Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB
ilustraciones, diagramas
- Autores:
-
Chamorro Ceron, Jhonatan Camilo
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85424
- Palabra clave:
- Microwaves
Fotones
Microondas
Photons
Generación de señales microondas
Sintonización
Heterodinación
Inyección óptica
Oscilador optoelectrónico
VCSEL
DFB
Microwave signals generation
Tuning
Heterodyning
Optical injection
Optoelectronic oscillator
VCSEL
DFB
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_0d5d64267eb98323d5d8d18f195b466a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85424 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB |
dc.title.translated.eng.fl_str_mv |
Photonic generation of tunable microwave signals using VCSEL and DFB technology |
title |
Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB |
spellingShingle |
Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB Microwaves Fotones Microondas Photons Generación de señales microondas Sintonización Heterodinación Inyección óptica Oscilador optoelectrónico VCSEL DFB Microwave signals generation Tuning Heterodyning Optical injection Optoelectronic oscillator VCSEL DFB |
title_short |
Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB |
title_full |
Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB |
title_fullStr |
Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB |
title_full_unstemmed |
Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB |
title_sort |
Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB |
dc.creator.fl_str_mv |
Chamorro Ceron, Jhonatan Camilo |
dc.contributor.advisor.none.fl_str_mv |
Varón Durán, Gloria Margarita |
dc.contributor.author.none.fl_str_mv |
Chamorro Ceron, Jhonatan Camilo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación: Grupo de Investigación en Electrónica de Altas frecuencias y Telecomunicaciones (CMUN) |
dc.subject.armarc.eng.fl_str_mv |
Microwaves |
topic |
Microwaves Fotones Microondas Photons Generación de señales microondas Sintonización Heterodinación Inyección óptica Oscilador optoelectrónico VCSEL DFB Microwave signals generation Tuning Heterodyning Optical injection Optoelectronic oscillator VCSEL DFB |
dc.subject.lemb.spa.fl_str_mv |
Fotones Microondas |
dc.subject.lemb.eng.fl_str_mv |
Photons |
dc.subject.proposal.spa.fl_str_mv |
Generación de señales microondas Sintonización Heterodinación Inyección óptica Oscilador optoelectrónico VCSEL |
dc.subject.proposal.eng.fl_str_mv |
DFB Microwave signals generation Tuning Heterodyning Optical injection Optoelectronic oscillator VCSEL DFB |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-01-24T19:59:34Z |
dc.date.available.none.fl_str_mv |
2024-01-24T19:59:34Z |
dc.date.issued.none.fl_str_mv |
2024-01-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85424 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85424 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.relation.references.spa.fl_str_mv |
X. S. Yao y L. Maleki, «Optoelectronic Oscillator for Photonic Systems,» IEEE journal of Quantum, vol. 32, nº 7, 1996 A. J. Seeds, «Microwave Photonics,» IEEE Trans. Microwave Theory Tech, pp. 877-887, 2002 B. Romeira y J. Figuereido, «Optoelectronic Oscillators for Communication Systems,» Centro de Optoelectrónica e Telecomunicações, Departamento de Física, Universidade do Algarve, 2010 G. P. Agrawal, Fiber-Optic Communications System, Third Edition, 2002 J. Yao, «Microwave photonics,» J. Lightw. Technol., vol. 27, nº 3, pp. 314-335, Feb. 2009 A. J. Seeds y K. Williams, «Microwave photonics,» J. Lightw. Technol., vol. 24, nº 12, pp. 4628-4641, Dec. 2006 4G Américas, «Recomendaciones Sobre el espectro para 5G,» Ago. 2015 S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily y &. H. Ahmad, «Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,» Scientific Reports, vol. 6, 2016 J. Yao, «A Tutorial on Microwave Photonics,» Photonics Society Newsletter, vol. 26, nº 3, p. 4–12, 2012 A. Hirata, M. Harada y T. Nagatsuma, «120-GHz Wireless Link using Photonic Techniques for Generation, Modulation, and Emission of Millimeter-wave Signals,» IEEE J. Lightwave Technology, vol. 21, p. 2145–215, 2003 A. U. T. Y. S. A. Y. S. S. Takano, T. Noguchi, M. Ishiguro, H. Takara, S. Kawanishi, H. Ito, A. Hirata y T. Nagatsuma, «he First Radioastronomical Observation with Photonic Local Oscillator,» Publ. Astron. Soc. Japan, vol. 55, p. L53–L56, 2003 T. Nagatsuma, «Photonic Measurement Technologies for High-speed Electronics,» Meas. Sci. and Technol., vol. 13, nº 11, p. 1655–1663, 2002 J. A. Nanzer, P. T. Callahan, M. L. Dennis y T. R. Clark, «Photonic Signal Generation for Millimeter-Wave Communications,» Johns Hopkins Apl Techincal Digest, vol. 30, nº 4, pp. 299-308, 2012 N. Tadao, I. Hiroshi y I. Katsumi, «Photonic Generation of Millimeter/Terahertz Waves and Its Applications,» NTT Technical Review, vol. 5, nº 2, pp. 55-61, 2007 J. Yao y J. Company, «Microwave photonics,» Sci China Inf Sci, vol. 65, nº 12, Dec 2022 A. Stöhr, «Pushing the boundaries,» IEEE Microwave Magazine, vol. 10, nº 4, pp. 106-115, Jun. 2009 U. Gliese, T. N. Nielsen, S. Nørskov y K. E. Stubkjaer, «Multifunctional FiberOptic Microwave Links Based on Remote Heterodyne Detection,» IEEE Transactions on Microwave Theory and Techniques, vol. 46, nº 5, p. 458–468, 1998 A. Stöhr, «Photonic Technologies for Broadband Microwave Wireless Systems, Instrumentation and Sensig,» PhD thesis, Universität Duisburg-Essen, 2013 A. Stöhr, M. Weiß, A. Malcoci, A. G. Steffan, D. Trommer, A. Umbach y D. Jäger, «Wideband photonic millimeter-wave synthesizer using a high-power pin waveguide,» de European Microwave Conference, 2007 S. Fedderwitz, V. Rymanov, M. Weiß, A. Stöhr, D. Jäger, A. G. Steffan y A. Umbach, «Ultra-broadband and low phase noise photonic millimeter-wave generation,» de International Topical Meeting on Microwave Photonics. Jointly held with the 2008 AsiaPacific Microwave Photonics Conference, MWP/APMP, 2008 M. Weiß, A. Stöhr, A. Malcoc, A. G. Steffan, D. Trommer, A. Umbach y D. Jäge, «Ultra-wideband photonic millimeter-wave synthesizers with coaxial (DC-110GHz) and rectangular waveguide (69-112GHz) output ports,» de European Conference on Optical Communication, Berlin , 2007 J. Yao, «Microwave Photonic Systems,» Journ of Lightwave Technology, vol. 40, nº 20, pp. 6595-6607, Oct. 2022 A. Stöhr, R. Heinzelmann, C. Kaczmarek y D. Jäger, «Ultra-broadband Ka to W-band 1.55 µm travelling-wave photomixer,» Electronics Letters, vol. 36, pp. 970-972, 2000 M. Weiß, «60 GHz photonic millimeter-wave communication systems,» PhD thesis, Universität Duisburg-Essen, 2010 T. Nagatsuma, N. Kukutsu y Y. Kado, «Photonic Generation of Millimeter and TerahertzWaves and Its Applications,» Automatika, vol. 49, nº 1, p. 51–59, 2008 A. Hirata, M. Harada, K. Sato y T. Nagatsuma, «Low-cost millimeter-wave photonic techniques for Gigabit/s wireless link,» IEICE Transactions on Electronics, vol. 86, nº 7, p. 1123–1128, 2003 S. Fedderwitz, «Generation of Frequency Tunable and Low Phase Noise Micro- and MillimeterWave Signals using Photonic Technologies,» PhD thesis, Universität Duisburg-Essen, 2015 K. Sato, «100 GHz optical pulse generation using Fabry-Perot laser under continuous wave operation,» Electron Letters, vol. 37, pp. 763-764, 2001 K. Sato, «Active mode locking at 50 GHz repetition frequency by half‐ frequency modulation of monolithic semiconductor lasers integrated with electro