Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials

ilustraciones, diagramas, mapas

Autores:
Marin Jimenez, Santiago
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83112
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83112
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Fique
Turbinas de aire
Energía eólica
Air-turbines
Wind power
Wind turbine blades
Composite materials
Finite elements
Natural fibres
Álabes de turbinas eólicas
Materiales compuestos
Elementos finitos
Fibras naturales
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_0e6c875b30666301296e4d4de32e1a4e
oai_identifier_str oai:repositorio.unal.edu.co:unal/83112
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials
dc.title.translated.spa.fl_str_mv Diseño y manufactura de un rotor de turbina eólica utilizando materiales compuestos reforzados con fibra de fique
title Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials
spellingShingle Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Fique
Turbinas de aire
Energía eólica
Air-turbines
Wind power
Wind turbine blades
Composite materials
Finite elements
Natural fibres
Álabes de turbinas eólicas
Materiales compuestos
Elementos finitos
Fibras naturales
title_short Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials
title_full Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials
title_fullStr Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials
title_full_unstemmed Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials
title_sort Design and manufacture of a wind turbine rotor using fique fibre reinforced composite materials
dc.creator.fl_str_mv Marin Jimenez, Santiago
dc.contributor.advisor.none.fl_str_mv Meza Meza, Juan Manuel
Idárraga Alarcón, Guillermo Andrés
dc.contributor.author.none.fl_str_mv Marin Jimenez, Santiago
dc.contributor.researchgroup.spa.fl_str_mv Design of Advanced Compositesdadcomp
dc.contributor.orcid.spa.fl_str_mv Marin Jimenez, Santiago [0000-0003-3790-5877]
Meza Meza, Juan Manuel [0000-0001-8013-3775]
Idárraga Alarcón, Guillermo Andrés [0000-0001-7832-9509]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Fique
Turbinas de aire
Energía eólica
Air-turbines
Wind power
Wind turbine blades
Composite materials
Finite elements
Natural fibres
Álabes de turbinas eólicas
Materiales compuestos
Elementos finitos
Fibras naturales
dc.subject.lemb.spa.fl_str_mv Fique
Turbinas de aire
Energía eólica
dc.subject.lemb.eng.fl_str_mv Air-turbines
Wind power
dc.subject.proposal.eng.fl_str_mv Wind turbine blades
Composite materials
Finite elements
Natural fibres
dc.subject.proposal.spa.fl_str_mv Álabes de turbinas eólicas
Materiales compuestos
Elementos finitos
Fibras naturales
description ilustraciones, diagramas, mapas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-25T14:56:39Z
dc.date.available.none.fl_str_mv 2023-01-25T14:56:39Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83112
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83112
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv WindAid Institute, ‘Light Up A Life’, 2021. www.windaid.org/light-up-a-life.
A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, ‘A review on small scale wind turbines’, Renewable and Sustainable Energy Reviews, vol. 56. Elsevier Ltd, pp. 1351–1371, Apr. 01, 2016, doi: 10.1016/j.rser.2015.12.027.
F. Ricardo Procópio de Araújo, M. Giannini Pereira, M. Aurélio Vasconcelos Freitas, N. Fidelis da Silva, and E. Janser de Azevedo Dantas, ‘Bigger is Not Always Better: Review of Small Wind in Brazil’, vol. 14, p. 976, 2021, doi: 10.3390/en14040976.
International Renewable Energy Agency, Renewable Power Generation Costs in 2019. 2020.
XM, ‘Capacidad efectiva por tipo de generación’, 2021. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad (accessed May 11, 2021).
J. C. Sosapanta, ‘Energía eólica en Colombia: panorama y perspectivas bajo la triple cuenta de resultados’, Universidad Nacional Abierta y a Distancia – UNAD, 2020.
La República, ‘El Gobierno inauguró ayer en La Guajira el primero de 16 nuevos parques eólicos’, 2022, 2022. https://www.larepublica.co/economia/el-gobierno-inauguro-ayer-en-la-guajira-el-primero-de-16-nuevos-parques-eolicos-3290204.
J. F. Manwell, J. McGowan, and A. Rogers, Wind energy explained : theory, design, and application, 2nd ed. United Kingdom, 2009.
Sumiglas S.A., ‘Tecnología al servicio de los materiales compuestos’, 2022. www.sumiglas.com.
Carbon Fiber Stock, ‘Suministros para materiales compuestos de altas prestaciones’, 2021. www.carbonfiberstocks.co.
R. Echeverri, L. Franco, and M. González, ‘Fique en Colombia’, Medellín, 2015.
Coohilados de Fonce LTDA, ‘TELAS DE FIQUE’, 2022. https://www.coohilados.com.co/categoria/telas-de-fique.
