Metodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radar

ilustraciones, diagramas, fotografías, mapas a color, planos

Autores:
Luque Sanabria, Nadia Yurany
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84734
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84734
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Industria de la papa
Agricultura
Tecnología agricola
Potato industry
Agriculture
Agricultural technology
Fusión
Imagen óptica
Imagen radar
bosques aleatorios
Máquina de vector de soporte
Fusion
Optical image
Radar image
Random forests
Support vector machine
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_0d7395bebf5c37fb538c664b63ddb04e
oai_identifier_str oai:repositorio.unal.edu.co:unal/84734
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Metodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radar
dc.title.translated.none.fl_str_mv Methodology to identify and characterize areas planted in potato in the department of Cundinamarca from the integration of optical and radar images.
title Metodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radar
spellingShingle Metodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radar
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Industria de la papa
Agricultura
Tecnología agricola
Potato industry
Agriculture
Agricultural technology
Fusión
Imagen óptica
Imagen radar
bosques aleatorios
Máquina de vector de soporte
Fusion
Optical image
Radar image
Random forests
Support vector machine
title_short Metodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radar
title_full Metodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radar
title_fullStr Metodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radar
title_full_unstemmed Metodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radar
title_sort Metodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radar
dc.creator.fl_str_mv Luque Sanabria, Nadia Yurany
dc.contributor.advisor.none.fl_str_mv Martinez Martinez, Luis Joel
dc.contributor.author.none.fl_str_mv Luque Sanabria, Nadia Yurany
dc.contributor.orcid.spa.fl_str_mv Luque Sanabria, Nadia [https://orcid.org/0000-0002-4108-3231]
dc.contributor.cvlac.spa.fl_str_mv Luque Sanabria, Nadia [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000840661]
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Industria de la papa
Agricultura
Tecnología agricola
Potato industry
Agriculture
Agricultural technology
Fusión
Imagen óptica
Imagen radar
bosques aleatorios
Máquina de vector de soporte
Fusion
Optical image
Radar image
Random forests
Support vector machine
dc.subject.lemb.spa.fl_str_mv Industria de la papa
Agricultura
Tecnología agricola
dc.subject.lemb.eng.fl_str_mv Potato industry
Agriculture
Agricultural technology
dc.subject.proposal.spa.fl_str_mv Fusión
Imagen óptica
Imagen radar
bosques aleatorios
Máquina de vector de soporte
dc.subject.proposal.eng.fl_str_mv Fusion
Optical image
Radar image
Random forests
Support vector machine
description ilustraciones, diagramas, fotografías, mapas a color, planos
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-26T15:43:08Z
dc.date.available.none.fl_str_mv 2023-09-26T15:43:08Z
dc.date.issued.none.fl_str_mv 2023-09
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Dataset
Image
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84734
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84734
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv Agronet (s. f.). (2021). Estadísticas-Área, Producción, Rendimiento y Participación Municipal en el Departamento por Cultivo. [Términos de búsqueda: Departamento: Cundinamarca, cultivo: papa: municipios: Carmen de Carupa, Ubate, Sutatausa, Tausa, Suesca, Choconta, Cucunuba, Villapinzon y Lenguazaque, año: 2021]. Agronet, Minagricultura. Recuperado de https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=4
Adrian, J., Sagan, V., & Maimaitijiang, M. (2021). Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 175(December 2020), 215–235. https://doi.org/10.1016/j.isprsjprs.2021.02.018
Ashourloo, D., Shahrabi, H. S., Azadbakht, M., Rad, A. M., Aghighi, H., & Radiom, S. (2020). A novel method for automatic potato mapping using time series of Sentinel-2 images. Computers and Electronics in Agriculture, 175(May), 105583. https://doi.org/10.1016/j.compag.2020.105583
Bargiel, D. (2017). A new method for crop classification combining time series of radar images and crop phenology information. Remote Sensing of Environment, 198, 369–383. https://doi.org/10.1016/j.rse.2017.06.022
Basukala, A. K., Oldenburg, C., Schellberg, J., Sultanov, M., & Dubovyk, O. (2017). Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches. European Journal of Remote Sensing, 50(1), 187–201. https://doi.org/10.1080/22797254.2017.1308235
Belgiu, M., & Stein, A. (2019). Spatiotemporal image fusion in remote sensing. Remote Sensing, 11(7). https://doi.org/10.3390/rs11070818
Bhandari, A. K., Kumar, A., & Singh, G. K. (2012). Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City. Procedia Technology, 6, 612–621. https://doi.org/10.1016/j.protcy.2012.10.074
Boswell, D. (2002). Introduction to Support Vector Machines. University of California, San Diego. https://doi.org/10.1016/B978-044451378-6/50001-6
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.
Burbidge, R., & Buxton, B. (2001). An introduction to support vector machines for data mining. Keynote Papers, Young OR12, 2–14. http://www.cc.gatech.edu/fac/Charles.Isbell/classes/2008/cs7641_spring/handouts/yor12-introsvm.pdf
Campbell, N. A. (1993). Towards more quantitative extraction of information from remotely sensed data. Advanced Remote Sensing, Conference Proceedings, Held in Sydney, Australia, 2, 29–40.
CCB. (2008). Ubaté. Caracterización económica y empresarial. Camara de Comercio de Bogotá, 50. https://bibliotecadigital.ccb.org.co/bitstream/handle/11520/2889/6233_caracteriz_empresarial_ubate.pdf?sequence=1
Carletto, C., Gourlay, S., & Winters, P. (2015). From guesstimates to GPStimates: Land area measurement and implications for agricultural analysis. Journal of African Economies, 24(5), 593–628. https://doi.org/10.1093/jae/ejv011
CCB. (2008). Caracterización económica y empresarial de la Provincia Almeidas. Camara de Comercio de Bogotá, 50. https://bibliotecadigital.ccb.org.co/bitstream/handle/11520/2874/6217_caracteriz_empresarial_almeidas.pdf?sequence=1&isAllowed=y
Chang, NB., Ba,i K., Imen, S., Chen, CF., Gao, W. (2016). Multi-sensor satellite image fusion and networking for all-weather environmental. IEEE Systems Journal. 12, 1341-1357. DOI: 10.1109/JSYST.2016.2565900.
Chellappa, R., Rosenfeld, A., & Meyers, R. A. (2003). Image Processing. In Encyclopedia of Physical Science and Technology (Third Edition) (pp. 595–630). Academic Press. https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00841-3
Chen, Y., Hou, J., Huang, C., Zhang, Y., & Li, X. (2021). Mapping maize area in heterogeneous agricultural landscape with multi-temporal sentinel-1 and sentinel-2 images based on random forest. Remote Sensing, 13(15), 1–22. https://doi.org/10.3390/rs13152988
Chuvieco, E. (2016). Fundamentals of satellite remote sensing. In Fundamentals of Satellite Remote Sensing. https://doi.org/10.1201/b18954
CIP. (2017). El Centro Internacional de la Papa. Hechos y cifras sobre la papa. Lima (Perú). CIP, 2 P
Daughtry, C. S. T. ., Walthall, C. L. ., Kim, M. S. ., Brown de Colstoun, E. ., & McMurtrey, J. E. (2000). Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sensing of Environment, 79(2), 229–239. https://doi.org/10.3184/174751911X556684
Draghici, S. (2020). Machine learning techniques. In Statistics and Data Analysis for Microarrays Using R and Bioconductor. https://doi.org/10.1201/b11566-34
Dong, J., Dafang, Z., Yaohuan, H., Jinying, F. (2011). Survey of multispectral image fusion techniques in remote sensing applications. In: Zheng Y (ed) Image fusion and its applications. Alcorn State University, USA. DOI: 10.5772/10548.