absorption modulators,» Appl. Phys. Lett., vol. 69, pp. 2626-2628, 1996 S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu y Y. Ogawa, «Repetition frequency multiplication of mode-locked pulses using fiber dispersion,» IEEE Journal of Lightwave Technolog, vol. 16, nº 3, p. 405–410, 1998 B. A. Khawaja y M. J. Cryan, «Wireless hybrid mode locked lasers for next generation radio-over-fiber system,» IEEE/OSA Journal of Lightwave Technology, vol. 28, pp. 2268-227, 2010 T. Ohno, F. Nakajima, T. Furuta y H. Ito, «240 GHz active mode locked laser diode,» Electronics Letters, vol. 41, nº 19, p. 1057–1059, 2005 O. P. Gough, C. F. C. Silva y A. J. Seeds, «Exact millimetre wave frequency synthesis by injection locked laser comb line selection,» de International Topical Meeting on Microwave Photonics, 1999 A. Coldren, S. Parker, A. Sivananthan, M. Lu y L. Johansson, «Integrated Phase-locked Multi THz Comb for Broadband Offset Locking,» University of California , Santa Barbara, 2012 L. Goldberg, A. Yurek, H. F. Taylor y J. F. Weller, «35 GHz microwave signal generation with an injection-locked laser diode,» Electron Lett., vol. 21, nº 18, pp. 714-715, 1985 S. Fukushima, C. F. C. Silva, Y. Muramoto y A. J. Seeds, «Optoelectronic millimeter-wave synthesis using an optical frequency comb Generator, optically injection locked lasers, and a unitraveling-carrier photodiode,» J. Lightw. Technol., vol. 21, nº 12, pp. 3043-3051, 2003 A. Ngoma, «Radio-over-Fibre Technology for Broadband Wireless Communication Systems,» PhD thesis, Technische Universiteit Eindhoven, Netherlands, 2005 E. K. Lau, «High-speed modulation of optical injection-locked semiconductor lasers,» PhD Thesis, EECS Department, University of California, Berkeley, 2006 L. Enloe y J. Rodda, «Laser phase-locked loop,» Proceedings of the IEEE, vol. 53, pp. 165-166, 1965 L. Langley, M. Elkin, C. Edge, M. Wale, U. Gliese, X. Huang y A. Seeds, «Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,» IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 1257-126, 1999 J. E. Bowers, A. Ramaswamy, L. A. Johansson, J. Klamkin, M. Sysak, D. Zibar, L. Coldren, M. Rodwell, L. Lembo, R. Yoshimitsu, D. Scott, R. Davis y P. Ly, «Linear coherent receiver based on a broadband and sampling optical phase-locked loop,» International Topical Meeting on Microwave Photonics, pp. 225-228, 2007 P. Shen, Davies, Shillue, D'Addario y Payne, «Millimetre wave generation using an optical comb generator with optical phase-locked loops,» International Topical Meeting on Microwave Photonics, p. 101–104, 2002 M. Bhattacharya, A. Saw y T. Chattopadhyay, «Millimeter-wave generation through phase-locking of two modulation sidebands of a pair of laser diodes,» IEEE Photonics Technol. Lett, vol. 16, nº 2, p. 596–598, 2004 H. Shams, K. Balakier, M. J. Fice, L. Ponnampalam, C. S. Graham, C. C. Renaud, A. J. Seeds y F. V. Dijk, «Coherent frequency tuneable thz wireless signal generation using an optical phase lock loop system,» International Topical Meeting on Microwave Photonics (MWP), pp. 1-4, 2017 A. B. Dar y F. Ahmad, «Optical millimeter-wave generation techniques: An overview,» Optik, vol. 258, nº 168858, 2022 C. Walton, A. C. Bordonalli y A. J. Seeds, «High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,» IEEE Photonics Technology Letter, vol. 10, pp. 427-429, 1998 A. C. Bordonalli, C. Walton y A. J. Seeds, «High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical,» IEEE/OSA Journal of Lightwave Technology, vol. 17, nº 2, p. 328–342, 1999 L. Kazovsky, «Balanced phase-locked loops for optical homodyne receivers: Performance analysis, design considerations, and laser linewidth requirements,» IEEE/OSA Journal of Lightwave Technology, vol. 4, pp. 182-195, 1986 K. J. Williams, «6–34 GHz offset phase locking of Nd: YAG 1319 nm nonplanar ring laser,» Electron. Lett, vol. 25, nº 18, p. 1242–1243, 1989 IPHOBAC, «Publishable final IPHOBAC activity report,» Duisburg, 2010 R. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds y A. Bordonalli, «Optical injection locking and phase-lock loop combined systems,» Optics Letters, vol. 19, nº 1, pp. 4-6, 1994 L. Johansson y A. Seeds, «Fibre-integrated heterodyne optical injection phase-lock loop for optical generation of millimetre-wave carriers,» IEEE MTT-S International Microwave Symposium Diges, vol. 3, p. 1737–1740, 2000 L. Johansson, D. Wake y A. Seeds, «Millimetre-wave over fibre transmission using a BPSK reference-modulated optical injection phase-lock loop,» Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition, pp. WV3-WV3, 2001 D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang y Y. Shi, «Demonstration of 110 GHz electro-optic polymer modulators,» pplied Physics, vol. 70, p. 3335–3337, 1997 G. Qi, J. Yao, J. Seregelyi, S. Paquet y C. Belisle, «Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,» IEEE Transactions on Microwave Theory and Techniques, vol. 53, nº 10, pp. 3090 - 3097, 2005 W. Li y J. Yao, «Investigation of photonically assisted microwave frequency multiplication based on external modulation,» IEEE Transactions on Microwave Theory and Techniques, vol. 58, nº 11, pp. 3259 - 3268, 2010 G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu y R. Kashyap, «Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques,» Journal of Lightwave Technology, vol. 24, nº 12, pp. 4861 - 4875, 2006 X. S. Yao y L. Maleki, «High frequency optical subcarrier generator,» Electronics Letters, vol. 30, nº 18, p. 1525–1526, 1994 X. S. Yao y L. Maleki, «A novel photonic oscillator,» The Telecommunications and Data Acquisition Report, p. 32–43, 1995 X. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Am. B, vol. 13, nº 8, p. 1725–1735, 1996 A. Neyer y E. Voges, «Nonlinear electrooptic oscillator using an integrated interferometerometer,» Optics Communications, vol. 37, nº 3, p. 169–174, 1981 A. Neyer y E. Voges, «High-frequency electro-optic oscillator using an integrated interferometer,» Applied Physics Letters, vol. 40, nº 1, p. 6–8, 1982 C. Muñoz, «Optical Microwave Signal Generation for Data Transmission in Optical Networks,» PhD tesis, Universidad Nacional de Colombia, Bogotá, 2020 W. Andreas, «Generation, Modulation, and Detection of Signals in Microwave Photonic Systems,» PhD tesis, Chalmers University of Technology, 2008 X. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Amer. B, vol. 13, nº 8, p. 1725–1735, 1999 N. Yu, E. Salik y L. Maleki, «Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,» Optics Lett., vol. 30, nº 10, p. 1231–1233, 2005 K. Volyanskiy, Y. K. Chembo, L. Larger y E. Rubiola, «Contribution of Laser Frequency and Power Fluctuations to the Microwave Phase Noise of Optoelectronic Oscillators,» Journal of Lightwave Technology, vol. 28, nº 18, p. 2730–2735, 2010 X. S. Yao y L. Maleki, «Multiloop optoelectronic oscillator,» IEEE J. Quantum Electron., vol. 36, nº 1, p. 79–84, 2000 D. Eliyahu y L. Maleki, «Low phase noise and spurious level in multi-loop optoelectronic oscillators,» IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, p. 405–410, 2003 T. Bánky, B. Horváth y T. Berceli, «Optimum configuration of multiloop optoelectronic oscillators,» J. Opt. Soc. Am B, vol. 23, nº 7, pp. 1371-1380, 2006 K.-H. Lee, J.-Y. Kim y W.