M. Muñoz, M. Higaldo, and J. Mina, ‘Fibras de fique una alternativa para el reforzamiento de plásticos. Influencia de la modificación superficial’, Biotecnol. en el Sect. Agropecu. y Agroindustrial, vol. 12, no. 2, pp. 60–70, 2014.
J. Vargas, ‘Análisis interfacial de un material compuesto fabricado en matriz polimérica reforzado con fibras de fique para potenciar sus propiedades mecánicas’, Universidad Nacional de Colombia, 2020.
M. Herrero et al., ‘ODS en Colombia: Los retos para 2030’, Colombia, 2018.
UPME, ‘Índice de Cobertura de Energía Eléctrica - ICEE 2018’, 2018. http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/tabid/81/Default.aspx (accessed Mar. 11, 2021).
IDEAM and UPME, ‘Atlas de Viento y Energía Eólica de Colombia’, p. 169, 2006, [Online]. Available: http://bdigital.upme.gov.co/handle/001/22.
J. Serna, ‘Velocidad promedio de viento a 10 metros de altura’, Colombia, 2015. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html.
W. Tong, Wind Power Generation and Wind Turbine Desing, 1st ed., vol. 30, no. 12. Southampton: WIT Press, 2010.
D. Wood, Small Wind Turbines Analysis, Design, ann Application. Canda: University of Calgary, 2011.
R. Gasch, J. Twele, S. (Online service), R. (Robert) Gasch, and J. (Jochen) Twele, Wind Power Plants Fundamentals, Design, Construction and Operation / edited by Robert Gasch, Jochen Twele., 2nd ed. 20. Berlin, Heidelberg: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
J. alonso Baranda, ‘Estudio de un mini-aerogenerador de 500 W para la electrificación de comunidades rurales en Perú: Modelización, fabricación e instalación’, UNIVERSIDAD POLITÉCNICA DE MADRID, 2017.
M. Drela, ‘Xfoil’. MIT, USA, 2013, [Online]. Available: https://web.mit.edu/drela/Public/web/xfoil/.
‘Airfoil Tools’, 2022. http://airfoiltools.com/index.
A. Betz, ‘Schraubenpropeller mit geringstem Energieverlust. Mit einem Zusatz von l. Prandtl’, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, vol. 1919, pp. 193–217, 1919, [Online]. Available: http://eudml.org/doc/59049.
R. Jones, Mechanics of Composite Materials., 2nd ed., vol. 2. Virginia: Taylor & Francis, 1974.
D. Gay, Composite materials: Design and applications, 3rd ed. Boca Raton: Taylor & Francis Group, 2002.
E. J. Barbero, Introduction to Composite Materials Design, 3rd ed. Boca Raton: CRC Press, 2017.
Hexcel Composites, ‘Honeycomb sandwich design technology’, p. 28, 2000, [Online]. Available: https://www.hexcel.com/Resources/DataSheets/Honeycomb.
J. M. Macías, ‘Numerical and analytical models for the design of hybrid composite laminates with gradual failure behaviour under bending loads’, Universidad Nacional de Colombia, 2020.
E. J. Barbero, Barbero_Finite element analysis of composite materials_Abaqus.
P. Madhu, M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, and B. Yogesha, ‘A review on synthesis and characterization of commercially available natural fibers: Part-I’, J. Nat. Fibers, vol. 16, no. 8, pp. 1132–1144, Nov. 2019, doi: 10.1080/15440478.2018.1453433.
F. Ahmad, H. S. Choi, and M. K. Park, ‘A Review: Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties’, Macromol. Mater. Eng., vol. 300, no. 1, pp. 10–24, Jan. 2015, doi: https://doi.org/10.1002/mame.201400089.
A. Ali et al., ‘Hydrophobic treatment of natural fibers and their composites—A review’, J. Ind. Text., vol. 47, no. 8, pp. 2153–2183, Jun. 2016, doi: 10.1177/1528083716654468.
Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, ‘Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review’, Front. Mater., vol. 6, p. 226, 2019, doi: 10.3389/fmats.2019.00226.
C. Rodrigues, P. Amoy, M. Barcelos, A. Gomes, F. Muylaert, and S. Neves, ‘Bending mechanical behavior of polyester matrix Reinforced with fique fiber’, Charact. Miner. Met. Mater., pp. 117–121, 2015.
P. Gañań and I. Mondragon, ‘Effect of Fiber Treatments on Mechanical Behavior of Short Fique Fiber-reinforced Polyacetal Composites’, J. Compos. Mater., vol. 39, no. 7, pp. 633–646, Apr. 2005, doi: 10.1177/0021998305047268.
P. Gañán and I. Mondragon, ‘Fique fiber-reinforced polyester composites : Effects of fiber surface treatments on mechanical behavior’, J. Mater. Sci., vol. 39, pp. 3121–3128, 2004.
