Rack and Quandle Representations and Connections to the g-digroup Structure
En este trabajo estudiamos algunas propiedades algebraicas de las estructuras de rack y quandle así como la teoría de representaciones de estos objetos. Concretamente, demostramos que existe una correspondencia entre las representaciones fuertes e irreducibles de un rack finito y conexo con las repr...
- Autores:
-
Vallejos Cifuentes, Ricardo Esteban
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85625
- Palabra clave:
- 510 - Matemáticas::512 - Álgebra
Teoría de los grupos
Grupos finitos
Representación de grupos (Matemáticas)
Algebra - Enseñanza
Racks
Quandles
Rack representations
Enveloping group
Representaciones de racks
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_0e6ee840c1fdb805975c0d1e4dabddcf |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85625 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Rack and Quandle Representations and Connections to the g-digroup Structure |
dc.title.translated.spa.fl_str_mv |
Representaciones de Racks y Quandles y conexiones con los g-digrupos |
title |
Rack and Quandle Representations and Connections to the g-digroup Structure |
spellingShingle |
Rack and Quandle Representations and Connections to the g-digroup Structure 510 - Matemáticas::512 - Álgebra Teoría de los grupos Grupos finitos Representación de grupos (Matemáticas) Algebra - Enseñanza Racks Quandles Rack representations Enveloping group Representaciones de racks |
title_short |
Rack and Quandle Representations and Connections to the g-digroup Structure |
title_full |
Rack and Quandle Representations and Connections to the g-digroup Structure |
title_fullStr |
Rack and Quandle Representations and Connections to the g-digroup Structure |
title_full_unstemmed |
Rack and Quandle Representations and Connections to the g-digroup Structure |
title_sort |
Rack and Quandle Representations and Connections to the g-digroup Structure |
dc.creator.fl_str_mv |
Vallejos Cifuentes, Ricardo Esteban |
dc.contributor.advisor.none.fl_str_mv |
Rodriguez Nieto, José Gregorio |
dc.contributor.author.none.fl_str_mv |
Vallejos Cifuentes, Ricardo Esteban |
dc.contributor.orcid.spa.fl_str_mv |
Vallejos Cifuentes, Ricardo Esteban [0009-0000-4216-0473] |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::512 - Álgebra |
topic |
510 - Matemáticas::512 - Álgebra Teoría de los grupos Grupos finitos Representación de grupos (Matemáticas) Algebra - Enseñanza Racks Quandles Rack representations Enveloping group Representaciones de racks |
dc.subject.lemb.none.fl_str_mv |
Teoría de los grupos Grupos finitos Representación de grupos (Matemáticas) Algebra - Enseñanza |
dc.subject.proposal.none.fl_str_mv |
Racks Quandles |
dc.subject.proposal.eng.fl_str_mv |
Rack representations Enveloping group |
dc.subject.proposal.spa.fl_str_mv |
Representaciones de racks |
description |
En este trabajo estudiamos algunas propiedades algebraicas de las estructuras de rack y quandle así como la teoría de representaciones de estos objetos. Concretamente, demostramos que existe una correspondencia entre las representaciones fuertes e irreducibles de un rack finito y conexo con las representaciones irreducibles de su grupo finito envolvente, lo cual implica que podemos estudiar las representaciones fuertes de un rack finito y conexo a través de la teoría de representaciones de grupos finitos. Por último, estudiamos la estructura de digrupo generalizado y su relación con la estructura de rack. (Tomado de la fuente) |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-12-05 |
dc.date.accessioned.none.fl_str_mv |
2024-02-05T20:34:01Z |
dc.date.available.none.fl_str_mv |