-Y. Choi, «Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Operation,» IEEE Photon. Technol. Lett, vol. 20, nº 19, pp. 1645-1647, 2008 P. Devgan, «A Review of Optoelectronic Oscillators for High Speed Signal Processing Applications,» ISRN Electronics, vol. 2013, p. 1–16, 2013 G. Charalambous, G. K. M. Hasanuzzaman, A. Perentos y S. Iezekiel, «High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multiloop topology,» Optics Communications, vol. 387, p. 361–365, 2017 K. Saleh, «High spectral purity microwave sources based on optical resonators,» PhD tesis, Université de Toulouse, 2012 Z. Abdallah, «Microwave sources based on high quality factor resonators; Modeling, Optimization and Metrology,» PhD tesis, Université Toulouse 3 Paul Sabatier, 2016 C. Muñoz, J. Coronel, J. Chamorro, A. Rissons y M. Varón, «Microwave signal generation with optical injection locking,» de Latin America Optics and Photonics Conference, (Optical Society of America, 2016), 2016 J. P. Zhuang y S. C. Chan, «Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,» Optic Express, vol. 23, nº 3, pp. 2777-2797, 2015 P. Zhou, N. Li y S. Pan, «Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications,» Photonics , vol. 9, nº 227, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
cv, 61 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85424/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/85424/4/1031144663.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85424/5/1031144663.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 9d958de2c3aa3b9b5aba51e697350a93 075f39961efc60b723e667b24da5052a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089503267094528 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Varón Durán, Gloria Margarita8bdc5c7e4f0de45f39e7e6ddff6cb899Chamorro Ceron, Jhonatan Camilo016484481f139c1647731ba4ea3b25b7Grupo de Investigación: Grupo de Investigación en Electrónica de Altas frecuencias y Telecomunicaciones (CMUN)2024-01-24T19:59:34Z2024-01-24T19:59:34Z2024-01-24https://repositorio.unal.edu.co/handle/unal/85424Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEste documento compila y presenta los resultados producto del trabajo de investigación titulado “Generación Fotónica de Señales Microondas Sintonizables Usando Tecnología VCSEL y DFB”, en el cual se investigan y exploran experimentalmente diferentes esquemas fotónicos de generación de señales microondas de baja complejidad que posibiliten la generación de señales microondas sintonizables en frecuencia. Para ello, se realizó una revisión del estado del arte de diferentes esquemas fotónicos de generación de señales microondas, donde un análisis comparativo entre cada una de ellas permitió elegir las técnicas de generación más apropiadas, de acuerdo con los objetivos de este proyecto, que posteriormente se implementaron experimentalmente. Se encontró que la implementación experimental para la generación fotónica de señales microondas basada en el esquema de heterodinación óptica y el esquema de inyección óptica – OIL, posibilita la generación de señales microondas continuamente sintonizables desde 5 hasta 20 GHz. Además, La implementación de osciladores optoelectrónicos OEO a 5,75 GHz y 2,25 GHz, mostró la capacidad de generar señales microondas a 5,75 GHz con un ruido de fase de -131,1 dBc/Hz a 10 kHz de la portadora, y señales microondas a 2,25 GHz con un ruido de fase de -110,7 dBc/Hz a 10 kHz de la portadora, posibilitando generar varias señales microondas en un ancho de banda más amplio, con una frecuencia de sintonización discreta, gracias la configuración del OEO para generar armónicos. (Texto tomado de la fuente)This paper presents the results of the research work entitled "Photonic Generation of Tunable Microwave Signals Using VCSEL and DFB Technology", in this document different low complexity photonic schemes for the generation of frequency tunable microwave