Du, P., Liu, S., Xia, J., Zhao, Y. (2013). Information fusion techniques for change detection from multi-temporal remote sensing images. Inf Fusion 14(1), 19–27. https://doi.org/10.1016/j.inffus.2012.05.003
Ebrahimy, H., Mirbagheri, B., Matkan, A. A., & Azadbakht, M. (2021). Per-pixel land cover accuracy prediction: A random forest-based method with limited reference sample data. ISPRS Journal of Photogrammetry and Remote Sensing, 172(November 2020), 17–27. https://doi.org/10.1016/j.isprsjprs.2020.11.024
Ehlers, M., Klonus, S., Astrand, PJ. (2008). Quality assessment for multi-sensor multi-date image fusion. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ISPRS, 499–506. https://www.isprs.org/proceedings/XXXVII/congress/4_pdf/89.pdf.
ESA. (2012). Sentinel-1: ESA’s radar observatory mission for GMES operational services. In ESA Special Publication (Vol. 1, Issue 1322). https://sentinel.esa.int/documents/247904/349449/S1_SP-1322_1.pdf
ESA. (2015). Sentinel -2 User Handbook. In ESA Special Publication (Issue 2, pp. 1–64). https://doi.org/10.1021/ie51400a018
FEDEPAPA. (2019). Boletín regional y nacional, 2020. In Boletín del consumidor (Vol. 3, Issue 7).
Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145(February), 311–318. https://doi.org/10.1016/j.compag.2018.01.009
Filipponi, F. (2019). Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11. https://doi.org/10.3390/ecrs-3-06201
Fonseca, L., Namikawa, L., Castejon, E., Carvalho, L., Pinho, C., & Pagamisse, A. (2011). Image Fusion for Remote Sensing Applications. Image Fusion and Its Applications, June. https://doi.org/10.5772/22899
Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201. https://doi.org/https://doi.org/10.1016/S0034-4257(01)00295-4
Foody, G. M., Mathur, A., Sanchez-Hernandez, C., & Boyd, D. S. (2006). Training set size requirements for the classification of a specific class. Remote Sensing of Environment, 104(1), 1–14. https://doi.org/10.1016/j.rse.2006.03.004
Goel, E., & Abhilasha, E. (2017). Random forest: A review. International Journal of Advanced Research in Computer Sci- ence and Software Engineering, 7(1), 251–257 https://doi.org/10.23956/ijarcsse/V7I1/01113
Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
Goodman, R., & Carrara, W. (2005). Synthetic Aperture Radar Algorithms. In Handbook of Image and Video Processing (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-012119792-6/50127-3
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
Govindaraju, V., Arni, S. R., & Rao, C. R. (2023). Handbook of Statistics 48. Deep learning. http://deeplearning.net/.
He, Y., Dong, J., Liao, X., Sun, L., Wang, Z., You, N., Li, Z., & Fu, P. (2021). Examining rice distribution and cropping intensity in a mixed single- and double-cropping region in South China using all available Sentinel 1/2 images. International Journal of Applied Earth Observation and Geoinformation, 101, 102351. https://doi.org/10.1016/j.jag.2021.102351
Huete, A. R. (2004). R Emote S Ensing for. In Environmental Monitoring and Characterization. Elsevier, Inc. https://doi.org/10.1016/B978-0-12-064477-3.50013-8
Ienco, D., Interdonato, R., Gaetano, R., & Ho Tong Minh, D. (2019). Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS Journal of Photogrammetry and Remote Sensing, 158(September), 11–22. https://doi.org/10.1016/j.isprsjprs.2019.09.016
Ishihara, K., Ogawa, T., & Haseyama, M. (2017). Helicobacter Pylori infection detection from gastric X-ray images based on feature fusion and decision fusion. Computers in Biology and Medicine, 84(September 2016), 69–78. https://doi.org/10.1016/j.compbiomed.2017.03.007
Jensen, J. R. (2015). Digital Image processing. A remote sensing perspective.
Johannsen, C. J. ;, & Daughtry, C. S. T. (2009). Chapter 17: Surface Reference Data Collection. In F. G. Warner T, Nellis M (Ed.), The SAGE Handbook of Remote Sensing (Sage Publi, pp. 1–481). https://doi.org/10.4135/9780857021052
Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M. R., Kuemmerle, T., Meyfroidt, P., Mitchard, E. T. A., Reiche, J., Ryan, C. M., & Waske, B. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8(1), 1–23. https://doi.org/10.3390/rs8010070
Karim, S., Tong, G., Li, J., Qadir, A., Farooq, U., & Yu, Y. (2023). Current advances and future perspectives of image fusion: A comprehensive review. Information Fusion, 90(July 2022), 185–217. https://doi.org/10.1016/j.inffus.2022.09.019
Kulkarni, S. C., & Rege, P. P. (2020). Pixel level fusion techniques for SAR and optical images: A review. Information Fusion, 59(November 2019), 13–29. https://doi.org/10.1016/j.inffus.2020.01.003
Kumar, U., Mukhopadhyay, C., Ramachandra. (2009). Fusion of multisensor data: review and comparative analysis. In: 2009 WRI Global Congress on Intelligent Systems. vol 2, 418–422. DOI:10.1109/GCIS.2009.457
Leslie, C. R., Serbina, L. O., & Miller, H. M. (2017). Landsat and agriculture—Case studies on the uses and benefits of Landsat imagery in agricultural monitoring and production. Open-File Report, 27. https://pubs.er.usgs.gov/publication/ofr20171034
Li, D., Song, Z., Quan, C., Xu, X., & Liu, C. (2021). Recent advances in image fusion technology in agriculture. Computers and Electronics in Agriculture, 191(November 2020), 106491. https://doi.org/10.1016/j.compag.2021.106491
Li, J., 2022. spm: Spatial Predictive Modelling. R package version 1.2.2 (2022-05-06) https://search.r-project.org/CRAN/refmans/spm/html/00Index.html
Liu, C. an, Chen, Z. xin, Shao, Y., Chen, J. song, Hasi, T., & Pan, H. zhu. (2019). Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture, 18(3), 506–525. https://doi.org/10.1016/S2095-3119(18)62016-7
Liu, L., & Lei, B. (2018). Can SAR images and optical images transfer with each other? International Geoscience and Remote Sensing Symposium (IGARSS), 2018-July, 7019–7022. https://doi.org/10.1109/IGARSS.2018.8518921
Lozano-Tello, A., Fernández-Sellers, M., Quirós, E., Fragoso-Campón, L., García-Martín, A., Gutiérrez Gallego, J. A., Mateos, C., Trenado, R., & Muñoz, P. (2021). Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control. European Journal of Remote Sensing, 54(1), 1–12. https://doi.org/10.1080/22797254.2020.1858723
Luo, K., Lu, L., Xie, Y., Chen, F., Yin, F., & Li, Q. (2023). Crop type mapping in the central part of the North China Plain using Sentinel-2 time series and machine learning. Computers and Electronics in Agriculture, 205(July 2022), 107577. https://doi.org/10.1016/j.compag.2022.107577
MADR. (2019). Estrategia de ordenamiento de la producción. Cadena productiva de la papa y su industria.
