Funciones no-estándar y teoría de distribuciones

Any sequence of real functions (fn) induces a function f = gen (fn) in the non-standard reals R* by taking the ultraproduct πn and lt; R,fn and gt;/F (F a non-principal ultrafilter). This papeP studies the algebra and the caculus of the functions so obtained. Derivatives and integrals are defined as...

Full description

Autores:
Takeuchi, Yu
Tipo de recurso:
Article of journal
Fecha de publicación:
1983
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42840
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42840
http://bdigital.unal.edu.co/32937/
Palabra clave:
Funciones
teoría de distribuciones
modelo no estándar
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Any sequence of real functions (fn) induces a function f = gen (fn) in the non-standard reals R* by taking the ultraproduct πn and lt; R,fn and gt;/F (F a non-principal ultrafilter). This papeP studies the algebra and the caculus of the functions so obtained. Derivatives and integrals are defined as the obvious non-standard extensions of the corresponding real operators. Continuity instead, is defined via the pseudometric induced by R in R* (f is continuos in ∝ ϵ R*  if f(∝ + ε) ≈ f (∝) for infinitesimal  ε) . Finally, it is shown that any Schwartz distribution T is represented by a non-standard function f of this kind, in the sense that for any test function g [Formula Matemática]; where g is the canonical extension of g to R*.