signals are investigated and explored. To this end, a review of the state of the art of different photonic schemes of microwave signal generation was carried out, where a comparative analysis between each of them allowed to choose the most appropriate generation techniques, according to the objectives of this project, which were subsequently implemented experimentally. It was found that the experimental implementation for the photonic generation of microwave signals based on the optical heterodyning scheme and the optical injection scheme – OIL, enables the generation of continuously tunable microwave signals from 5 to 20 GHz. In addition, the implementation of OEO optoelectronic oscillators at 5.75 GHz and 2.25 GHz, showed the ability to generate microwave signals at 5.75 GHz with a phase noise of -131.1 dBc/Hz at 10 kHz of the carrier, and microwave signals at 2.25 GHz with a phase noise of -110.7 dBc/Hz at 10 kHz of the carrier, making it possible to generate several microwave signals in a wider bandwidth, with a discrete tuning frequency, thanks to the configuration of the OEO to generate harmonics.MaestríaGeneración de Señales Microondascv, 61 páginasapplication/pdfGeneración fotónica de señales microondas sintonizables usando tecnología VCSEL y DFBPhotonic generation of tunable microwave signals using VCSEL and DFB technologyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáX. S. Yao y L. Maleki, «Optoelectronic Oscillator for Photonic Systems,» IEEE journal of Quantum, vol. 32, nº 7, 1996A. J. Seeds, «Microwave Photonics,» IEEE Trans. Microwave Theory Tech, pp. 877-887, 2002B. Romeira y J. Figuereido, «Optoelectronic Oscillators for Communication Systems,» Centro de Optoelectrónica e Telecomunicações, Departamento de Física, Universidade do Algarve, 2010G. P. Agrawal, Fiber-Optic Communications System, Third Edition, 2002J. Yao, «Microwave photonics,» J. Lightw. Technol., vol. 27, nº 3, pp. 314-335, Feb. 2009A. J. Seeds y K. Williams, «Microwave photonics,» J. Lightw. Technol., vol. 24, nº 12, pp. 4628-4641, Dec. 20064G Américas, «Recomendaciones Sobre el espectro para 5G,» Ago. 2015S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily y &. H. Ahmad, «Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,» Scientific Reports, vol. 6, 2016J. Yao, «A Tutorial on Microwave Photonics,» Photonics Society Newsletter, vol. 26, nº 3, p. 4–12, 2012A. Hirata, M. Harada y T. Nagatsuma, «120-GHz Wireless Link using Photonic Techniques for Generation, Modulation, and Emission of Millimeter-wave Signals,» IEEE J. Lightwave Technology, vol. 21, p. 2145–215, 2003A. U. T. Y. S. A. Y. S. S. Takano, T. Noguchi, M. Ishiguro, H. Takara, S. Kawanishi, H. Ito, A. Hirata y T. Nagatsuma, «he First Radioastronomical Observation with Photonic Local Oscillator,» Publ. Astron. Soc. Japan, vol. 55, p. L53–L56, 2003T. Nagatsuma, «Photonic Measurement Technologies for High-speed Electronics,» Meas. Sci. and Technol., vol. 13, nº 11, p. 1655–1663, 2002J. A. Nanzer, P. T. Callahan, M. L. Dennis y T. R. Clark, «Photonic Signal Generation for Millimeter-Wave Communications,» Johns Hopkins Apl Techincal Digest, vol. 30, nº 4, pp. 299-308, 2012N. Tadao, I. Hiroshi y I. Katsumi, «Photonic Generation of Millimeter/Terahertz Waves and Its Applications,» NTT Technical Review, vol. 5, nº 2, pp. 55-61, 2007J. Yao y J. Company, «Microwave photonics,» Sci China Inf Sci, vol. 65, nº 12, Dec 2022A. Stöhr, «Pushing the boundaries,» IEEE Microwave Magazine, vol. 10, nº 4, pp. 106-115, Jun. 2009U. Gliese, T. N. Nielsen, S. Nørskov y K. E. Stubkjaer, «Multifunctional FiberOptic Microwave Links Based on Remote Heterodyne Detection,» IEEE Transactions on Microwave Theory and Techniques, vol. 46, nº 