Makode, P., Khan, J. (2017) A review on multi-focus digital image pair fusion using multi-scale image. Wavelet Decom- position 3(1), 575–579
Mansaray, L. R., Kabba, V. T. S., Zhang, L., & Bebeley, H. A. (2021). Optimal multi-temporal Sentinel-1A SAR imagery for paddy rice field discrimination; a recommendation for operational mapping initiatives. Remote Sensing Applications: Society and Environment, 22(April), 100533. https://doi.org/10.1016/j.rsase.2021.100533
Marais Sicre, C., Fieuzal, R., & Baup, F. (2020). Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces. International Journal of Applied Earth Observation and Geoinformation, 84(September 2018), 101972. https://doi.org/10.1016/j.jag.2019.101972
McNairn, H., Champagne, C., Shang, J., Holmstrom, D., & Reichert, G. (2009). Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 434–449. https://doi.org/10.1016/j.isprsjprs.2008.07.006
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2023). Package ‘e1071.’
Mittal, M. (2015). Hybrid image fusion using curvelet and wavelet transform using PCA and SVM. Int J Sci Emerg Technol Latest Trends 22(1), 28–35. DOI: 10.5120/21607-4639.
Mohammadi, V., & Minaei, S. (2019). Artificial Intelligence in the Production Process. In Engineering Tools in the Beverage Industry. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815258-4.00002-0
Mucsia, L., & Bui, D. H. (2023). Evaluating the performance of multi-temporal synthetic-aperture radar imagery in land-cover mapping using a forward stepwise selection approach. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2023.100975
Ng, A. (2008). Part V Support Vector Machines. CS229 Lecture Notes. https://doi.org/10.1016/j.aca.2011.07.027
Pantazi, X. E., Moshou, D., & Bochtis, D. (2020). Artificial intelligence in agriculture. In Intelligent Data Mining and Fusion Systems in Agriculture. https://doi.org/10.1016/b978-0-12-814391-9.00002-9
Panwar, SA., Malwadkar, S. (2015). A review: image fusion techniques for multisensor images. Int J Adv Res Electr, Electr Instrum Eng. 4(1), 406–410. Doi: 10.15662/ijareeie.2015.0401049.
Paramanandham, N., Rajendiran, K. (2018). Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications. Infrared Phys Technol 88, 13–22.
Piella, G. (2003). A general framework for multiresolution image fusion: From pixels to regions. Information Fusion, 4(4), 259–280. https://doi.org/10.1016/S1566-2535(03)00046-0
Pohl, C., & Van Genderen, J. L. (1998). Review article Multisensor image fusion in remote sensing: Concepts, methods and applications. In International Journal of Remote Sensing (Vol. 19, Issue 5). https://doi.org/10.1080/014311698215748
Pott, L. P., Amado, T. J. C., Schwalbert, R. A., Corassa, G. M., & Ciampitti, I. A. (2021). Satellite-based data fusion crop type classification and mapping in Rio Grande do Sul, Brazil. ISPRS Journal of Photogrammetry and Remote Sensing, 176(April), 196–210. https://doi.org/10.1016/j.isprsjprs.2021.04.015
Qi, J., Marsett, R., Heilman, P., Biedenbender, S., Moran, S., Goodrich, D., & Weltz, M. (2002). RANGES improves satellite-based information and land cover assessments in Southwest United States. Eos, 83(51). https://doi.org/10.1029/2002EO000411
Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, 7(1), 153–168. https://doi.org/10.3390/rs70100153
Rad, A. M., Ashourloo, D., Shahrabi, H. S., & Nematollahi, H. (2019). Developing an Automatic Phenology-Based Algorithm for Rice Detection Using Sentinel-2 Time-Series Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(5), 1471–1481. https://doi.org/10.1109/JSTARS.2019.2906684
Rajah, P., Odindi, J., & Mutanga, O. (2018). Feature level image fusion of optical imagery and Synthetic Aperture Radar (SAR) for invasive alien plant species detection and mapping. Remote Sensing Applications: Society and Environment, 10(November 2017), 198–208. https://doi.org/10.1016/j.rsase.2018.04.007
Revathy, R., Setia, R., Jain, S., Das, S., Gupta, S., Pateriya, B. (2023). Classification of Potato in Indian Punjab Using Time-Series Sentinel-2 Images. In: Kumar, S., Setia, R., Singh, K. (eds) Artificial Intelligence and Machine Learning in Satellite Data Processing and Services. Lecture Notes in Electrical Engineering, vol 970. Springer, Singapore. https://doi.org/10.1007/978-981-19-7698-8_20
Roy, K., Kar, S., & Das, R. N. (2015). Selected Statistical Methods in QSAR. In Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment. https://doi.org/10.1016/b978-0-12-801505-6.00006-5
Sacks, W. J., Deryng, D., Foley, J. A., & Ramankutty, N. (2010). Crop planting dates: An analysis of global patterns. Global Ecology and Biogeography, 19(5), 607–620. https://doi.org/10.1111/j.1466-8238.2010.00551.x
San, & Suzen. (2010). Evaluation of Different Atmospheric Correction Algorithms for Eo-1 Hyperion Imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII, 392–397.
Schowengerdt, R. A. (2006). Chapter 8 - Image Registration and Fusion. Remote Sensing. https://doi.org/10.1016/B978-0-12-369407-2.50011-5
Schumann, G. J. P., & Moller, D. K. (2015). Microwave remote sensing of flood inundation. Physics and Chemistry of the Earth, 83–84, 84–95. https://doi.org/10.1016/j.pce.2015.05.002
Singha, C., Swain, K. C., & Jayasuriya, H. (2022). Growth and yield monitoring of potato crop using Sentinel-1 data through cloud computing. Arabian Journal of Geosciences, 15(19). https://doi.org/10.1007/s12517-022-10844-6
Singh, Sanjay, & Tiwari, K. C. (2021). Exploring the optimal combination of image fusion and classification techniques. Remote Sensing Applications: Society and Environment, 24(September), 100642. https://doi.org/10.1016/j.rsase.2021.100642
Singh, Simrandeep, Singh, H., Bueno, G., Deniz, O., Singh, S., Monga, H., Hrisheekesha, P. N., & Pedraza, A. (2023). A review of image fusion: Methods, applications and performance metrics. Digital Signal Processing: A Review Journal, 137, 104020. https://doi.org/10.1016/j.dsp.2023.104020
Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batič, M., Frantz, D., Gascon, F., Gómez-Chova, L., Hagolle, O., López-Puigdollers, D., Louis, J., Lubej, M., Mateo-García, G., Osman, J., Peressutti, D., Pflug, B., Puc, J., Richter, R., … Žust, L. (2022). Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sensing of Environment, 274(September 2021). https://doi.org/10.1016/j.rse.2022.112990
Small, D. (2011). Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 49(8), 3081–3093. https://doi.org/10.1109/TGRS.2011.2120616
Sonobe, R., Yamaya, Y., Tani, H., Wang, X., Kobayashi, N., & Mochizuki, K. ichiro. (2017). Assessing the suitability of data from Sentinel-1A and 2A for crop classification. GIScience and Remote Sensing, 54(6), 918–938. https://doi.org/10.1080/15481603.2017.1351149
Stankiewicz, K. A. (2006). The Efficiency of Crop Recognition on ENVISAT ASAR Images in Two Growing Seasons. 44(April), 806–814.
Stehman, S, & Czaplewski, R. L. (1998). Design and Analysis for Thematic Map Accuracy Assessment - an application of satellite imagery. Remote Sensing of Environment, 64(January), 331–344. http://www.ingentaconnect.com/content/els/00344257/1998/00000064/00000003/art00010%5Cnhttp://dx.doi.org/10.1016/S0034-4257(98)00010-8
Stehman, Stephen V. (2009). Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing, 30(20), 5243–5272. https://doi.org/10.1080/01431160903131000
Steinhausen, M. J., Wagner, P. D., Narasimhan, B., & Waske, B. (2018). Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. International Journal of Applied Earth Observation and Geoinformation, 73(April), 595–604. https://doi.org/10.1016/j.jag.2018.08.011
Sujud, L., Jaafar, H., Haj Hassan, M. A., & Zurayk, R. (2021). Cannabis detection from optical and RADAR data fusion: A comparative analysis of the SMILE machine learning algorithms in Google Earth Engine. Remote Sensing Applications: Society and Environment, 24, 100639. https://doi.org/10.1016/j.rsase.2021.100639
Sun, C., Bian, Y., Zhou, T., & Pan, J. (2019). Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors (Switzerland), 19(10), 1–23. https://doi.org/10.3390/s19102401
Sun, Y., Li, L., Zheng, L., Hu, J., Li, W., Jiang, Y., & Yan, C. (2019). Image classification base on PCA of multi-view deep representation. Journal of Visual Communication and Image Representation, 62, 253–258. https://doi.org/10.1016/j.jvcir.2019.05.016
Suthaharan, S. (2016). A Cognitive Random Forest: An Intra- and Intercognitive Computing for Big Data Classification Under Cune Condition. In Handbook of Statistics (1st ed., Vol. 35). Elsevier B.V. https://doi.org/10.1016/bs.host.2016.07.006
Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192. https://doi.org/10.1016/j.aci.2018.08.003
Tufail, R., Ahmad, A., Javed, M. A., & Ahmad, S. R. (2021). A machine learning approach for accurate crop type mapping using combined SAR and optical time series data. Advances in Space Research, xxxx. https://doi.org/10.1016/j.asr.2021.09.019
UPRA. (2022). Análisis situacional de la cadena productiva de la papa en Colombia.
Van Tricht, K., Gobin, A., Gilliams, S., & Piccard, I. (2018). Synergistic use of radar sentinel-1 and optical sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sensing, 10(10), 1–22. https://doi.org/10.3390/rs10101642
Vapnik, V. (1998). of Function Estimation. 55–85. https://doi.org/10.1007/978-1-4615-5703-6_
Veerabhadraswamy, N., Devagiri, G. M., & Khaple, A. K. (2021). Fusion of complementary information of SAR and optical data for forest cover mapping using random forest algorithm. Current Science, 120(1), 193–199. https://doi.org/10.18520/cs/v120/i1/193-199
Venables, W. N., Smith, D. M., & Core Team, R. (2013). An Introduction to R. Practical Graph Mining with R, 3, 27–52. https://doi.org/10.1201/b15352-7
Vijayaraj, V., Younan, N. H., & O’Hara, C. G. (2006). Concepts of image fusion in remote sensing applications. International Geoscience and Remote Sensing Symposium (IGARSS), 3781–3784. https://doi.org/10.1109/IGARSS.2006.973
Wang, G., Li, P., Li, Z., Liang, C., & Wang, H. (2022). Coastal subsidence detection and characterization caused by brine mining over the Yellow River Delta using time series InSAR and PCA. International Journal of Applied Earth Observation and Geoinformation, 114(August), 103077. https://doi.org/10.1016/j.jag.2022.103077
Wang, L., Ma, H., Li, J., Gao, Y., Fan, L., Yang, Z., Yang, Y., & Wang, C. (2022). An automated extraction of small- and middle-sized rice fields under complex terrain based on SAR time series: A case study of Chongqing. Computers and Electronics in Agriculture, 200(November 2021), 107232. https://doi.org/10.1016/j.compag.2022.107232
Wang, Q., Shen, Y., & Jin, J. (2008). Performance evaluation of image fusion techniques. In Image Fusion. Elsevier Ltd. https://doi.org/10.1016/b978-0-12-372529-5.00017-2
Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 0–39. https://doi.org/10.1016/j.rse.2019.111402
Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1). https://doi.org/10.18637/jss.v077.i01
Xun, L., Zhang, J., Cao, D., Yang, S., & Yao, F. (2021). A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 181(August), 148–166. https://doi.org/10.1016/j.isprsjprs.2021.08.021
Yee, L. C., & Wei, Y. C. (2012). Current Modeling Methods Used in QSAR/QSPR. Statistical Modelling of Molecular Descriptors in QSAR/QSPR, 2, 1–31. https://doi.org/10.1002/9783527645121.ch1
Yésou, H., Besnus, Y., Rolet, J., Pion, J. C., & Aing, A. (1993). Merging seasat and SPOT imagery for the study of geological structures in a temperate agricultural region. Remote Sensing of Environment, 43(3), 265–279. https://doi.org/10.1016/0034-4257(93)90070-E
Zhang, J., Li, M., Feng, Y., & Yang, C. (2020). Robotic grasp detection based on image processing and random forest. Multimedia Tools and Applications, 79(3–4), 2427–2446. https://doi.org/10.1007/s11042-019-08302-9
Zhang, H., Kang, J., Xu, X., & Zhang, L. (2020). Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China. Computers and Electronics in Agriculture, 176(February), 105618. https://doi.org/10.1016/j.compag.2020.105618
Zhao, J., Yan, H., & Huang, L. (2023). A joint method of spatial–spectral features and BP neural network for hyperspectral image classification. Egyptian Journal of Remote Sensing and Space Science, 26(1), 107–115. https://doi.org/10.1016/j.ejrs.2022.12.012
Zheng, B., Myint, S., Thenkabail, P., Aggarwal R. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103-112, ISSN 1569-8432. https://doi.org/10.1016/j.jag.2014.07.002.
Zitová, B., & Flusser, J. (2003). Image registration methods: A survey. Image and Vision Computing, 21(11), 977–1000. https://doi.org/10.1016/S0262-8856(03)00137-9
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 83 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.coverage.region.none.fl_str_mv Cundinamarca
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Geomática
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84734/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84734/2/53115304.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84734/3/53115304.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
206833526d2be797b742aa59e59c8cdd
daf8b1cfd0ef63bfc760a22e3192ef1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089307740176384
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martinez Martinez, Luis Joel877b052e1ab0d38aa1ac3657f41c949eLuque Sanabria, Nadia Yurany243051a4cce7b039c8ea49b357d2e1c7Luque Sanabria, Nadia [https://orcid.org/0000-0002-4108-3231]Luque Sanabria, Nadia [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000840661]2023-09-26T15:43:08Z2023-09-26T15:43:08Z2023-09https://repositorio.unal.edu.co/handle/unal/84734Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, mapas a color, planosIdentificar áreas cultivadas en papa en Colombia permitiría programar mejor los periodos de siembra, disminuyendo la sobreoferta que reduce el precio a los productores. Las imágenes ópticas permiten identificar áreas de cultivo, pero la presencia de nubes es un factor limitante que se puede contrarrestar a través del método de fusión con imágenes radar, que complementa la información faltante. Con base en lo anterior, se desarrolló una metodología para identificar y caracterizar áreas sembradas en papa en Cundinamarca, integrando imágenes Sentinel 1 y 2. Como datos de referencia, se georreferenciaron lotes de papa del primer semestre de 2022 en Villapinzón y Lenguazaque. Se procesaron imágenes de Sentinel 1, Sentinel 2 y Sentinel 2 más índices espectrales de vegetación. Se realizó la fusión por análisis de componentes principales (ACP) y se construyó una imagen multitemporal con los seis primeros componentes de las imágenes seleccionadas. Se aplicaron algoritmos de bosques aleatorios (BA) y máquinas de vector de soporte (MVS). La evaluación de exactitud mejoró en la fusión con ACP, pues el algoritmo MVS aumento 4.7% y BA 7.3% con respecto a la exactitud global hallada con la imagen multitemporal de radar. Con respecto a lo encontrado con las imagenes multitemporales de imágenes ópticas sin incluir e incluyendo índices espectrales, no se encuentra diferencia en la exactitud global de BA, que fue del 96% para las tres imágenes. Para la clase papa, la métrica de exactitud F1 estuvo entre 89 y 92%. El área obtenida para el cultivo de papa en el primer semestre de 2022 con la imagen multitemporal por fusión de ACP y algoritmo BA, fue de 13.202 ha. Este valor es coherente y cercano a la realidad si se compara con lo obtenido en 2021 para el área de estudio (27.593 ha/año; aproximadamente 13.797 ha/semestre). (Texto tomado de la fuente)Identifying cultivated areas with potato crops in Colombia would allow better programming of planting periods, reducing the oversupply that reduces the price to producers. Optical images make it possible to identify croping areas, but clouds are a barrier. This can be counteracted through the fusion method with radar images, which complements the missing information. Based on this, a methodology is presented to identify and characterize areas planted with potatoes in Cundinamarca, integrating Sentinel 1 and 2 images. As reference data, potato lots from the first semester of 2022 in Villapinzon and Lenguazaque were georeferenced. Sentinel 1 and 2 images were processed, including vegetation indices. Fusion was performed by principal component analysis (PCA) and a multitemporal image was constructed with the first six components of the selected images. Random forest (RF) and support vector machine (SVM) algorithms were applied. The accuracy evaluation improved in the fusion with PCA, since the SVM algorithm increased 4.7% and RF 7.3% with respect to the global accuracy found with the multitemporal radar image. With respect to what was found with the multitemporal images of optical images without including and including spectral indices, no difference was found in the global accuracy of RF, which was 96% for the three images. For the potato class, the F1 accuracy metric was between 89 and 92%. Area obtained for potato cultivation in the first semester of 2022, with the multitemporal image by PCA fusion and RF algorithm was 13,202 ha. This value is coherent and close to reality when compared to what was obtained in 2021 for the study area (27,593 ha/year; approximately 13,797 ha/semester).MaestríaGeoinformación para el uso sostenible de los recursos naturalesxv, 83 páginasapplication/pdfUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresIndustria de la papaAgriculturaTecnología agricolaPotato industryAgricultureAgricultural technologyFusiónImagen ópticaImagen radarbosques aleatoriosMáquina de vector de soporteFusionOptical imageRadar imageRandom forestsSupport vector machineMetodología para identificar y caracterizar áreas sembradas en papa en el departamento de Cundinamarca a partir de la integración de imágenes ópticas y de radarMethodology to identify and characterize areas planted in potato in the department of Cundinamarca from the integration of optical and radar images.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDatasetImageTexthttp://purl.org/redcol/resource_type/TMColombiaCundinamarcaAgronet (s. f.). (2021). Estadísticas-Área, Producción, Rendimiento y Participación Municipal en el Departamento por Cultivo. [Términos de búsqueda: Departamento: Cundinamarca, cultivo: papa: municipios: Carmen de Carupa, Ubate, Sutatausa, Tausa, Suesca, Choconta, Cucunuba, Villapinzon y Lenguazaque, año: 2021]. Agronet, Minagricultura. Recuperado de https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=4Adrian, J., Sagan, V., & Maimaitijiang, M. (2021). Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 175(December 2020), 215–235. https://doi.org/10.1016/j.isprsjprs.2021.02.018Ashourloo, D., Shahrabi, H. S., Azadbakht, M., Rad, A. M., Aghighi, H., & Radiom, S. (2020). A novel method for automatic potato mapping using time series of Sentinel-2 images. Computers and Electronics in Agriculture, 175(May), 105583. https://doi.org/10.1016/j.compag.2020.105583Bargiel, D. (2017). A new method for crop classification combining time series of radar images and crop phenology information. Remote Sensing of Environment, 198, 369–383. https://doi.org/10.1016/j.rse.2017.06.022Basukala, A. K., Oldenburg, C., Schellberg, J., Sultanov, M., & Dubovyk, O. (2017). Towards improved land use mapping of irrigated croplands: performance assessment of different image classification algorithms and approaches. European Journal of Remote Sensing, 50(1), 187–201. https://doi.org/10.1080/22797254.2017.1308235Belgiu, M., & Stein, A. (2019). Spatiotemporal image fusion in remote sensing. Remote Sensing, 11(7). https://doi.org/10.3390/rs11070818Bhandari, A. K., Kumar, A., & Singh, G. K. (2012). Feature Extraction using Normalized Difference Vegetation Index (NDVI): A Case Study of Jabalpur City. Procedia Technology, 6, 612–621. https://doi.org/10.1016/j.protcy.2012.10.074Boswell, D. (2002). Introduction to Support Vector Machines. University of California, San