C. Gómez Hoyos, V. A. Alvarez, P. G. Rojo, and A. Vázquez, ‘Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application’, Fibers Polym., vol. 13, no. 5, pp. 632–640, 2012, doi: 10.1007/s12221-012-0632-8.
P. Luna, A. Mariño, J. Lizarazo-Marriaga, and O. Beltrán, ‘Dry etching plasma applied to fique fibers: influence on their mechanical properties and surface appearance’, Procedia Eng., vol. 200, pp. 141–147, 2017, doi: https://doi.org/10.1016/j.proeng.2017.07.021.
G. Rodrigues, P. Amoy, M. Andrade, F. Muylaert, and S. Neves, ‘TENSILE STRENGTH OF POLYESTER COMPOSITES REINFORCED WITH FIQUE FIBERS’, Charact. Miner. Met. Mater. 2015, 2015.
B. Zuluaga, G. Idarraga, J. Vargas, J. M. Meza, T. Duncan, and M. Jalalvand, ‘Fique natural fibre composites – A new degradable composite material for local automotive industries in Colombia’, Medellín, 2019.
G. Rodrigues, P. Amoy, M. Andrade, L. Borges, F. Muylaert, and S. Neves, ‘TENSILE STRENGTH OF EPOXY COMPOSITES REINFORCED WITH FIQUE FIBERS’, Charact. Miner. Met. Mater. 2016, 2016.
S. Gómez, B. Ramón, and R. Guzman, ‘Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers’, Rev. UIS Ing., vol. 17, pp. 43–50, 2018, doi: https://doi.org/10.18273/revuin.v17n1-2018004.
M. A. Hidalgo-Salazar and J. P. Correa, ‘Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene’, Results Phys., vol. 8, pp. 461–467, 2018, doi: https://doi.org/10.1016/j.rinp.2017.12.025.
P. Amoy Netto, G. R. Altoé, F. Muylaert Margem, F. de Oliveira Braga, S. N. Monteiro, and J. I. Margem, ‘Correlation between the Density and the Diameter of Fique Fibers’, Mater. Sci. Forum, vol. 869, pp. 377–383, Aug. 2016, doi: 10.4028/www.scientific.net/MSF.869.377.
A. Carlin, ‘Application of natural fibres in small wind turbine blades’, University of Strathclyde, 2020.
D. Marten, ‘Qblade’. Berlin, 2015, [Online]. Available: http://www.q-blade.org/.
S. Gundtoft, ‘Wind Turbines’, Aarhus, 2012.
Y. A. Çengel and J. M. Cimbala, Mecánica de fluidos: Fundamentos y aplicaciones, 2a ed. México D.F., 2012.
LANTOR, ‘Datasheet Soric® SF’, Veenendaal, 2016. [Online]. Available: www.lantorcomposites.com.
British Standard, ‘Wind turbines — Part 2: Design requirements for small wind turbines’, 61010-1 © Iec2001, vol. 2006, p. 13, 2006.
J. Serna, ‘Promedio de la velocidad maxima del viento anual’, Colombia, 2015. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html.
IDEAM, ‘Atlas de Viento de Colombia - Interactivo’, 2015. http://atlas.ideam.gov.co/visorAtlasVientos.html.
Dassault Systèmes, ‘Abaqus CAE’. Dassault Systèmes, 2018, [Online]. Available: https://www.3ds.com/es/productos-y-servicios/simulia/productos/abaqus/.
J. M. Faulstich de Paiva, S. Mayer, and M. Cerqueira, ‘Comparison of Tensile Strength of Different Carbon Fabric Reinforced Epoxy Composites’, Mater. Res., vol. 9, no. 1, pp. 83–89, 2006.
Autodesk, ‘Helius Composite’. 2017, [Online]. Available: /www.autodesk.com/products/helius-composite.
C. Rodríguez and E. Vergara, ‘Propiedades físicas y mecánicas de la madera de Pinus canariensis crecido en el secano de la Región del Maule, Chile’, Bosque (Valdivia), vol. 29, pp. 192–196, 2008, [Online]. Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002008000300002&nrm=iso.
R. D. Cook, Malkus, Plesha, and Witt, Concepts and applicatioins of finite element analysis , 4th edition. 2007.
D. U. Shah, P. J. Schubel, and M. J. Clifford, ‘Can flax replace E-glass in structural composites? A small wind turbine blade case study’, Compos. Part B Eng., vol. 52, pp. 172–181, Sep. 2013, doi: 10.1016/j.compositesb.2013.04.027.
Safilin, ‘COMPOSITES & TECHNOLOGY’, 2022. https://www.safilin.fr/composites/?lang=en.
D. Peña, ‘DISEÑO ESTRUTURAL DE UN ÁLABE DE TURBINA EÓLICA DE 5 KW A BASE DE MATERIAL COMPUESTO CON REFUERZO DE FIBRAS NATURALES DE STIPA OBTUSA’, UNIVERSIDAD DE INGENIERÍA Y TECNOLOGÍA UTEC, 2019.