2024-02-05T20:34:01Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85625 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85625 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Nicolás Andruskiewitsch and Matías Graña. From racks to pointed hopf algebras. Advances in mathematics, 178(2):177–243, 2003. Valeriy Bardakov, Inder Bir Singh Passi, and Mahender Singh. Quandle rings. Journal of Algebra and its applications, 18(8):1950157, 2019. Mohamed Elhamdadi, Jennifer Macquarrie, and Ricardo Restrepo. Automorphism groups of quandles. Journal of Algebra and its Applications, 11(1):1250008, 2012. Mohamed Elhamdadi and El-ka ̈ıoum Moutuou. Finitely stable racks and rack representations. Communications in Algebra, 46(11):4787–4802, 2018. Roger Fenn and Colin Rourke. Racks and links in codimension two. Journal of Knot Theory and Its Ramifications, 1(4):343–406, 1992. Matias Graña, Istv án Heckenberger, and Leandro Vendramin. Nichols algebras of group type with many quadratic relations. Advances in mathematics, 227(5):1956–1989, 2011. David Joyce. An algebraic approach to symmetry with applications to knot theory. Phd thesis, University of Pennsylvania, 1979. David Joyce. A classifying invariant of knots, the knot quandle. Journal of Pure and Applied Algebra, 23(1):37–65, 1982. Michael Kinyon. Leibniz algebras, lie racks, and digroups. Journal of Lie Theory, 17:99–114, 2007. Victoria Lebed and Leandro Vendramin. On structure groups of set-theoretic solutions to the yang–baxter equation. Proceedings of the Edinburgh Mathematical Society, 62(3):683–717, 2019. Sergei Vladimirovich Matveev. Distributive groupoids in knot theory. Mathematics of the USSR-Sbornik, 47(1):78–88, 1982. Takefumi Nosaka. Homotopical interpretation of link invariants from finite quandles. Topology and its applications, 193:1–30, 2015. Takefumi Nosaka. Quandles and topological pairs: symmetry,knots and cohomology. Springer, 2017. Jos é Gregorio Rodríguez, Olga Patricia Salazar, and Raúl Velásquez. The structure of g- digroup actions and representation theory. Algebra and Discrete Mathematics, 32(1):103–126, 2021. Olga Patricia Salazar, Ra ́ul Vel ́asquez, and L.A Wills. Generalized digroups. Communications in Algebra, 44(7):2760–2785, 2016. Markus Szymik. Permutations, power operations, and the center of the category of racks. Communications in Algebra, 46(1):230–240, 2018. Mituhisa Takasaki. Abstraction of symmetric transformations. Tohoku Mathematical Journal, 49:145–207, 1943. Leandro Vendramin. On the classification of quandles of low order. Journal of Knot Theory and Its Ramifications, 21(09):1250088, 2012. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
66 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85625/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85625/2/1085313710.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85625/3/1085313710.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 04db4683a14f3cd4cfebd799268854a6 19daadcb3a264440349217de9f572cb1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089872337534976 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodriguez Nieto, José Gregorio4b6bb8c89efe5778cb8d5d05065b938eVallejos Cifuentes, Ricardo Esteban583fb1f8e7a365e88c9d1c84ada13198Vallejos Cifuentes, Ricardo Esteban [0009-0000-4216-0473]2024-02-05T20:34:01Z2024-02-05T20:34:01Z2023-12-05https://repositorio.unal.edu.co/handle/unal/85625Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En este trabajo estudiamos algunas propiedades algebraicas de las estructuras de rack y quandle así como la teoría de representaciones de estos objetos. Concretamente, demostramos que existe una correspondencia entre las representaciones fuertes e irreducibles de un rack finito y conexo con las representaciones irreducibles de su grupo finito envolvente, lo cual implica que podemos estudiar las representaciones fuertes de un rack finito y conexo a través de la teoría de representaciones de grupos finitos. Por último, estudiamos la estructura de digrupo generalizado y su relación con la estructura de rack. (Tomado de la fuente)In this research we study some algebraic properties of the rack and quandle structure as well as the representation theory of these objects. We establish a correspondence between