Diego. https://doi.org/10.1016/B978-044451378-6/50001-6Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.Burbidge, R., & Buxton, B. (2001). An introduction to support vector machines for data mining. Keynote Papers, Young OR12, 2–14. http://www.cc.gatech.edu/fac/Charles.Isbell/classes/2008/cs7641_spring/handouts/yor12-introsvm.pdfCampbell, N. A. (1993). Towards more quantitative extraction of information from remotely sensed data. Advanced Remote Sensing, Conference Proceedings, Held in Sydney, Australia, 2, 29–40.CCB. (2008). Ubaté. Caracterización económica y empresarial. Camara de Comercio de Bogotá, 50. https://bibliotecadigital.ccb.org.co/bitstream/handle/11520/2889/6233_caracteriz_empresarial_ubate.pdf?sequence=1Carletto, C., Gourlay, S., & Winters, P. (2015). From guesstimates to GPStimates: Land area measurement and implications for agricultural analysis. Journal of African Economies, 24(5), 593–628. https://doi.org/10.1093/jae/ejv011CCB. (2008). Caracterización económica y empresarial de la Provincia Almeidas. Camara de Comercio de Bogotá, 50. https://bibliotecadigital.ccb.org.co/bitstream/handle/11520/2874/6217_caracteriz_empresarial_almeidas.pdf?sequence=1&isAllowed=yChang, NB., Ba,i K., Imen, S., Chen, CF., Gao, W. (2016). Multi-sensor satellite image fusion and networking for all-weather environmental. IEEE Systems Journal. 12, 1341-1357. DOI: 10.1109/JSYST.2016.2565900.Chellappa, R., Rosenfeld, A., & Meyers, R. A. (2003). Image Processing. In Encyclopedia of Physical Science and Technology (Third Edition) (pp. 595–630). Academic Press. https://doi.org/https://doi.org/10.1016/B0-12-227410-5/00841-3Chen, Y., Hou, J., Huang, C., Zhang, Y., & Li, X. (2021). Mapping maize area in heterogeneous agricultural landscape with multi-temporal sentinel-1 and sentinel-2 images based on random forest. Remote Sensing, 13(15), 1–22. https://doi.org/10.3390/rs13152988Chuvieco, E. (2016). Fundamentals of satellite remote sensing. In Fundamentals of Satellite Remote Sensing. https://doi.org/10.1201/b18954CIP. (2017). El Centro Internacional de la Papa. Hechos y cifras sobre la papa. Lima (Perú). CIP, 2 PDaughtry, C. S. T. ., Walthall, C. L. ., Kim, M. S. ., Brown de Colstoun, E. ., & McMurtrey, J. E. (2000). Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sensing of Environment, 79(2), 229–239. https://doi.org/10.3184/174751911X556684Draghici, S. (2020). Machine learning techniques. In Statistics and Data Analysis for Microarrays Using R and Bioconductor. https://doi.org/10.1201/b11566-34Dong, J., Dafang, Z., Yaohuan, H., Jinying, F. (2011). Survey of multispectral image fusion techniques in remote sensing applications. In: Zheng Y (ed) Image fusion and its applications. Alcorn State University, USA. DOI: 10.5772/10548.Du, P., Liu, S., Xia, J., Zhao, Y. (2013). Information fusion techniques for change detection from multi-temporal remote sensing images. Inf Fusion 14(1), 19–27. https://doi.org/10.1016/j.inffus.2012.05.003Ebrahimy, H., Mirbagheri, B., Matkan, A. A., & Azadbakht, M. (2021). Per-pixel land cover accuracy prediction: A random forest-based method with limited reference sample data. ISPRS Journal of Photogrammetry and Remote Sensing, 172(November 2020), 17–27. https://doi.org/10.1016/j.isprsjprs.2020.11.024Ehlers, M., Klonus, S., Astrand, PJ. (2008). Quality assessment for multi-sensor multi-date image fusion. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ISPRS, 499–506. https://www.isprs.org/proceedings/XXXVII/congress/4_pdf/89.pdf.ESA. (2012). Sentinel-1: ESA’s radar observatory mission for GMES operational services. In ESA Special Publication (Vol. 1, Issue 1322). https://sentinel.esa.int/documents/247904/349449/S1_SP-1322_1.pdfESA. (2015). Sentinel -2 User Handbook. In ESA Special Publication (Issue 2, pp. 1–64). https://doi.org/10.1021/ie51400a018FEDEPAPA. (2019). Boletín regional y nacional, 2020. In Boletín del consumidor (Vol. 3, Issue 7).Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145(February), 311–318. https://doi.org/10.1016/j.compag.2018.01.009Filipponi, F. (2019). Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11. https://doi.org/10.3390/ecrs-3-06201Fonseca, L., Namikawa, L., Castejon, E., Carvalho, L., Pinho, C., & Pagamisse, A. (2011). Image Fusion for Remote Sensing Applications. Image Fusion and Its Applications, June. https://doi.org/10.5772/22899Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201. https://doi.org/https://doi.org/10.1016/S0034-4257(01)00295-4Foody, G. M., Mathur, A., Sanchez-Hernandez, C., & Boyd, D. S. (2006). Training set size requirements for the classification of a specific class. Remote Sensing of Environment, 104(1), 1–14. https://doi.org/10.1016/j.rse.2006.03.004Goel, E., & Abhilasha, E. (2017). Random forest: A review. International Journal of Advanced Research in Computer Sci- ence and Software Engineering, 7(1), 251–257 https://doi.org/10.23956/ijarcsse/V7I1/01113Gómez, C., White, J. C., & Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008Goodman, R., & Carrara, W. (2005). Synthetic Aperture Radar Algorithms. In Handbook of Image and Video Processing (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-012119792-6/50127-3Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031Govindaraju, V., Arni, S. R., & Rao, C. R. (2023). Handbook of Statistics 48. Deep learning. http://deeplearning.net/.He, Y., Dong, J., Liao, X., Sun, L., Wang, Z., You, N., Li, Z., & Fu, P. (2021). Examining rice distribution and cropping intensity in a mixed single- and double-cropping region in South China using all available Sentinel 1/2 images. International Journal of Applied Earth Observation and Geoinformation, 101, 102351. https://doi.org/10.1016/j.jag.2021.102351Huete, A. R. (2004). R Emote S Ensing for. In Environmental Monitoring and Characterization. Elsevier, Inc. https://doi.org/10.1016/B978-0-12-064477-3.50013-8Ienco, D., Interdonato, R., Gaetano, R., & Ho Tong Minh, D. (2019). Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS Journal of Photogrammetry and Remote Sensing, 158(September), 11–22. https://doi.org/10.1016/j.isprsjprs.2019.09.016Ishihara, K., Ogawa, T., & Haseyama, M. (2017). Helicobacter Pylori infection detection from gastric X-ray images based on feature fusion and decision fusion. Computers in Biology and Medicine, 84(September 2016), 69–78. https://doi.org/10.1016/j.compbiomed.2017.03.007Jensen, J. R. (2015). Digital Image processing. A remote sensing perspective.Johannsen, C. J. ;, & Daughtry, C. S. T. (2009). Chapter 17: Surface Reference Data Collection. In F. G. Warner T, Nellis M (Ed.), The SAGE Handbook of Remote Sensing (Sage Publi, pp. 1–481). https://doi.org/10.4135/9780857021052Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M. R., Kuemmerle, T., Meyfroidt, P., Mitchard, E. T. A., Reiche, J., Ryan, C. M., & Waske, B. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8(1), 1–23. https://doi.org/10.3390/rs8010070Karim, S., Tong, G., Li, J., Qadir, A., Farooq, U., & Yu, Y. (2023). Current advances and future perspectives of image fusion: A comprehensive review. Information Fusion, 90(July 2022), 185–217. https://doi.org/10.1016/j.inffus.2022.09.019Kulkarni, S. C., & Rege, P. P. (2020). Pixel level fusion techniques for SAR and optical images: A review. Information Fusion, 59(November 2019), 13–29. https://doi.org/10.1016/j.inffus.2020.01.003Kumar, U., Mukhopadhyay, C., Ramachandra. (2009). Fusion of multisensor data: review and comparative analysis. In: 2009 WRI Global Congress on Intelligent Systems. vol 2, 418–422. DOI:10.1109/GCIS.2009.457Leslie, C. R., Serbina, L. O., & Miller, H. M. (2017). Landsat and agriculture—Case studies on the uses and benefits of Landsat imagery in agricultural monitoring and production. Open-File Report, 27. https://pubs.er.usgs.gov/publication/ofr20171034Li, D., Song, Z., Quan, C., Xu, X., & Liu, C. (2021). Recent advances in image fusion technology in agriculture. Computers and Electronics in Agriculture, 191(November 2020), 106491. https://doi.org/10.1016/j.compag.2021.106491Li, J., 2022. spm: Spatial Predictive Modelling. R package version 1.2.2 (2022-05-06) https://search.r-project.org/CRAN/refmans/spm/html/00Index.htmlLiu, C. an, Chen, Z. xin, Shao, Y., Chen, J. song, Hasi, T., & Pan, H. zhu. (2019). Research advances of SAR remote sensing for agriculture applications: A review. Journal of Integrative Agriculture, 18(3), 506–525. https://doi.org/10.1016/S2095-3119(18)62016-7Liu, L., & Lei, B. (2018). Can SAR images and optical images transfer with each other? International Geoscience and Remote Sensing Symposium (IGARSS), 2018-July, 7019–7022. https://doi.org/10.1109/IGARSS.2018.8518921Lozano-Tello, A., Fernández-Sellers, M., Quirós, E., Fragoso-Campón, L., García-Martín, A., Gutiérrez Gallego, J. A., Mateos, C., Trenado, R., & Muñoz, P. (2021). Crop identification by massive processing of multiannual satellite imagery for EU common agriculture policy subsidy control. European Journal of Remote Sensing, 54(1), 1–12. https://doi.org/10.1080/22797254.2020.1858723Luo, K., Lu, L., Xie, Y., Chen, F., Yin, F., & Li, Q. (2023). Crop type mapping in the central part of the North China Plain using Sentinel-2 time series and machine learning. Computers and Electronics in Agriculture, 205(July 2022), 107577. https://doi.org/10.1016/j.compag.2022.107577MADR. (2019). Estrategia de ordenamiento de la producción. Cadena productiva de la papa y su industria.Makode, P., Khan, J. (2017) A review on multi-focus digital image pair fusion using multi-scale image. Wavelet Decom- position 3(1), 575–579Mansaray, L. R., Kabba, V. T. S., Zhang, L., & Bebeley, H. A. (2021). Optimal multi-temporal Sentinel-1A SAR imagery for paddy rice field discrimination; a recommendation for operational mapping initiatives. Remote Sensing Applications: Society and Environment, 22(April), 100533. https://doi.org/10.1016/j.rsase.2021.100533Marais Sicre, C., Fieuzal, R., & Baup, F. (2020). Contribution of multispectral (optical and radar) satellite images to the classification of agricultural surfaces. International Journal of Applied Earth Observation and Geoinformation, 84(September 2018), 101972. https://doi.org/10.1016/j.jag.2019.101972McNairn, H., Champagne, C., Shang, J., Holmstrom, D., & Reichert, G. (2009). Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 434–449. https://doi.org/10.1016/j.isprsjprs.2008.07.006Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2023). Package ‘e1071.’Mittal, M. (2015). Hybrid image fusion using curvelet and wavelet transform using PCA and SVM. Int J Sci Emerg Technol Latest Trends 22(1), 28–35. DOI: 10.5120/21607-4639.Mohammadi, V., & Minaei, S. (2019). Artificial Intelligence in the Production Process. In Engineering Tools in the Beverage Industry. Elsevier Inc. https://doi.org/10.1016/b978-0-12-815258-4.00002-0Mucsia, L., & Bui, D. H. (2023). Evaluating the performance of multi-temporal synthetic-aperture radar imagery in land-cover mapping using a forward stepwise selection approach. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2023.100975Ng, A. (2008). Part V Support Vector Machines. CS229 Lecture Notes. https://doi.org/10.1016/j.aca.2011.07.027Pantazi, X. E., Moshou, D., & Bochtis, D. (2020). Artificial intelligence in agriculture. In Intelligent Data Mining and Fusion Systems in Agriculture. https://doi.org/10.1016/b978-0-12-814391-9.00002-9Panwar, SA., Malwadkar, S. (2015). A review: image fusion techniques for multisensor images. Int J Adv Res Electr, Electr Instrum Eng. 4(1), 406–410. Doi: 10.15662/ijareeie.2015.0401049.Paramanandham, N., Rajendiran, K. (2018). Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications. Infrared Phys Technol 88, 13–22.Piella, G. (2003). A general framework for multiresolution image fusion: From pixels to regions. Information Fusion, 4(4), 259–280. https://doi.org/10.1016/S1566-2535(03)00046-0Pohl, C., & Van Genderen, J. L. (1998). Review article Multisensor image fusion in remote sensing: Concepts, methods and applications. In International Journal of Remote Sensing (Vol. 19, Issue 5). https://doi.org/10.1080/014311698215748Pott, L. P., Amado, T. J. C., Schwalbert, R. A., Corassa, G. M., & Ciampitti, I. A. (2021). Satellite-based data fusion crop type classification and mapping in Rio Grande do Sul, Brazil. ISPRS Journal of Photogrammetry and Remote Sensing, 176(April), 196–210. https://doi.org/10.1016/j.isprsjprs.2021.04.015Qi, J., Marsett, R., Heilman, P., Biedenbender, S., Moran, S., Goodrich, D., & Weltz, M. (2002). RANGES improves satellite-based information and land cover assessments in Southwest United States. Eos, 83(51). https://doi.org/10.1029/2002EO000411Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2015). Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sensing, 7(1), 153–168. https://doi.org/10.3390/rs70100153Rad, A. M., Ashourloo, D., Shahrabi, H. S., & Nematollahi, H. (2019). Developing an Automatic Phenology-Based Algorithm for Rice Detection Using Sentinel-2 Time-Series Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(5), 1471–1481. https://doi.org/10.1109/JSTARS.2019.2906684Rajah, P., Odindi, J., & Mutanga, O. (2018). Feature level image fusion of optical imagery and Synthetic Aperture Radar (SAR) for invasive alien plant species detection and mapping. Remote Sensing Applications: Society and Environment, 10(November 2017), 198–208. https://doi.org/10.1016/j.rsase.2018.04.007Revathy, R., Setia, R., Jain, S., Das, S., Gupta, S., Pateriya, B. (2023). Classification of Potato in Indian Punjab Using Time-Series Sentinel-2 Images. In: Kumar, S., Setia, R., Singh, K. (eds) Artificial Intelligence and Machine Learning in Satellite Data Processing and Services. Lecture Notes in Electrical Engineering, vol 970. Springer, Singapore. https://doi.org/10.1007/978-981-19-7698-8_20Roy, K., Kar, S., & Das, R. N. (2015). Selected Statistical Methods in QSAR. In Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment. https://doi.org/10.1016/b978-0-12-801505-6.00006-5Sacks, W. J., Deryng, D., Foley, J. A., & Ramankutty, N. (2010). Crop planting dates: An analysis of global patterns. Global Ecology and Biogeography, 19(5), 607–620. https://doi.org/10.1111/j.1466-8238.2010.00551.xSan, & Suzen. (2010). Evaluation of Different Atmospheric Correction Algorithms for Eo-1 Hyperion Imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII, 392–397.Schowengerdt, R. A. (2006). Chapter 8 - Image Registration and Fusion. Remote Sensing. https://doi.org/10.1016/B978-0-12-369407-2.50011-5Schumann, G. J. P., & Moller, D. K. (2015). Microwave remote sensing of flood inundation. Physics and Chemistry of the Earth, 83–84, 84–95. https://doi.org/10.1016/j.pce.2015.05.002Singha, C., Swain, K. C., & Jayasuriya, H. (2022). Growth and yield monitoring of potato crop using Sentinel-1 data through cloud computing. Arabian Journal of Geosciences, 15(19). https://doi.org/10.1007/s12517-022-10844-6Singh, Sanjay, & Tiwari, K. C. (2021). Exploring the optimal combination of image fusion and classification techniques. Remote Sensing Applications: Society and Environment, 24(September), 100642. https://doi.org/10.1016/j.rsase.2021.100642Singh, Simrandeep, Singh, H., Bueno, G., Deniz, O., Singh, S., Monga, H., Hrisheekesha, P. N., & Pedraza, A. (2023). A review of image fusion: Methods, applications and performance metrics. Digital Signal Processing: A Review Journal, 137, 104020. https://doi.org/10.1016/j.dsp.2023.104020Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batič, M., Frantz, D., Gascon, F., Gómez-Chova, L., Hagolle, O., López-Puigdollers, D., Louis, J., Lubej, M., Mateo-García, G., Osman, J., Peressutti, D., Pflug, B., Puc, J., Richter, R., … Žust, L. (2022). Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sensing of Environment, 274(September 2021). https://doi.org/10.1016/j.rse.2022.112990Small, D. (2011). Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 49(8), 3081–3093. https://doi.org/10.1109/TGRS.2011.2120616Sonobe, R., Yamaya, Y., Tani, H., Wang, X., Kobayashi, N., & Mochizuki, K. ichiro. (2017). Assessing the suitability of data from Sentinel-1A and 2A for crop classification. GIScience and Remote Sensing, 54(6), 918–938. https://doi.org/10.1080/15481603.2017.1351149Stankiewicz, K. A. (2006). The Efficiency of Crop Recognition on ENVISAT ASAR Images in Two Growing Seasons. 44(April), 806–814.Stehman, S, & Czaplewski, R. L. (1998). Design and Analysis for Thematic Map Accuracy Assessment - an application of satellite imagery. Remote Sensing of Environment, 64(January), 331–344. http://www.ingentaconnect.com/content/els/00344257/1998/00000064/00000003/art00010%5Cnhttp://dx.doi.org/10.1016/S0034-4257(98)00010-8Stehman, Stephen V. (2009). Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing, 30(20), 5243–5272. https://doi.org/10.1080/01431160903131000Steinhausen, M. J., Wagner, P. D., Narasimhan, B., & Waske, B. (2018). Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. International Journal of Applied Earth Observation and Geoinformation, 73(April), 595–604. https://doi.org/10.1016/j.jag.2018.08.011Sujud, L., Jaafar, H., Haj Hassan, M. A., & Zurayk, R. (2021). Cannabis detection from optical and RADAR data fusion: A comparative analysis of the SMILE machine learning algorithms in Google Earth Engine. Remote Sensing Applications: Society and Environment, 24, 100639. https://doi.org/10.1016/j.rsase.2021.100639Sun, C., Bian, Y., Zhou, T., & Pan, J. (2019). Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors (Switzerland), 19(10), 1–23. https://doi.org/10.3390/s19102401Sun, Y., Li, L., Zheng, L., Hu, J., Li, W., Jiang, Y., & Yan, C. (2019). Image classification base on PCA of multi-view deep representation. Journal of Visual Communication and Image Representation, 62, 253–258. https://doi.org/10.1016/j.jvcir.2019.05.016Suthaharan, S. (2016). A Cognitive Random Forest: An Intra- and Intercognitive Computing for Big Data Classification Under Cune Condition. In Handbook of Statistics (1st ed., Vol. 35). Elsevier B.V. https://doi.org/10.1016/bs.host.2016.07.006Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192. https://doi.org/10.1016/j.aci.2018.08.003Tufail, R., Ahmad, A., Javed, M. A., & Ahmad, S. R. (2021). A machine learning approach for accurate crop type mapping using combined SAR and optical time series data. Advances in Space Research, xxxx. https://doi.org/10.1016/j.asr.2021.09.019UPRA. (2022). Análisis situacional de la cadena productiva de la papa en Colombia.Van Tricht, K., Gobin, A., Gilliams, S., & Piccard, I. (2018). Synergistic use of radar sentinel-1 and optical sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sensing, 10(10), 1–22. https://doi.org/10.3390/rs10101642Vapnik, V. (1998). of Function Estimation. 55–85. https://doi.org/10.1007/978-1-4615-5703-6_Veerabhadraswamy, N., Devagiri, G. M., & Khaple, A. K. (2021). Fusion of complementary information of SAR and optical data for forest cover mapping using random forest algorithm. Current Science, 120(1), 193–199. https://doi.org/10.18520/cs/v120/i1/193-199Venables, W. N., Smith, D. M., & Core Team, R. (2013). An Introduction to R. Practical Graph Mining with R, 3, 27–52. https://doi.org/10.1201/b15352-7Vijayaraj, V., Younan, N. H., & O’Hara, C. G. (2006). Concepts of image fusion in remote sensing applications. International Geoscience and Remote Sensing Symposium (IGARSS), 3781–3784. https://doi.org/10.1109/IGARSS.2006.973Wang, G., Li, P., Li, Z., Liang, C., & Wang, H. (2022). Coastal subsidence detection and characterization caused by brine mining over the Yellow River Delta using time series InSAR and PCA. International Journal of Applied Earth Observation and Geoinformation, 114(August), 103077. https://doi.org/10.1016/j.jag.2022.103077Wang, L., Ma, H., Li, J., Gao, Y., Fan, L., Yang, Z., Yang, Y., & Wang, C. (2022). An automated extraction of small- and middle-sized rice fields under complex terrain based on SAR time series: A case study of Chongqing. Computers and Electronics in Agriculture, 200(November 2021), 107232. https://doi.org/10.1016/j.compag.2022.107232Wang, Q., Shen, Y., & Jin, J. (2008). Performance evaluation of image fusion techniques. In Image Fusion. Elsevier Ltd. https://doi.org/10.1016/b978-0-12-372529-5.00017-2Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 0–39. https://doi.org/10.1016/j.rse.2019.111402Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77(1). https://doi.org/10.18637/jss.v077.i01Xun, L., Zhang, J., Cao, D., Yang, S., & Yao, F. (2021). A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 181(August), 148–166. https://doi.org/10.1016/j.isprsjprs.2021.08.021Yee, L. C., & Wei, Y. C. (2012). Current Modeling Methods Used in QSAR/QSPR. Statistical Modelling of Molecular Descriptors in QSAR/QSPR, 2, 1–31. https://doi.org/10.1002/9783527645121.ch1Yésou, H., Besnus, Y., Rolet, J., Pion, J. C., & Aing, A. (1993). Merging seasat and SPOT imagery for the study of geological structures in a temperate agricultural region. Remote Sensing of Environment, 43(3), 265–279. https://doi.org/10.1016/0034-4257(93)90070-EZhang, J., Li, M., Feng, Y., & Yang, C. (2020). Robotic grasp detection based on image processing and random forest. Multimedia Tools and Applications, 79(3–4), 2427–2446. https://doi.org/10.1007/s11042-019-08302-9Zhang, H., Kang, J., Xu, X., & Zhang, L. (2020). Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China. Computers and Electronics in Agriculture, 176(February), 105618. https://doi.org/10.1016/j.compag.2020.105618Zhao, J., Yan, H., & Huang, L. (2023). A joint method of spatial–spectral features and BP neural network for hyperspectral image classification. Egyptian Journal of Remote Sensing and Space Science, 26(1), 107–115. https://doi.org/10.1016/j.ejrs.2022.12.012Zheng, B., Myint, S., Thenkabail, P., Aggarwal R. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103-112, ISSN 1569-8432. https://doi.org/10.1016/j.jag.2014.07.002.Zitová, B., & Flusser, J. (2003). Image registration methods: A survey. Image and Vision Computing, 21(11), 977–1000. https://doi.org/10.1016/S0262-8856(03)00137-9EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84734/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL53115304.2023.pdf53115304.2023.pdfTesis de Maestría en Geomáticaapplication/pdf5403690https://repositorio.unal.edu.co/bitstream/unal/84734/2/53115304.2023.pdf206833526d2be797b742aa59e59c8cddMD52THUMBNAIL53115304.2023.pdf.jpg53115304.2023.pdf.jpgGenerated Thumbnailimage/jpeg5267https://repositorio.unal.edu.co/bitstream/unal/84734/3/53115304.2023.pdf.jpgdaf8b1cfd0ef63bfc760a22e3192ef1dMD53unal/84734oai:repositorio.unal.edu.co:unal/847342024-08-18 23:13:23.121Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=