ASTM International, ‘ASTM D638 - 14 Standard Test Method for Tensile Properties of Plastics’, ASTM Vol. 08.01 Plast. C1147– D3159, p. 17, 2017, doi: 10.1520/D0638-14.
Andercol, ‘Ficha técnica - CRISTALAN® 872’, Medellín, 2019. [Online]. Available: https://andercol.com.co/.
Andercol, ‘Ficha técnica - ANDERCOL® 14 1970 RTM’, Medellín, 2020. [Online]. Available: https://andercol.com.co/.
J. Aveston, G. A. Cooper, and A. Kelly, ‘Single and multiple fracture.’, in The Prop fibre Compos Conf Proceedings, 1971, pp. 15–26.
J. Aveston and A. Kelly, ‘Theory of multiple fracture of fibrous composites’, J. Mater. Sci., vol. 8, no. 3, pp. 352–362, 1973, doi: 10.1007/BF00550155.
University of Southampton, ‘µ-VIS: Multidisciplinary, Multiscale, Microtomographic Volume Imaging’, 2022. https://www.southampton.ac.uk/muvis.
C. Gómez Hoyos and A. Vázquez, ‘Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application’, Compos. Part B Eng., vol. 43, no. 8, pp. 3120–3130, 2012, doi: https://doi.org/10.1016/j.compositesb.2012.04.027.
Andercol, ‘Ficha técnica - CRISTALAN® 847’, 2016. [Online]. Available: https://andercol.com.co/.
M. C. A. Teles, G. R. Altoé, P. Amoy Netto, H. Colorado, F. M. Margem, and S. N. Monteiro, ‘Fique Fiber Tensile Elastic Modulus Dependence with Diameter Using the Weibull Statistical Analysis’, Mater. Res., vol. 18, no. suppl 2, pp. 193–199, Oct. 2015, doi: 10.1590/1516-1439.364514.
Deben, ‘Insitu Micro Tensile Testing’, 2022. https://deben.co.uk/tensile-testing/µxct/tensile-stages-for-x-ray-ct-tomography/.
T. Scalici, G. Pitarresi, D. Badagliacco, V. Fiore, and A. Valenza, ‘Mechanical properties of basalt fiber reinforced composites manufactured with different vacuum assisted impregnation techniques’, Compos. Part B Eng., vol. 104, pp. 35–43, 2016, doi: https://doi.org/10.1016/j.compositesb.2016.08.021.
K. Abdurohman, T. Satrio, N. L. Muzayadah, and Teten, ‘A comparison process between hand lay-up, vacuum infusion and vacuum bagging method toward e-glass EW 185/lycal composites’, J. Phys. Conf. Ser., vol. 1130, p. 012018, Nov. 2018, doi: 10.1088/1742-6596/1130/1/012018.
Minepro S.A.S, ‘Minepro Safety & Innovation’, 2022. http://mineprotec.com/.
M. Barth and M. Carus, ‘Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material’, Hürth, 2015. [Online]. Available: http://bio-based.eu/ecology/.
Bcomp, ‘Sustainability’, 2021. https://www.bcomp.ch/sustainability/.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 112 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83112/4/1017248763.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83112/3/license.txt
bitstream.checksum.fl_str_mv c228e3323262dabdc3a85d394bb43fc4
eb34b1cf90b7e1103fc9dfd26be24b4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886467135340544
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Meza Meza, Juan Manuelace02cc487df5a1953aaed1cdf89e530Idárraga Alarcón, Guillermo Andrés8e26f5d5bafad82f4c110b9a81d1a229Marin Jimenez, Santiagofa947e336d54e4de191615dc12228328600Design of Advanced CompositesdadcompMarin Jimenez, Santiago [0000-0003-3790-5877]Meza Meza, Juan Manuel [0000-0001-8013-3775]Idárraga Alarcón, Guillermo Andrés [0000-0001-7832-9509]2023-01-25T14:56:39Z2023-01-25T14:56:39Z2022https://repositorio.unal.edu.co/handle/unal/83112Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasMicro wind power generation is one of the possible solutions to bring energy to the Non-Interconnected Zones (ZNI) of the Colombian Caribbean. To reduce the manufacturing costs and encourage the use of wind energy in these ZNI, this thesis aims to design and manufacture the rotor of a low-scale turbine using cheap composite materials reinforced with fique fibres. The wind turbine designed by WindAid, an NGO that installs wind energy in rural communities in Peru, was used as a starting point to meet the objectives of the thesis. The geometrical design of the rotor was optimised using an analytical model capable of maximizing the aerodynamic power generated. On the other hand, the critical load conditions of the rotor in La Guajira were established, following the recommendations of British Standard 61400-2. The first approximation of the rotor structural design was made by applying the finite element method FEM and using traditional composite materials with glass and carbon fibre. Once the prototype was manufactured, the structural design was experimentally validated using an instrumented bending test on the blades, obtaining differences of less than 7% with the numerical model. Subsequently, a composite material reinforced with a standardised fique fibre fabric was developed. Different modifications were made to the matrix and fibres to improve the material mechanical properties evaluated using tensile tests. Moreover, the failure mode of the composites was studied using computed tomography. As a result, a standardised composite with a strength of 111MPa and an elastic modulus of 6.1GPa was obtained. Finally, a blade design using fique fibres was evaluated using the FEM, and a test prototype was manufactured using the vacuum bag infusion method. The design with fique fibres proved to withstand the average turbine operating conditions in La Guajira. Furthermore, with the replacement of the synthetic fibres with natural fibres, the raw material cost was decreased sixfold, and its environmental impact was reduced.La micro generación de energía eólica es una de las posibles soluciones para llevar energía a las Zonas No Interconectadas (ZNI) a la red de energía del caribe colombiano. Para disminuir los costos de fabricación e incentivar el uso de la energía eólica de estas ZNI, esta tesis tiene como objetivo diseñar y manufacturar el rotor de una turbina de baja escala utilizando materiales compuestos baratos reforzados con fibras de fique. La turbina eólica diseñada por WindAid, una ONG que instala energía eólica en comunidades rurales de Perú, se utilizó como punto de partida para cumplir con objetivos de la tesis. El diseño geométrico del rotor se optimizó utilizando un modelo analítico capaz de aumentar la potencia aerodinámica generada. Por otro lado, se establecieron las condiciones críticas de carga del rotor en La Guajira, siguiendo las recomendaciones de la Norma Británica 61400-2. La primera aproximación del diseño estructural del rotor se hizo aplicando el método de los elementos finitos MEF y utilizando materiales compuestos tradicionales con fibra de vidrio y carbono. Una vez fabricado el prototipo, se validó experimentalmente el diseño estructural utilizando un ensayó de flexión instrumentado en los álabes, obteniendo diferencias menores al 7% con el modelo numérico. Posteriormente, se desarrolló un material compuesto reforzado con un tejido de fibra de fique estandarizado. Para mejorar las propiedades mecánicas del material, se realizaron diferentes modificaciones a la matriz y las fibras las cuales fueron evaluadas en ensayos de tensión. Adicionalmente, el modo de fallo de los compuestos se estudió utilizando tomografías computarizadas. Como resultado, se obtuvo un composite estandarizado con una resistencia de 111MPa y un módulo elástico de 6.1GPa. Finalmente, se evaluó un diseño de álabes utilizando fibras de fique mediante el MEF, y se fabricó un prototipo de prueba utilizando el método de infusión en bolsa de vacío. El diseño con fibras de fique demostró soportar las condiciones promedio de operación de la turbina en La Guajira. Además, con la sustitución de las fibras sintéticas por fibras naturales, se disminuyó seis veces el costo de las materias primas y se redujo su impacto ambiental. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Materiales y ProcesosMateriales compuestosÁrea Curricular de Materiales y Nanotecnologíaxx, 112 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Materiales y ProcesosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaFiqueTurbinas de aireEnergía eólicaAir-turbinesWind powerWind turbine bladesComposite materialsFinite elementsNatural fibresÁlabes de turbinas eólicasMateriales compuestosElementos finitosFibras naturalesDesign and manufacture of a wind turbine rotor using fique fibre reinforced composite materialsDiseño y manufactura de un rotor de turbina eólica utilizando materiales compuestos reforzados con fibra de fiqueTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaWindAid Institute, ‘Light Up A Life’, 2021. www.windaid.org/light-up-a-life.A. Tummala, R. K. Velamati, D. K. Sinha, V. Indraja, and V. H. Krishna, ‘A review on small scale wind turbines’, Renewable and Sustainable Energy Reviews, vol. 56. Elsevier Ltd, pp. 1351–1371, Apr. 01, 2016, doi: 10.1016/j.rser.2015.12.027.F. Ricardo Procópio de Araújo, M. Giannini Pereira, M. Aurélio Vasconcelos Freitas, N. Fidelis da Silva, and E. Janser de Azevedo Dantas, ‘Bigger is Not Always Better: Review of Small Wind in Brazil’, vol. 14, p. 976, 2021, doi: 10.3390/en14040976.International Renewable Energy Agency, Renewable Power Generation Costs in 2019. 