the irreducible strong representations of a finite, connected rack with the irreducible representation of its finite enveloping group, which implies that the study of strong representations of a finite, connected rack can be approached through the representation theory of finite groups. Finally, we study the g-digroup structure and its connection to the rack structure.MaestríaMagíster en Ciencias - MatemáticasÁlgebraMaestría en Ciencias - Matemáticas66 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín510 - Matemáticas::512 - ÁlgebraTeoría de los gruposGrupos finitosRepresentación de grupos (Matemáticas)Algebra - EnseñanzaRacksQuandlesRack representationsEnveloping groupRepresentaciones de racksRack and Quandle Representations and Connections to the g-digroup StructureRepresentaciones de Racks y Quandles y conexiones con los g-digruposTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaNicolás Andruskiewitsch and Matías Graña. From racks to pointed hopf algebras. Advances in mathematics, 178(2):177–243, 2003.Valeriy Bardakov, Inder Bir Singh Passi, and Mahender Singh. Quandle rings. Journal of Algebra and its applications, 18(8):1950157, 2019.Mohamed Elhamdadi, Jennifer Macquarrie, and Ricardo Restrepo. Automorphism groups of quandles. Journal of Algebra and its Applications, 11(1):1250008, 2012.Mohamed Elhamdadi and El-ka ̈ıoum Moutuou. Finitely stable racks and rack representations. Communications in Algebra, 46(11):4787–4802, 2018.Roger Fenn and Colin Rourke. Racks and links in codimension two. Journal of Knot Theory and Its Ramifications, 1(4):343–406, 1992.Matias Graña, Istv án Heckenberger, and Leandro Vendramin. Nichols algebras of group type with many quadratic relations. Advances in mathematics, 227(5):1956–1989, 2011.David Joyce. An algebraic approach to symmetry with applications to knot theory. Phd thesis, University of Pennsylvania, 1979.David Joyce. A classifying invariant of knots, the knot quandle. Journal of Pure and Applied Algebra, 23(1):37–65, 1982.Michael Kinyon. Leibniz algebras, lie racks, and digroups. Journal of Lie Theory, 17:99–114, 2007.Victoria Lebed and Leandro Vendramin. On structure groups of set-theoretic solutions to the yang–baxter equation. Proceedings of the Edinburgh Mathematical Society, 62(3):683–717, 2019.Sergei Vladimirovich Matveev. Distributive groupoids in knot theory. Mathematics of the USSR-Sbornik, 47(1):78–88, 1982.Takefumi Nosaka. Homotopical interpretation of link invariants from finite quandles. Topology and its applications, 193:1–30, 2015.Takefumi Nosaka. Quandles and topological pairs: symmetry,knots and cohomology. Springer, 2017.Jos é Gregorio Rodríguez, Olga Patricia Salazar, and Raúl Velásquez. The structure of g- digroup actions and representation theory. Algebra and Discrete Mathematics, 32(1):103–126, 2021.Olga Patricia Salazar, Ra ́ul Vel ́asquez, and L.A Wills. Generalized digroups. Communications in Algebra, 44(7):2760–2785, 2016.Markus Szymik. Permutations, power operations, and the center of the category of racks. Communications in Algebra, 46(1):230–240, 2018.Mituhisa Takasaki. Abstraction of symmetric transformations. Tohoku Mathematical Journal, 49:145–207, 1943.Leandro Vendramin. On the classification of quandles of low order. Journal of Knot Theory and Its Ramifications, 21(09):1250088, 2012.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85625/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1085313710.2023.pdf1085313710.2023.pdfTesis de maestría en Ciencias - Matemáticasapplication/pdf790447https://repositorio.unal.edu.co/bitstream/unal/85625/2/1085313710.2023.pdf04db4683a14f3cd4cfebd799268854a6MD52THUMBNAIL1085313710.2023.pdf.jpg1085313710.2023.pdf.jpgGenerated Thumbnailimage/jpeg4292https://repositorio.unal.edu.co/bitstream/unal/85625/3/1085313710.2023.pdf.jpg19daadcb3a264440349217de9f572cb1MD53unal/85625oai:repositorio.unal.edu.co:unal/856252024-02-05 23:03:44.457Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |