry, 68(43), 12096–12106. https://doi.org/10.1021/acs.jafc.0c03619Raja, V., Majeed, U., Kang, H., Andrabi, K. I., & John, R. (2017). Abiotic stress: Interplay between ROS, hormones and MAPKs. Environmental and Experimental Botany, 137, 142–157. https://doi.org/10.1016/J.ENVEXPBOT.2017.02.010Rallo, G., Minacapilli, M., Ciraolo, G., & Provenzano, G. (2014). Detecting crop water status in mature olive groves using vegetation spectral measurements. Biosystems Engineering, 128, 52–68. https://doi.org/10.1016/J.BIOSYSTEMSENG.2014.08.012Razi, K., & Muneer, S. (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Https://Doi.Org/10.1080/07388551.2021.1874280, 41(5), 669–691. https://doi.org/10.1080/07388551.2021.1874280Reddy, A. S. N. (2001). Calcium: silver bullet in signaling. Plant Science, 160(3), 381–404. https://doi.org/10.1016/S0168-9452(00)00386-1Redillas, M. C. F. R., Kim, J.-K., Strasser, R. J., Jeong, J. S., & Kim, Y.-S. (2011). The use of JIP test to evaluate drought-tolerance of transgenic rice overexpressing OsNAC10. Plant Biotechnology Reports, 5(2), 169–175.Rivas-Ubach, A., Sardans, J., Peŕez-Trujillo, M., Estiarte, M., & Penũelas, J. (2012). Strong relationship between elemental stoichiometry and metabolome in plants. Proceedings of the National Academy of Sciences of the United States of America, 109(11), 4181–4186.Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/BIOINFORMATICS/BTP616Rodrigues, D. L., Viana, A. P., Vieira, H. D., Santos, E. A., de Lima e Silva, F. H., & Santos, C. L. (2017). Contribution of production and seed variables to the genetic divergence in passion fruit under different nutrient availabilities. Pesquisa Agropecuária Brasileira, 52(8), 607–614. https://doi.org/10.1590/S0100-204X2017000800006Rodríguez, N., Armenteras, D., & Retana, J. (2015). National ecosystems services priorities for planning carbon and water resource management in Colombia. Land Use Policy, 42, 609–618. https://doi.org/10.1016/J.LANDUSEPOL.2014.09.013Rolly, N. K., Mun, B. G., & Yun, B. W. (2021a). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes, 12(2), 1–17. https://doi.org/10.3390/GENES12020298Rolly, N. K., Mun, B.-G., & Yun, B.-W. (2021b). Insights into the Transcriptional Regulation of Branching Hormonal Signaling Pathways Genes under Drought Stress in Arabidopsis. Genes 2021, Vol. 12, Page 298, 12(2), 298. https://doi.org/10.3390/GENES12020298Safriel, U., Lead, Z. A., Niemeijer, D., Puigdefabregas, J., White, R., Lal, R., Winslow, M., Ziedler, J., Prince, S., Archer, E., King, C., Shapiro, B., Wessels, K., Nielsen, T., Portnov, B., Reshef, I., Thonell, J., Lachman, E., & Mcnab, D. (2005). Dryland Systems. In M. El-Kassas & E. Ezcurra (Eds.), Millennium Ecosystem Assessment – Ecosystems and Human well-being. . World Resources Institute.Salehi-Lisar, S. Y., & Bakhshayeshan-Agdam, H. (2016). Drought Stress in Plants: Causes, Consequences, and Tolerance BT - Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry. 1–16. https://doi.org/10.1007/978-3-319-28899-4_1Schulze, E. D. (2003). Carbon Dioxide and Water Vapor Exchange in Response to Drought in the Atmosphere and in the Soil. Annual Review of Plant Physiology, 37(1), 247–274. https://doi.org/10.1146/ANNUREV.PP.37.060186.001335Seo, P. J., Lee, S. B., Suh, M. C., Park, M. J., & Park, C. M. (2011). The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in arabidopsis. Plant Cell, 23(3), 1138–1152. https://doi.org/10.1105/tpc.111.083485Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221–227. https://doi.org/10.1093/JXB/ERL164Sousa, A., Souza, M., Melo, C., & Sodré, G. (2015). ISSR markers in wild species of Passiflora L. (Passifloraceae) as a tool for taxon selection in ornamental breeding. Genetics and Molecular Research : GMR, 14(4), 18534–18545. https://doi.org/10.4238/2015.DECEMBER.23.41Souza, P. U., Lima, L. K. S., Soares, T. L., Jesus, O. N. de, Coelho Filho, M. A., & Girardi, E. A. (2018). Biometric, physiological and anatomical responses of Passiflora spp. to controlled water deficit. Scientia Horticulturae, 229, 77–90. https://doi.org/10.1016/j.scienta.2017.10.019Spang, A., Shiba, Y., & Randazzo, P. A. (2010). ArfGAPs: gatekeepers of vesicle generation. FEBS Letters, 584(12), 2646. https://doi.org/10.1016/J.FEBSLET.2010.04.005Sposito, V., Faggian, R., Romeijn, H., & Downey, M. (2013). Expert Systems Modeling for Assessing Climate Change Impacts and Adaptation in Agricultural Systems at Regional Level. Open Journal of Applied Sciences, 03, 369–380. https://doi.org/10.4236/OJAPPS.2013.36047Stamm, M. D., Enders, L. S., Donze-Reiner, T. J., Baxendale, F. P., Siegfried, B. D., & Heng-Moss, T. M. (2014). Transcriptional response of soybean to thiamethoxam seed treatment in the presence and absence of drought stress. BMC Genomics, 15(1), 1–13. https://doi.org/10.1186/1471-2164-15-1055/FIGURES/2Sterling, A., & Melgarejo, L. M. (2020). Leaf spectral reflectance of Hevea brasiliensis in response to Pseudocercospora ulei. European Journal of Plant Pathology, 156(4), 1063–1076. https://doi.org/10.1007/S10658-020-01961-7/TABLES/4Strauss, A. J., Krüger, G. H. J., Strasser, R. J., & Heerden, P. D. R. V. (2006). Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany, 56(2), 147–157. https://doi.org/10.1016/J.ENVEXPBOT.2005.01.011Suseela, V., Tharayil, N., Xing, B., & Dukes, J. S. (2015). Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Global Change Biology, 21(11), 4177–4195. https://doi.org/10.1111/GCB.13033Svensson, B., Svendsen, I., Poulsen, F. M., Højrup, P., Roepstorff, P., & Ludvigsen, S. (1992). Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry, 31(37), 8767–8770. https://doi.org/10.1021/BI00152A012Taiz, L., & Zeiger, E. (2006). FISIOLOGIA VEGETAL . www.sinauer.comTakizawa, K., Kanazawa, A., & Kramer, D. M. (2008). Depletion of stromal P(i) induces high “energy-dependent” antenna exciton quenching (q(E)) by decreasing proton conductivity at CF(O)-CF(1) ATP synthase. Plant, Cell & Environment, 31(2), 235–243. https://doi.org/10.1111/J.1365-3040.2007.01753.XTang, S., Liang, H., Yan, D., Zhao, Y., Han, X., Carlson, J. E., Xia, X., & Yin, W. (2013). Populus euphratica: The transcriptomic response to drought stress. Plant Molecular Biology, 83(6), 539–557. https://doi.org/10.1007/S11103-013-0107-3/TABLES/4Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0Urrutia, R., & Vuille, M. (2009). Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research Atmospheres, 114(2). https://doi.org/10.1029/2008JD011021Vancostenoble, B., Blanchet, N., Langlade, N. B., & Bailly, C. (2022). Maternal drought stress induces abiotic stress tolerance to the progeny at the germination stage in sunflower. Environmental and Experimental Botany, 201, 104939. https://doi.org/10.1016/J.ENVEXPBOT.2022.104939Vanwallendael, A., Soltani, A., Emery, N. C., Peixoto, M. M., Olsen, J., & Lowry, D. B. (2019). A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. In Annual Review of Plant Biology (Vol. 70, pp. 559–583). Annual Reviews Inc. https://doi.org/10.1146/annurev-arplant-050718-100114Vicente, M. J., Martínez-Díaz, E., Martínez-Sánchez, J. J., Franco, J. A., Bañón, S., & Conesa, E. (2020). Effect of light, temperature, and salinity and drought stresses on seed germination of Hypericum ericoides, a wild plant with ornamental potential. Scientia Horticulturae, 270, 109433. https://doi.org/10.1016/J.SCIENTA.2020.109433Vila, H. F., Hugalde, I. P., & di Filippo, M. L. (2011). Estimación de potencial hídrico en vid por medio de medidas termográficas y espectrales. RIA 37 (1) : 46-53 (Abril 2011). http://repositorio.inta.gob.ar:80/handle/20.500.12123/6387Vitousek, P. (2015). Nutrient Cycling and Nutrient Use Efficiency. Https://Doi.Org/10.1086/283931, 119(4), 553–572. https://doi.org/10.1086/283931Wang, M., Newsham, I., Wu, Y. Q., Dinh, H., Kovar, C., Santibanez, J., Sabo, A., Reid, J., Bainbridge, M., Boerwinkle, E., Albert, T., Gibbs, R., & Muzny, D. (2011). High-Throughput Next Generation Sequencing Methods and Applications. Journal of Biomolecular Techniques : JBT, 22(Suppl), S7. /pmc/articles/PMC3186667/?report=abstractWang, N., Xiao, B., & Xiong, L. (2011). Identification of a cluster of PR4-like genes involved in stress responses in rice. Journal of Plant Physiology, 168(18), 2212–2224. https://doi.org/10.1016/J.JPLPH.2011.07.013Wang, S., & Gribskov, M. (2017). Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Bioinformatics, 33(3), 327–333. https://doi.org/10.1093/BIOINFORMATICS/BTW625Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. In Nature Reviews Genetics (Vol. 10, Issue 1, pp. 57–63). Nature Publishing Group. https://doi.org/10.1038/nrg2484Wilke, A. B. B., Beier, J. C., & Benelli, G. (2019). Complexity of the relationship between global warming and urbanization – an obscure future for predicting increases in vector-borne infectious diseases. Current Opinion in Insect Science, 35, 1–9. https://doi.org/10.1016/J.COIS.2019.06.002Wingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338. https://doi.org/10.12688/F1000RESEARCH.15931.2Wu, M., Zhang, W. H., Ma, C., & Zhou, J. Y. (2013). Changes in morphological, physiological, and biochemical responses to different levels of drought stress in chinese cork oak (Quercus variabilis Bl.) seedlings. Russian Journal of Plant Physiology 2013 60:5, 60(5), 681–692. https://doi.org/10.1134/S1021443713030151Wu, Y., Tian, Q., Huang, W., Liu, J., Xia, X., Yang, X., & Mou, H. (2020). Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Molecular Biology Reports, 47(4), 2951–2962. https://doi.org/10.1007/s11033-020-05385-8Xia, Z., Huang, D., Zhang, S., Wang, W., Ma, F., Wu, B., Xu, Y., Xu, B., Chen, D., Zou, M., Xu, H., Zhou, X., Zhan, R., & Song, S. (2021). Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit ( Passiflora edulis Sims). Horticulture Research 2021 8:1, 8(1), 1–14. https://doi.org/10.1038/s41438-020-00455-1Xiong, F., Li, X., Zheng, L., Hu, N., Cui, M., & Li, H. (2019). Characterization and antioxidant activities of polysaccharides from Passiflora edulis Sims peel under different degradation methods. Carbohydrate Polymers, 218, 46–52. https://doi.org/10.1016/j.carbpol.2019.04.069Xu, J., & Scheres, B. (2005). Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell Polarity. The Plant Cell, 17(2), 525. https://doi.org/10.1105/TPC.104.028449Xu, M., Li, A., Teng, Y., & Sun, Z. (2019). Exploring the adaptive mechanism of Passiflora edulis in karst areas via an integrative analysis of nutrient elements and transcriptional profiles. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/s12870-019-1797-8Xu, W., Cui, K., Xu, A., Nie, L., Huang, J., & Peng, S. (2015). Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum, 37(2), 1–11. https://doi.org/10.1007/s11738-014-1760-0Xue, F., Liu, W., Cao, H., Song, L., Ji, S., Tong, L., & Ding, R. (2021). Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress. Physiologia Plantarum, 172(4), 2070–2078. https://doi.org/10.1111/PPL.13441Yang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13(4), 119. https://doi.org/10.5808/GI.2015.13.4.119Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae 2021, Vol. 7, Page 50, 7(3), 50. https://doi.org/10.3390/HORTICULTURAE7030050Yi, X. P., Zhang, Y. L., Yao, H. S., Luo, H. H., Gou, L., Chow, W. S., & Zhang, W. F. (2016). Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 194, 23–34. https://doi.org/10.1016/J.JPLPH.2016.01.016Yordanov, I., Velikova, V., & Tsonev, T. (2000). Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica, 38(2), 171–186. https://doi.org/10.1023/A:1007201411474Yoshida, T., Mogami, J., & Yamaguchi-Shinozaki, K. (2015). Omics Approaches Toward Defining the Comprehensive Abscisic Acid Signaling Network in Plants. Plant & Cell Physiology, 56(6), 1043–1052. https://doi.org/10.1093/PCP/PCV060You, J., Zhang, Y., Liu, A., Li, D., Wang, X., Dossa, K., Zhou, R., Yu, J., Zhang, Y., Wang, L., & Zhang, X. (2019). Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biology, 19(1), 1–16. https://doi.org/10.1186/S12870-019-1880-1/FIGURES/9Zaefyzadeh, M., Quliyev, R. A., Babayeva, S. M., & Abbasov, M. A. (2009). The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turkish Journal of Biology, 33(1), 1–7.Zeng, H., Zhang, Y., Zhang, X., Pi, E., & Zhu, Y. (2017). Analysis of EF-hand proteins in soybean genome suggests their potential roles in environmental and nutritional stress signaling. Frontiers in Plant Science, 8, 877. https://doi.org/10.3389/FPLS.2017.00877/BIBTEXZhang, X., & Cheng, X. (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure, 11(5), 509–520. https://doi.org/10.1016/S0969-2126(03)00071-6Zhang, X., Lei, L., Lai, J., Zhao, H., & Song, W. (2018). Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology, 18(1), 1–16. https://doi.org/10.1186/S12870-018-1281-X/FIGURES/7Zhang, X., Yang, Z., Li, Z., Zhang, F., & Hao, L. (2019). De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress. Gene, 710, 375–386. https://doi.org/10.1016/j.gene.2019.05.055Zhao, P., Hou, S., Guo, X., Jia, J., Yang, W., Liu, Z., Chen, S., Li, X., Qi, D., Liu, G., & Cheng, L. (2019). A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC Plant Biology, 19(1), 1–15. https://doi.org/10.1186/S12870-019-2159-2/FIGURES/9Zhou, J.-J., Zhang, Y.-H., Han, Z.-M., Liu, X.-Y., Jian, Y.-F., Hu, C.-G., Dian, Y.-Y., Zhou, J.-J. ;, Zhang, Y.-H. ;, Han, Z.-M. ;, Liu, X.-Y. ;, Jian, Y.-F. ;, Hu, C.-G. ;, & Dian, Y.-Y. (2021). Evaluating the Performance of Hyperspectral Leaf Reflectance to Detect Water Stress and Estimation of Photosynthetic Capacities. Remote Sensing 2021, Vol. 13, Page 2160, 13(11), 2160. https://doi.org/10.3390/RS13112160Zhu, A., Ibrahim, J. G., & Love, M. I. (2019). Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics, 35(12), 2084–2092. https://doi.org/10.1093/BIOINFORMATICS/BTY895Zhuang, J., Wang, Y., Chi, Y., Zhou, L., Chen, J., Zhou, W., Song, J., Zhao, N., & Ding, J. (2020). Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. PeerJ, 8, e10046. https://doi.org/10.7717/PEERJ.10046/SUPP-1Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M., Yang, X., & Allakhverdiev, S. I. (2013). Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynthesis Research, 117(1–3), 529–546. https://doi.org/10.1007/S11120-013-9885-3Zivcak, M., Olsovska, K., & Brestic, M. (2017). Photosynthetic responses under harmful and changing environment: Practical aspects in crop research. Photosynthesis: Structures, Mechanisms, and Applications, 203–248. https://doi.org/10.1007/978-3-319-48873-8_10Zolnierowicz, S. (2000). Type 2A protein phosphatase, the complex regulator of numerous signaling pathways. Biochemical Pharmacology, 60(8), 1225–1235. https://doi.org/10.1016/S0006-2952(00)00424-XMutz, K. O., Heilkenbrinker, A., Lönne, M., Walter, J. G., & Stahl, F. (2013). Transcriptome analysis using next-generation sequencing. In Current Opinion in Biotechnology (Vol. 24, Issue 1, pp. 22–30). Elsevier Current Trends. https://doi.org/10.1016/j.copbio.2012.09.004Morimoto, K., Mizoi, J., Qin, F., Kim, J.-S., Sato, H., Osakabe, Y., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2013). Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PLoS ONE, 8(12), e80457. https://doi.org/10.1371/journal.pone.0080457Moreno, S. G., Vela, H. P., & Alvarez, M. O. S. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119–129.Mohammadkhani, N., & Heidari, R. (2007). Effects of water stress on respiration, photosynthetic pigments and water content in two maize cultivars. Pakistan Journal of Biological Sciences, 10(22), 4022–4028. https://doi.org/10.3923/pjbs.2007.4022.4028Mofatto, L. S., Carneiro, F. de A., Vieira, N. G., Duarte, K. E., Vidal, R. O., Alekcevetch, J. C., Cotta, M. G., Verdeil, J. L., Lapeyre-Montes, F., Lartaud, M., Leroy, T., de Bellis, F., Pot, D., Rodrigues, G. C., Carazzolle, M. F., Pereira, G. A. G., Andrade, A. C., & Marraccini, P. (2016). Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biology, 16(1), 1–18. https://doi.org/10.1186/S12870-016-0777-5/FIGURES/7Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/NAR/GKAA913Ministerio de Agricultura. (2020). Informe Gulupa. https://www.minagricultura.gov.co/paginas/default.aspxMeza, K., Ruales, B., Maiguashca, J., & Rivadeneira, J. L. (2020). CARACTERIZACIÓN ESPECTRAL DE ESTRÉS HÍDRICO EN EL CULTIVO DE PEPINO DULCE (Solanum muricatum). Revista Geoespacial, 17(1), 14–24. https://doi.org/10.24133/geoespacial.v17i1.1492Meng, A., Wen, D., & Zhang, C. (2022). Maize Seed Germination Under Low-Temperature Stress Impacts Seedling Growth Under Normal Temperature by Modulating Photosynthesis and Antioxidant Metabolism. Frontiers in Plant Science, 13, 514. https://doi.org/10.3389/FPLS.2022.843033/BIBTEXMeneses, V. A. B., Téllez, J. M., & Velasquez, D. F. A. (2015). USO DE DRONES PARA EL ANALISIS DE IMÁGENES MULTIESPECTRALES EN AGRICULTURA DE PRECISIÓN. @limentech, Ciencia y Tecnología Alimentaria, 13(1), 28–40. https://doi.org/10.24054/16927125.V1.N1.2015.1647Melgarejo, L. M. (2011). Caracterizacion ecofisiologica de las plantas passiflora en areas arbolicolas de Colombia. Revista de Horticultura.Mehta, P., Allakhverdiev, S., & Jajoo, A. (2010). Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research, 105(3), 249–255. https://doi.org/10.1007/S11120-010-9588-YMaxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/JEXBOT/51.345.659Mashaki, K. M., Garg, V., Nasrollahnezhad Ghomi, A. A., Kudapa, H., Chitikineni, A., Nezhad, K. Z., Yamchi, A., Soltanloo, H., Varshney, R. K., & Thudi, M. (2018). RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLOS ONE, 13(6), e0199774. https://doi.org/10.1371/JOURNAL.PONE.0199774Maseda, P. H., & Fernández, R. J. (2006). Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 57(15), 3963–3977. https://doi.org/10.1093/JXB/ERL127Martínez-Barbáchano, R., & Solís-Miranda, G. A. (2018). Caracterización Espectral y Detección de Flecha Seca en Palma Africana en Puntarenas, Costa Rica. Revista Geográfica de América Central, 2(61), 349–377. https://doi.org/10.15359/RGAC.61-2.13Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T., Dziurka, M., Dziurka, K., Nowakowska, A., & Quarrie, S. A. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35(2), 451–461. https://doi.org/10.1007/S11738-012-1088-6/TABLES/2Manivannan, P., Jaleel, C. A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A., & Panneerselvam, R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59(2), 141–149. https://doi.org/10.1016/J.COLSURFB.2007.05.002Mangena, P. (2019). Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). Protein & Peptide Letters, 27(2), 135–144. https://doi.org/10.2174/0929866526666191014125453Ma, P., Bai, T. hui, & Ma, F. wang. (2015). Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees. Journal of Integrative Agriculture, 14(4), 681–690. https://doi.org/10.1016/S2095-3119(14)60871-6Ma, D., Dong, S., Zhang, S., Wei, X., Xie, Q., Ding, Q., Xia, R., & Zhang, X. (2021). Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis). Molecular Ecology Resources, 21(3), 955–968. https://doi.org/10.1111/1755-0998.13310Lu, T., Lu, G., Fan, D., Zhu, C., Li, W., Zhao, Q., Feng, Q., Zhao, Y., Guo, Y., Li, W., Huang, X., & Han, B. (2010). Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research, 20(9), 1238–1249. https://doi.org/10.1101/GR.106120.110Lozano-Povis, A., Alvarez-Montalván, C. E., & Moggiano, N. (2021). Climate change in the Andes and its impact on agriculture: a systematic review. In Scientia Agropecuaria (Vol. 12, Issue 1, pp. 101–108). Universidad Nacional de Trujillo. https://doi.org/10.17268/SCI.AGROPECU.2021.012Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275, 109655. https://doi.org/10.1016/j.scienta.2020.109655Love, M. I., Huber, W., & Anders, S. (2014b). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12). https://doi.org/10.1186/S13059-014-0550-8Love, M. I., Huber, W., & Anders, S. (2014a). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 2014 15:12, 15(12), 1–21. https://doi.org/10.1186/S13059-014-0550-8Love, M. I. (2021). Statistical Modeling of High Dimensional Counts. Methods in Molecular Biology, 2284, 97–134. https://doi.org/10.1007/978-1-0716-1307-8_7López-Hidalgo, C., Meijón, M., Lamelas, L., & Valledor, L. (2021). The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant, Cell & Environment, 44(6), 1977–1986. https://doi.org/10.1111/PCE.14007Lobos, G. A., & Hancock, J. F. (2015). Breeding blueberries for a changing global environment: A review. Frontiers in Plant Science, 6(SEPTEMBER), 782. https://doi.org/10.3389/FPLS.2015.00782/XML/NLMLiu, S., Li, A., Chen, C., Cai, G., Zhang, L., Guo, C., & Xu, M. (2017). De novo transcriptome sequencing in Passiflora edulis sims to identify genes and signaling pathways involved in cold tolerance. Forests, 8(11), 435. https://doi.org/10.3390/f8110435Lissina, E., Young, B., Urbanus, M. L., Guan, X. L., Lowenson, J., Hoon, S., Baryshnikova, A., Riezman, I., Michaut, M., Riezman, H., Cowen, L. E., Wenk, M. R., Clarke, S. G., Giaever, G., & Nislow, C. (2011). A Systems Biology Approach Reveals the Role of a Novel Methyltransferase in Response to Chemical Stress and Lipid Homeostasis. PLOS Genetics, 7(10), e1002332. https://doi.org/10.1371/JOURNAL.PGEN.1002332Lichtenthaler, H. K., Gitelson, A., & Lang, M. (1996). Non-Destructive Determination of Chlorophyll Content of Leaves of a Green and an Aurea Mutant of Tobacco by Reflectance Measurements. Journal of Plant Physiology, 148(3–4), 