2020.XM, ‘Capacidad efectiva por tipo de generación’, 2021. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad (accessed May 11, 2021).J. C. Sosapanta, ‘Energía eólica en Colombia: panorama y perspectivas bajo la triple cuenta de resultados’, Universidad Nacional Abierta y a Distancia – UNAD, 2020.La República, ‘El Gobierno inauguró ayer en La Guajira el primero de 16 nuevos parques eólicos’, 2022, 2022. https://www.larepublica.co/economia/el-gobierno-inauguro-ayer-en-la-guajira-el-primero-de-16-nuevos-parques-eolicos-3290204.J. F. Manwell, J. McGowan, and A. Rogers, Wind energy explained : theory, design, and application, 2nd ed. United Kingdom, 2009.Sumiglas S.A., ‘Tecnología al servicio de los materiales compuestos’, 2022. www.sumiglas.com.Carbon Fiber Stock, ‘Suministros para materiales compuestos de altas prestaciones’, 2021. www.carbonfiberstocks.co.R. Echeverri, L. Franco, and M. González, ‘Fique en Colombia’, Medellín, 2015.Coohilados de Fonce LTDA, ‘TELAS DE FIQUE’, 2022. https://www.coohilados.com.co/categoria/telas-de-fique.M. Muñoz, M. Higaldo, and J. Mina, ‘Fibras de fique una alternativa para el reforzamiento de plásticos. Influencia de la modificación superficial’, Biotecnol. en el Sect. Agropecu. y Agroindustrial, vol. 12, no. 2, pp. 60–70, 2014.J. Vargas, ‘Análisis interfacial de un material compuesto fabricado en matriz polimérica reforzado con fibras de fique para potenciar sus propiedades mecánicas’, Universidad Nacional de Colombia, 2020.M. Herrero et al., ‘ODS en Colombia: Los retos para 2030’, Colombia, 2018.UPME, ‘Índice de Cobertura de Energía Eléctrica - ICEE 2018’, 2018. http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/tabid/81/Default.aspx (accessed Mar. 11, 2021).IDEAM and UPME, ‘Atlas de Viento y Energía Eólica de Colombia’, p. 169, 2006, [Online]. Available: http://bdigital.upme.gov.co/handle/001/22.J. Serna, ‘Velocidad promedio de viento a 10 metros de altura’, Colombia, 2015. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html.W. Tong, Wind Power Generation and Wind Turbine Desing, 1st ed., vol. 30, no. 12. Southampton: WIT Press, 2010.D. Wood, Small Wind Turbines Analysis, Design, ann Application. Canda: University of Calgary, 2011.R. Gasch, J. Twele, S. (Online service), R. (Robert) Gasch, and J. (Jochen) Twele, Wind Power Plants Fundamentals, Design, Construction and Operation / edited by Robert Gasch, Jochen Twele., 2nd ed. 20. Berlin, Heidelberg: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.J. alonso Baranda, ‘Estudio de un mini-aerogenerador de 500 W para la electrificación de comunidades rurales en Perú: Modelización, fabricación e instalación’, UNIVERSIDAD POLITÉCNICA DE MADRID, 2017.M. Drela, ‘Xfoil’. MIT, USA, 2013, [Online]. Available: https://web.mit.edu/drela/Public/web/xfoil/.‘Airfoil Tools’, 2022. http://airfoiltools.com/index.A. Betz, ‘Schraubenpropeller mit geringstem Energieverlust. Mit einem Zusatz von l. Prandtl’, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, vol. 1919, pp. 193–217, 1919, [Online]. Available: http://eudml.org/doc/59049.R. Jones, Mechanics of Composite Materials., 2nd ed., vol. 2. Virginia: Taylor & Francis, 1974.D. Gay, Composite materials: Design and applications, 3rd ed. Boca Raton: Taylor & Francis Group, 2002.E. J. Barbero, Introduction to Composite Materials Design, 3rd ed. Boca Raton: CRC Press, 2017.Hexcel Composites, ‘Honeycomb sandwich design technology’, p. 28, 2000, [Online]. Available: https://www.hexcel.com/Resources/DataSheets/Honeycomb.J. M. Macías, ‘Numerical and analytical models for the design of hybrid composite laminates with gradual failure behaviour under bending loads’, Universidad Nacional de Colombia, 2020.E. J. Barbero, Barbero_Finite element analysis of composite materials_Abaqus.P. Madhu, M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, and B. Yogesha, ‘A review on synthesis and characterization of commercially available natural fibers: Part-I’, J. Nat. Fibers, vol. 16, no. 8, pp. 1132–1144, Nov. 2019, doi: 10.1080/15440478.2018.1453433.F. Ahmad, H. S. Choi, and M. K. Park, ‘A Review: Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties’, Macromol. Mater. Eng., vol. 300, no. 1, pp. 10–24, Jan. 2015, doi: https://doi.org/10.1002/mame.201400089.A. Ali et al., ‘Hydrophobic treatment of natural fibers and their composites—A review’, J. Ind. Text., vol. 47, no. 8, pp. 2153–2183, Jun. 2016, doi: 10.1177/1528083716654468.Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, and S. Siengchin, ‘Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review’, Front. Mater., vol. 6, p. 226, 2019, doi: 10.3389/fmats.2019.00226.C. Rodrigues, P. Amoy, M. Barcelos, A. Gomes, F. Muylaert, and S. Neves, ‘Bending mechanical behavior of polyester matrix Reinforced with fique fiber’, Charact. Miner. Met. Mater., pp. 117–121, 2015.P. Gañań and I. Mondragon, ‘Effect of Fiber Treatments on Mechanical Behavior of Short Fique Fiber-reinforced Polyacetal Composites’, J. Compos. Mater., vol. 39, no. 7, pp. 633–646, Apr. 2005, doi: 10.1177/0021998305047268.P. Gañán and I. Mondragon, ‘Fique fiber-reinforced polyester composites : Effects of fiber surface treatments on mechanical behavior’, J. Mater. Sci., vol. 39, pp. 3121–3128, 2004.C. Gómez Hoyos, V. A. Alvarez, P. G. Rojo, and A. Vázquez, ‘Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application’, Fibers Polym., vol. 13, no. 5, pp. 632–640, 2012, doi: 10.1007/s12221-012-0632-8.P. Luna, A. Mariño, J. Lizarazo-Marriaga, and O. Beltrán, ‘Dry etching plasma applied to fique fibers: influence on their mechanical properties and surface appearance’, Procedia Eng., vol. 200, pp. 141–147, 2017, doi: https://doi.org/10.1016/j.proeng.2017.07.021.G. Rodrigues, P. Amoy, M. Andrade, F. Muylaert, and S. Neves, ‘TENSILE STRENGTH OF POLYESTER COMPOSITES REINFORCED WITH FIQUE FIBERS’, Charact. Miner. Met. Mater. 2015, 2015.B. Zuluaga, G. Idarraga, J. Vargas, J. M. Meza, T. Duncan, and M. Jalalvand, ‘Fique natural fibre composites – A new degradable composite material for local automotive industries in Colombia’, Medellín, 2019.G. Rodrigues, P. Amoy, M. Andrade, L. Borges, F. Muylaert, and S. Neves, ‘TENSILE STRENGTH OF EPOXY COMPOSITES REINFORCED WITH FIQUE FIBERS’, Charact. Miner. Met. Mater. 2016, 2016.S. Gómez, B. Ramón, and R. Guzman, ‘Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers’, Rev. UIS Ing., vol. 17, pp. 43–50, 2018, doi: https://doi.org/10.18273/revuin.v17n1-2018004.M. A. Hidalgo-Salazar and J. P. Correa, ‘Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene’, Results Phys., vol. 8, pp. 461–467, 2018, doi: https://doi.org/10.1016/j.rinp.2017.12.025.P. Amoy Netto, G. R. Altoé, F. Muylaert Margem, F. de Oliveira Braga, S. N. Monteiro, and J. I. Margem, ‘Correlation between the Density and the Diameter of Fique Fibers’, Mater. Sci. Forum, vol. 869, pp. 377–383, Aug. 2016, doi: 10.4028/www.scientific.net/MSF.869.377.A. Carlin, ‘Application of natural fibres in small wind turbine blades’, University of Strathclyde, 2020.D. Marten, ‘Qblade’. Berlin, 2015, [Online]. Available: http://www.q-blade.org/.S. Gundtoft, ‘Wind Turbines’, Aarhus, 2012.Y. A. Çengel and J. M. Cimbala, Mecánica de fluidos: Fundamentos y aplicaciones, 2a ed. México D.F., 2012.LANTOR, ‘Datasheet Soric® SF’, Veenendaal, 2016. [Online]. Available: www.lantorcomposites.com.British Standard, ‘Wind turbines — Part 2: Design requirements for small wind turbines’, 61010-1 © Iec2001, vol. 2006, p. 13, 2006.J. Serna, ‘Promedio de la velocidad maxima del viento anual’, Colombia, 2015. [Online]. Available: http://atlas.ideam.gov.co/visorAtlasVientos.html.IDEAM, ‘Atlas de Viento de Colombia - Interactivo’, 2015. http://atlas.ideam.gov.co/visorAtlasVientos.html.Dassault Systèmes, ‘Abaqus CAE’. Dassault Systèmes, 2018, [Online]. Available: https://www.3ds.com/es/productos-y-servicios/simulia/productos/abaqus/.J. M. Faulstich de Paiva, S. Mayer, and M. Cerqueira, ‘Comparison of Tensile Strength of Different Carbon Fabric Reinforced Epoxy Composites’, Mater. Res., vol. 9, no. 1, pp. 83–89, 2006.Autodesk, ‘Helius Composite’. 2017, [Online]. Available: /www.autodesk.com/products/helius-composite.C. Rodríguez and E. Vergara, ‘Propiedades físicas y mecánicas de la madera de Pinus canariensis crecido en el secano de la Región del Maule, Chile’, Bosque (Valdivia), vol. 29, pp. 192–196, 2008, [Online]. Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-92002008000300002&nrm=iso.R. D. Cook, Malkus, Plesha, and Witt, Concepts and applicatioins of finite element analysis , 4th edition. 2007.D. U. Shah, P. J. Schubel, and M. J. Clifford, ‘Can flax replace E-glass in structural composites? A small wind turbine blade case study’, Compos. Part B Eng., vol. 52, pp. 172–181, Sep. 2013, doi: 10.1016/j.compositesb.2013.04.027.Safilin, ‘COMPOSITES & TECHNOLOGY’, 2022. https://www.safilin.fr/composites/?lang=en.D. Peña, ‘DISEÑO ESTRUTURAL DE UN ÁLABE DE TURBINA EÓLICA DE 5 KW A BASE DE MATERIAL COMPUESTO CON REFUERZO DE FIBRAS NATURALES DE STIPA OBTUSA’, UNIVERSIDAD DE INGENIERÍA Y TECNOLOGÍA UTEC, 2019.ASTM International, ‘ASTM D638 - 14 Standard Test Method for Tensile Properties of Plastics’, ASTM Vol. 08.01 Plast. C1147– D3159, p. 17, 2017, doi: 10.1520/D0638-14.Andercol, ‘Ficha técnica - CRISTALAN® 872’, Medellín, 2019. [Online]. Available: https://andercol.com.co/.Andercol, ‘Ficha técnica - ANDERCOL® 14 1970 RTM’, Medellín, 2020. [Online]. Available: https://andercol.com.co/.J. Aveston, G. A. Cooper, and A. Kelly, ‘Single and multiple fracture.’, in The Prop fibre Compos Conf Proceedings, 1971, pp. 15–26.J. Aveston and A. Kelly, ‘Theory of multiple fracture of fibrous composites’, J. Mater. Sci., vol. 8, no. 3, pp. 352–362, 1973, doi: 10.1007/BF00550155.University of Southampton, ‘µ-VIS: Multidisciplinary, Multiscale, Microtomographic Volume Imaging’, 2022. https://www.southampton.ac.uk/muvis.C. Gómez Hoyos and A. Vázquez, ‘Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application’, Compos. Part B Eng., vol. 43, no. 8, pp. 3120–3130, 2012, doi: https://doi.org/10.1016/j.compositesb.2012.04.027.Andercol, ‘Ficha técnica - CRISTALAN® 847’, 2016. [Online]. Available: https://andercol.com.co/.M. C. A. Teles, G. R. Altoé, P. Amoy Netto, H. Colorado, F. M. Margem, and S. N. Monteiro, ‘Fique Fiber Tensile Elastic Modulus Dependence with Diameter Using the Weibull Statistical Analysis’, Mater. Res., vol. 18, no. suppl 2, pp. 193–199, Oct. 2015, doi: 10.1590/1516-1439.364514.Deben, ‘Insitu Micro Tensile Testing’, 2022. https://deben.co.uk/tensile-testing/µxct/tensile-stages-for-x-ray-ct-tomography/.T. Scalici, G. Pitarresi, D. Badagliacco, V. Fiore, and A. Valenza, ‘Mechanical properties of basalt fiber reinforced composites manufactured with different vacuum assisted impregnation techniques’, Compos. Part B Eng., vol. 104, pp. 35–43, 2016, doi: https://doi.org/10.1016/j.compositesb.2016.08.021.K. Abdurohman, T. Satrio, N. L. Muzayadah, and Teten, ‘A comparison process between hand lay-up, vacuum infusion and vacuum bagging method toward e-glass EW 185/lycal composites’, J. Phys. Conf. Ser., vol. 1130, p. 012018, Nov. 2018, doi: 10.1088/1742-6596/1130/1/012018.Minepro S.A.S, ‘Minepro Safety & Innovation’, 2022. http://mineprotec.com/.M. Barth and M. Carus, ‘Carbon Footprint and Sustainability of Different Natural Fibres for Biocomposites and Insulation Material’, Hürth, 2015. [Online]. Available: http://bio-based.eu/ecology/.Bcomp, ‘Sustainability’, 2021. https://www.bcomp.ch/sustainability/.Royal Academy of EngineeringEstudiantesInvestigadoresMaestrosORIGINAL1017248763.2022.pdf1017248763.2022.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf10887714https://repositorio.unal.edu.co/bitstream/unal/83112/4/1017248763.2022.pdfc228e3323262dabdc3a85d394bb43fc4MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83112/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53unal/83112oai:repositorio.unal.edu.co:unal/831122023-01-25 10:05:52.35Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=