483–493. https://doi.org/10.1016/S0176-1617(96)80283-5Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/BIOINFORMATICS/BTP324Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011 12:1, 12(1), 1–16. https://doi.org/10.1186/1471-2105-12-323Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment, 25(2), 275–294. https://doi.org/10.1046/J.0016-8025.2001.00814.XLauriano, J. A., Ramalho, J. C., Lidon, F. C., & do Céu Matos, M. (2006). Mechanisms of energy dissipation in peanut under water stress. Photosynthetica 2006 44:3, 44(3), 404–410. https://doi.org/10.1007/S11099-006-0043-4Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods 2012 9:4, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923Lamers, J., der Meer, T. van, & Testerink, C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4), 1624–1635. https://doi.org/10.1104/PP.19.01464Kusvuran, S., & Dasgan, H. Y. (2017). Drought induced physiological and biochemical responses in solanum lycopersicum genotypes differing to tolerance. Acta Scientiarum Polonorum, Hortorum Cultus, 16(6), 19–27. https://doi.org/10.24326/ASPHC.2017.6.2Kukurba, K. R., & Montgomery, S. B. (2015). RNA Sequencing and Analysis. Cold Spring Harbor Protocols, 2015(11), 951. https://doi.org/10.1101/PDB.TOP084970Koramutla, M. K., Negi, M., & Ayele, B. T. (2021). Roles of Glutathione in Mediating Abscisic Acid Signaling and Its Regulation of Seed Dormancy and Drought Tolerance. Genes 2021, Vol. 12, Page 1620, 12(10), 1620. https://doi.org/10.3390/GENES12101620Kohzuma, K., Cruz, J. A., Akashi, K., Hoshiyasu, S., Munekage, Y. N., Yokota, A., & Kramer, D. M. (2009). The long-term responses of the photosynthetic proton circuit to drought. Plant, Cell & Environment, 32(3), 209–219. https://doi.org/10.1111/J.1365-3040.2008.01912.XKim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root Response to Drought Stress in Rice (Oryza sativa L.). International Journal of Molecular Sciences 2020, Vol. 21, Page 1513, 21(4), 1513. https://doi.org/10.3390/IJMS21041513Kautsky, H., & Hirsch, A. (1931). Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 1931 19:48, 19(48), 964–964. https://doi.org/10.1007/BF01516164Katz, J. E., Dlakić, M., & Clarke, S. (2003). Automated identification of putative methyltransferases from genomic open reading frames. Molecular & Cellular Proteomics : MCP, 2(8), 525–540. https://doi.org/10.1074/mcp.M300037-MCP200Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V., & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(4), 1–11. https://doi.org/10.1007/S11738-016-2113-Y/FIGURES/2Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7(2016JULY), 1029. https://doi.org/10.3389/FPLS.2016.01029/BIBTEXJoshi, R., Ramanarao, M. V., Lee, S., Kato, N., & Baisakh, N. (2014). Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell, Tissue and Organ Culture, 117(1), 17–30. https://doi.org/10.1007/S11240-013-0416-X/FIGURES/9Jiménez, A. M., Sierra, C. A., Rodríguez-Pulido, F. J., González-Miret, M. L., Heredia, F. J., & Osorio, C. (2011). Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Research International, 44(7), 1912–1918. https://doi.org/10.1016/j.foodres.2010.11.007Jiang, Y., & Carrow, R. N. (2007). Broadband Spectral Reflectance Models of Turfgrass Species and Cultivars to Drought Stress. Crop Science, 47(4), 1611–1618. https://doi.org/10.2135/CROPSCI2006.09.0617Jiang, C., Song, J., Huang, R., Huang, M., & Xu, L. (2013). Cloning and expression analysis of Chitinase genes from Populus canadensis. Russian Journal of Plant Physiology 2013 60:3, 60(3), 396–403. https://doi.org/10.1134/S1021443713030072Jia, H., Wang, C., Wang, F., Liu, S., Li, G., & Guo, X. (2015). GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE, 10(3). https://doi.org/10.1371/JOURNAL.PONE.0120646Hussain, S., Rao, M. J., Anjum, M. A., Ejaz, S., Zakir, I., Ali, M. A., Ahmad, N., & Ahmad, S. (2019). Oxidative stress and antioxidant defense in plants under drought conditions. Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches, 207–219. https://doi.org/10.1007/978-3-030-06118-0_9/TABLES/3Hurtado-Salazar, A., Silva, D. F. P. da, Ceballos-Aguirre, N., Ocampo, J., & Bruckner, C. H. (2020). Promissory Passiflora species (Passifloraceae) for its tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/rcch.2020v14i1.10574Hurtado-Salazar, A., Pereira, D. F., Silva, D. A., Ceballos-Aguirre, N., Ocampo-Pérez, J., & Bruckner, C. H. (2020). Promissory Passiflora L. species (Passifloraceae) for tolerance to water-salt stress. Revista Colombiana de Ciencias Hortícolas, 14(1), 44–49. https://doi.org/10.17584/RCCH.2020V14I1.10574Huete, A. R., Liu, H. Q., Batchily, K., & van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59(3), 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M. I., MaCdonald, J., Obenchain, V., Oles̈, A. K., … Morgan, M. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods 2015 12:2, 12(2), 115–121. https://doi.org/10.1038/nmeth.3252Huang, S. H., Zhang, J. Y., Wang, L. H., & Huang, L. Q. (2013). Effect of abiotic stress on the abundance of different vitamin B6 vitamers in tobacco plants. Plant Physiology and Biochemistry, 66, 63–67. https://doi.org/10.1016/J.PLAPHY.2013.02.010Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., & Xiong, L. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 12987–12992. https://doi.org/10.1073/PNAS.0604882103/SUPPL_FILE/04882FIG8.PDFHoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431–438. https://doi.org/10.1016/S1360-1385(01)02052-0Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3232–3237. https://doi.org/10.1073/PNAS.1109936109/SUPPL_FILE/PNAS.1109936109_SI.PDFHernández, A. (2003). ). Revision taxonomica de Passiflora, subgénero Decaloba (Passifloraceae) en Colombia [Tesis Pregrado]. Universidad Nacional de Colombia.He, Y., Zhang, Y., Pereira, A., Gómez, A., & Wang, J. (2005). Nondestructive Determination of Tomato Fruit Quality Characteristics Using Vis/NIR Spectroscopy Technique. International Journal of Information Technology, 11(11), 97–108. https://www.researchgate.net/publication/242488503_Nondestructive_Determination_of_Tomato_Fruit_Quality_Characteristics_Using_VisNIR_Spectroscopy_TechniqueHarb, A., Krishnan, A., Ambavaram, M. M. R., & Pereira, A. (2010). Molecular and Physiological Analysis of Drought Stress in Arabidopsis Reveals Early Responses Leading to Acclimation in Plant Growth. Plant Physiology, 154(3), 1254–1271. https://doi.org/10.1104/pp.110.161752Hansatech. (2006). Handy PEA+ - Hansatech Instruments Ltd. http://www.hansatech-instruments.com/product/handy-pea/Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266–269. https://doi.org/10.1126/SCIENCE.AAZ7614/ASSET/85DF5D35-16C3-4F44-A8B6-6FBF05AF8557/ASSETS/GRAPHIC/368_266_F4.JPEGGuha, A., Sengupta, D., Kumar Rasineni, G., & Ramachandra Reddy, A. (2010). An integrated diagnostic approach to understand drought tolerance in mulberry (Morus indica L.). Flora: Morphology, Distribution, Functional Ecology of Plants, 205(2), 144–151. https://doi.org/10.1016/j.flora.2009.01.004Greenham, K., Guadagno, C. R., Gehan, M. A., Mockler, T. C., Weinig, C., Ewers, B. E., & McClung, C. R. (2017). Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in brassica rapa. ELife, 6. https://doi.org/10.7554/eLife.29655González-Fernández, A. B., Rodríguez-Pérez, J. R., Marcelo, V., & Valenciano, J. B. (2015). Using field spectrometry and a plant probe accessory to determine leaf water content in commercial vineyards. Agricultural Water Management, 156, 43–50. https://doi.org/10.1016/j.agwat.2015.03.024Gomes, M. T. G., da Luz, A. C., dos Santos, M. R., do Carmo Pimentel Batitucci, M., Silva, D. M., & Falqueto, A. R. (2012). Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Scientia Horticulturae, 142, 49–56. https://doi.org/10.1016/J.SCIENTA.2012.04.026Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. https://doi.org/10.1078/0176-1617-00887Gioppato, H. A., da Silva, M. B., Carrara, S., Palermo, B. R. Z., de Souza Moraes, T., & Dornelas, M. C. (2019). Genomic and transcriptomic approaches to understand Passiflora physiology and to contribute to passionfruit breeding. Theoretical and Experimental Plant Physiology, 31(1), 173–181. https://doi.org/10.1007/s40626-018-0134-1Gilbert, G., & McLeman, R. (2010). Household access to capital and its effects on drought adaptation and migration: A case study of rural Alberta in the 1930s. Population and Environment, 32(1), 3–26. https://doi.org/10.1007/S11111-010-0112-2/TABLES/4Gehring, W. J. (1992). The homeobox in perspective. Trends in Biochemical Sciences, 17(8), 277–280. https://doi.org/10.1016/0968-0004(92)90434-BGarcía-Castro, A., Volder, A., Restrepo-Diaz, H., Starman, T. W., & Lombardini, L. (2017). Evaluation of different drought stress regimens on growth, leaf gas exchange properties, and carboxylation activity in purple passionflower plants. Journal of the American Society for Horticultural Science, 142(1), 57–64. https://doi.org/10.21273/JASHS03961-16Gao, R., Liu, P., Yong, Y., & Wong, S.-M. (2016). Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana. Scientific Reports, 6. https://doi.org/10.1038/SREP24604Gamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997 112:4, 112(4), 492–501. https://doi.org/10.1007/S004420050337Gallino, J. P., Ruibal, C., Casaretto, E., Fleitas, A. L., Bonnecarrère, V., Borsani, O., & Vidal, S. (2018). A dehydration-induced eukaryotic translation initiation factor iso4G identified in a slow wilting soybean cultivar enhances abiotic stress tolerance in Arabidopsis. Frontiers in Plant Science, 9, 262. https://doi.org/10.3389/FPLS.2018.00262/BIBTEXGallie, D. R. (2016). Eukaryotic initiation factor eIFiso4G1 and eIFiso4G2 are isoforms exhibiting distinct functional differences in supporting translation in arabidopsis. Journal of Biological Chemistry, 291(3), 1501–1513. https://doi.org/10.1074/jbc.M115.692939Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17(12), 3470–3488. https://doi.org/10.1105/tpc.105.035659Frank, H. A., & Brudvig, G. W. (2004). Redox functions of carotenoids in photosynthesis. Biochemistry, 43(27), 8607–8615. https://doi.org/10.1021/BI0492096Flach, J., Pilet, P. E., & Jollès, P. (1992). What’s new in chitinase research? Experientia, 48(8), 701–716. https://doi.org/10.1007/BF02124285Filichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., Wong, W. K., & Mockler, T. C. (2010). Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research, 20(1), 45–58. https://doi.org/10.1101/GR.093302.109Fernandes, A. M., Fortini, E. A., Müller, L. A. de C., Batista, D. S., Vieira, L. M., Silva, P. O., Amaral, C. H. do, Poethig, R. S., & Otoni, W. C. (2020). Leaf development stages and ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by narrowband spectral signal. Journal of Photochemistry and Photobiology B: Biology, 209, 111931. https://doi.org/10.1016/J.JPHOTOBIOL.2020.111931Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 2009 29:1, 29(1), 185–212. https://doi.org/10.1051/AGRO:2008021Fang, H., & Gough, J. (2013b). A domain-centric solution to functional genomics via dcGO Predictor. BMC Bioinformatics, 14(SUPPL.3), 1–11. https://doi.org/10.1186/1471-2105-14-S3-S9/FIGURES/3Fang, H., & Gough, J. (2013a). dcGO: database of domain-centric ontologies on functions, phenotypes, diseases and more. Nucleic Acids Research, 41(Database issue), D536. https://doi.org/10.1093/NAR/GKS1080Fàbregas, N., & Fernie, A. R. (2019). The metabolic response to drought. Journal of Experimental Botany, 70(4), 1077–1085. https://doi.org/10.1093/JXB/ERY437Emerson, R., & Arnold, W. (1932). THE PHOTOCHEMICAL REACTION IN PHOTOSYNTHESIS. Journal of General Physiology, 16(2), 191–205. https://doi.org/10.1085/JGP.16.2.191Dubois, M., & Inzé, D. (2020). Plant growth under suboptimal water conditions: early responses and methods to study them. Journal of Experimental Botany, 71(5), 1706–1722. https://doi.org/10.1093/JXB/ERAA037Dubey, A. K., Kumar, N., & Sanyal, I. (2022). Targets of NO in plastids. Nitric Oxide in Plant Biology: An Ancient Molecule with Emerging Roles, 331–344. https://doi.org/10.1016/B978-0-12-818797-5.00032-7Drewke, C., & Leistner, E. (2001). Biosynthesis of vitamin B6 and structurally related derivatives. Vitamins and Hormones, 61, 121–155. https://doi.org/10.1016/S0083-6729(01)61004-5de Brito, G. G., Sofiatti, V., de Andrade Lima, M. M., de Carvalho, L. P., & Filho, J. L. da S. (2011). Traços fisiológicos para fenotipagem de algodoeiro sob seca. Acta Scientiarum - Agronomy, 33(1), 117–125. https://doi.org/10.4025/ACTASCIAGRON.V33I1.9839Day, I. S., Reddy, V. S., Shad Ali, G., & Reddy, A. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biology 2002 3:10, 3(10), 1–24. https://doi.org/10.1186/GB-2002-3-10-RESEARCH0056Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure (London, England : 1993), 3(9), 853–859. https://doi.org/10.1016/S0969-2126(01)00220-9Datt, B. (1999). A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. Journal of Plant Physiology, 154(1), 30–36. https://doi.org/10.1016/S0176-1617(99)80314-9Dalal, M., Sahu, S., Tiwari, S., Rao, A. R., & Gaikwad, K. (2018). Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology and Biochemistry, 130, 482–492. https://doi.org/10.1016/J.PLAPHY.2018.07.035Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M. W., Gaffney, D. J., Elo, L. L., Zhang, X., & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology 2016 17:1, 17(1), 1–19. https://doi.org/10.1186/S13059-016-0881-8Comstock, J. P. (2002). Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. Journal of Experimental Botany, 53(367), 195–200. https://doi.org/10.1093/JEXBOT/53.367.195Çiçek, N., Pekcan, V., Arslan, Ö., Çulha Erdal, Ş., Balkan Nalçaiyi, A. S., Çil, A. N., Şahin, V., Kaya, Y., & Ekmekçi, Y. (2019). Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Revista Brasileira de Botanica, 42(2), 249–260. https://doi.org/10.1007/S40415-019-00534-1/FIGURES/5Chuvieco-Salinero, E. (2010). Teledetección ambiental : la observación de la tierra desde el espacio (Ariel, Ed.; 1st ed.). https://bibliotecadigital.uchile.cl/discovery/fulldisplay?vid=56UDC_INST:56UDC_INST&search_scope=MyInst_and_CI&tab=Everything&docid=alma991001205769703936&lang=es&context=L&adaptor=Local%20Search%20Engine&query=any,contains,the%20new%20nature%20of%20maps&facet=library,include,56UDC_INSTAQ06&offset=0Chen, Y.-C. (2020). Introductory Chapter: Gene Expression and Phenotypic Traits. Gene Expression and Phenotypic Traits. https://doi.org/10.5772/INTECHOPEN.89863Chen, P., Ran, S., Li, R., Huang, Z., Qian, J., Yu, M., & Zhou, R. (2014). Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Molecular Breeding, 34(4), 1879–1891. https://doi.org/10.1007/s11032-014-0146-8Chen, D., He, L., Lin, M., Jing, Y., Liang, C., Liu, H., Gao, J., Zhang, W., & Wang, M. (2021). A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. Plant Science, 306, 110858. https://doi.org/10.1016/J.PLANTSCI.2021.110858Caturegli, L., Matteoli, S., Gaetani, M., Grossi, N., Magni, S., Minelli, A., Corsini, G., Remorini, D., & Volterrani, M. (2020). Effects of water stress on spectral reflectance of bermudagrass. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/s41598-020-72006-6Castillo, N. C. R., Wu, X., Chacón, M. I., Melgarejo, L. M., & Blair, M. W. (2021). Genetic Diversity of Purple Passion Fruit, Passiflora edulis f. edulis, Based on Single-Nucleotide Polymorphism Markers Discovered through Genotyping by Sequencing. Diversity 2021, Vol. 13, Page 144, 13(4), 144. https://doi.org/10.3390/D13040144Carr, M. K. V. (2013). The water relations and irrigation requirements of passion fruit (passiflora edulis sims): A review. In Experimental Agriculture (Vol. 49, Issue 4, pp. 585–596). https://doi.org/10.1017/S0014479713000240Cardoso, A. A., Gori, A., Da-Silva, C. J., & Brunetti, C. (2020). Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. Applied Sciences 2020, Vol. 10, Page 6322, 10(18), 6322. https://doi.org/10.3390/APP10186322Cao, S., Wang, Y., Li, Z., Shi, W., Gao, F., Zhou, Y., Zhang, G., & Feng, J. (2019). Genome-Wide Identification and Expression Analyses of the Chitinases under Cold and Osmotic Stress in Ammopiptanthus nanus. Genes 2019, Vol. 10, Page 472, 10(6), 472. https://doi.org/10.3390/GENES10060472Cai, W., Zhang, C., Suen, H. P., Ai, S., Bai, Y., Bao, J., Chen, B., Cheng, L., Cui, X., Dai, H., Di, Q., Dong, W., Dou, D., Fan, W., Fan, X., Gao, T., Geng, Y., Guan, D., Guo, Y., … Gong, P. (2021). The 2020 China report of the Lancet Countdown on health and climate change. The Lancet Public Health, 6(1), e64–e81. https://doi.org/10.1016/S2468-2667(20)30256-5Caballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero, cambio climático, calentamiento global. (Vol. 8). Revista Digital Universitaria.Browning, K. S., & Bailey-Serres, J. (2015). Mechanism of Cytoplasmic mRNA Translation. The Arabidopsis Book / American Society of Plant Biologists, 13, e0176. https://doi.org/10.1199/TAB.0176Boman, A. L., & Kahn, R. A. (1995). Arf proteins: the membrane traffic police? Trends in Biochemical Sciences, 20(4), 147–150. https://doi.org/10.1016/S0968-0004(00)88991-4Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: a review. Agronomy for Sustainable Development, 35(2), 401–442. https://doi.org/10.1007/S13593-015-0283-4/FIGURES/5Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breeding, 132(1), 21–32. https://doi.org/10.1111/PBR.12004Basu, S., & Rabara, R. (2017). Abscisic acid — An enigma in the abiotic stress tolerance of crop plants. Plant Gene, 11, 90–98. https://doi.org/10.1016/J.PLGENE.2017.04.008Barba, M., Czosnek, H., & Hadidi, A. (2014). Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology. Viruses 2014, Vol. 6, Pages 106-136, 6(1), 106–136. https://doi.org/10.3390/V6010106Bano, H., Athar, H. ur R., Zafar, Z. U., Kalaji, H. M., & Ashraf, M. (2021). Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiologia Plantarum, 172(2), 1244–1254. https://doi.org/10.1111/PPL.13327Banks, J. M. (2017). Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiology, 37(8), 1128–1136. https://doi.org/10.1093/TREEPHYS/TPX059Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/ANNUREV.ARPLANT.59.032607.092759ASOHOFRUCOL. (2020). Cartilla Producción Hortofrutícola . https://www.asohofrucol.com.co/biblioteca?paginalib=2#librosAshraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/J.ENVEXPBOT.2005.12.006Arslan, Balkan Nalçaiyi, A. S., Çulha Erdal, Pekcan, V., Kaya, Y., Çiçek, N., & Ekmekçi, Y. (2020). Special issue in honour of Prof. Reto J. Strasser – Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Http://Ps.Ueb.Cas.Cz/Doi/10.32615/Ps.2019.171.Html, 58(SPECIAL ISSUE), 348–357. https://doi.org/10.32615/PS.2019.171Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/ANNUREV.ARPLANT.55.031903.141701Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide Application Improves the Drought Tolerance in Maize Through Modulation of Enzymatic Antioxidants and Leaf Gas Exchange. Journal of Agronomy and Crop Science, 197(3), 177–185. https://doi.org/10.1111/j.1439-037X.2010.00459.xAnjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology 2010 11:10, 11(10), 1–12. https://doi.org/10.1186/GB-2010-11-10-R106Amrhein, N., Apel, K., Baginsky, S., Buchmann, N., Geisler, M., Keller, F., Körner, C., Martinoia, E., Merbold, L., Müller, C., Paschke, M., & Schmid, B. (2013). Plant response to stress. https://doi.org/10.3929/ETHZ-A-009779047Ali, S., Hayat, K., Iqbal, A., & Xie, L. (2020). Implications of Abscisic Acid in the Drought Stress Tolerance of Plants. Agronomy 2020, Vol. 10, Page 1323, 10(9), 1323. https://doi.org/10.3390/AGRONOMY10091323Alborzi, S. Z., Devignes, M. D., & Ritchie, D. W. (2017). Associating gene ontology terms with pfam protein domains. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10209 LNCS, 127–138. https://doi.org/10.1007/978-3-319-56154-7_13/TABLES/2Alam Khan, M., Iqbal, M., Jameel, M., Nazeer, W., Shakir, S., Aslam, M. T., & Iqbal, B. (2013). Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). African Journal of Biotechnology, 10(55), 11340–11344. https://doi.org/10.4314/ajb.v10i55.Ahmad, Z., Anjum, S., Waraich, E. A., Ayub, M. A., Ahmad, T., Tariq, R. M. S., Ahmad, R., & Iqbal, M. A. (2018). Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress – a review. Https://Doi.Org/10.1080/01904167.2018.1459688, 41(13), 1734–1743. https://doi.org/10.1080/01904167.2018.1459688Recursos bioinformáticos para el cultivo de gulupa en la postpandemia: Ensamblaje de novo del transcriptoma de Passiflora edulis Sims f. edulis durante la respuesta temprana ante el estrés por déficit hídrico.”DIEBEstudiantesORIGINALTesis MSc Paula Andrea Lozano Montaña.pdfTesis MSc Paula Andrea Lozano Montaña.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf1538116https://repositorio.unal.edu.co/bitstream/unal/83364/4/Tesis%20MSc%20Paula%20Andrea%20Lozano%20Monta%c3%b1a.pdf9699d2b7bbe05a0ed6eef6c55a164fccMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83364/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAILTesis MSc Paula Andrea Lozano Montaña.pdf.jpgTesis MSc Paula Andrea Lozano Montaña.pdf.jpgGenerated Thumbnailimage/jpeg3961https://repositorio.unal.edu.co/bitstream/unal/83364/5/Tesis%20MSc%20Paula%20Andrea%20Lozano%20Monta%c3%b1a.pdf.jpg14a048e53b5cf9b9d9b9f5f788e05e0dMD55unal/83364oai:repositorio.unal.edu.co:unal/833642024-08-17 23:13:02.513Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=