5, p. 458–468, 1998A. Stöhr, «Photonic Technologies for Broadband Microwave Wireless Systems, Instrumentation and Sensig,» PhD thesis, Universität Duisburg-Essen, 2013A. Stöhr, M. Weiß, A. Malcoci, A. G. Steffan, D. Trommer, A. Umbach y D. Jäger, «Wideband photonic millimeter-wave synthesizer using a high-power pin waveguide,» de European Microwave Conference, 2007S. Fedderwitz, V. Rymanov, M. Weiß, A. Stöhr, D. Jäger, A. G. Steffan y A. Umbach, «Ultra-broadband and low phase noise photonic millimeter-wave generation,» de International Topical Meeting on Microwave Photonics. Jointly held with the 2008 AsiaPacific Microwave Photonics Conference, MWP/APMP, 2008M. Weiß, A. Stöhr, A. Malcoc, A. G. Steffan, D. Trommer, A. Umbach y D. Jäge, «Ultra-wideband photonic millimeter-wave synthesizers with coaxial (DC-110GHz) and rectangular waveguide (69-112GHz) output ports,» de European Conference on Optical Communication, Berlin , 2007J. Yao, «Microwave Photonic Systems,» Journ of Lightwave Technology, vol. 40, nº 20, pp. 6595-6607, Oct. 2022A. Stöhr, R. Heinzelmann, C. Kaczmarek y D. Jäger, «Ultra-broadband Ka to W-band 1.55 µm travelling-wave photomixer,» Electronics Letters, vol. 36, pp. 970-972, 2000M. Weiß, «60 GHz photonic millimeter-wave communication systems,» PhD thesis, Universität Duisburg-Essen, 2010T. Nagatsuma, N. Kukutsu y Y. Kado, «Photonic Generation of Millimeter and TerahertzWaves and Its Applications,» Automatika, vol. 49, nº 1, p. 51–59, 2008A. Hirata, M. Harada, K. Sato y T. Nagatsuma, «Low-cost millimeter-wave photonic techniques for Gigabit/s wireless link,» IEICE Transactions on Electronics, vol. 86, nº 7, p. 1123–1128, 2003S. Fedderwitz, «Generation of Frequency Tunable and Low Phase Noise Micro- and MillimeterWave Signals using Photonic Technologies,» PhD thesis, Universität Duisburg-Essen, 2015K. Sato, «100 GHz optical pulse generation using Fabry-Perot laser under continuous wave operation,» Electron Letters, vol. 37, pp. 763-764, 2001K. Sato, «Active mode locking at 50 GHz repetition frequency by half‐ frequency modulation of monolithic semiconductor lasers integrated with electro absorption modulators,» Appl. Phys. Lett., vol. 69, pp. 2626-2628, 1996S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu y Y. Ogawa, «Repetition frequency multiplication of mode-locked pulses using fiber dispersion,» IEEE Journal of Lightwave Technolog, vol. 16, nº 3, p. 405–410, 1998B. A. Khawaja y M. J. Cryan, «Wireless hybrid mode locked lasers for next generation radio-over-fiber system,» IEEE/OSA Journal of Lightwave Technology, vol. 28, pp. 2268-227, 2010T. Ohno, F. Nakajima, T. Furuta y H. Ito, «240 GHz active mode locked laser diode,» Electronics Letters, vol. 41, nº 19, p. 1057–1059, 2005O. P. Gough, C. F. C. Silva y A. J. Seeds, «Exact millimetre wave frequency synthesis by injection locked laser comb line selection,» de International Topical Meeting on Microwave Photonics, 1999A. Coldren, S. Parker, A. Sivananthan, M. Lu y L. Johansson, «Integrated Phase-locked Multi THz Comb for Broadband Offset Locking,» University of California , Santa Barbara, 2012L. Goldberg, A. Yurek, H. F. Taylor y J. F. Weller, «35 GHz microwave signal generation with an injection-locked laser diode,» Electron Lett., vol. 21, nº 18, pp. 714-715, 1985S. Fukushima, C. F. C. Silva, Y. Muramoto y A. J. Seeds, «Optoelectronic millimeter-wave synthesis using an optical frequency comb Generator, optically injection locked lasers, and a unitraveling-carrier photodiode,» J. Lightw. Technol., vol. 21, nº 12, pp. 3043-3051, 2003A. Ngoma, «Radio-over-Fibre Technology for Broadband Wireless Communication Systems,» PhD thesis, Technische Universiteit Eindhoven, Netherlands, 2005E. K. Lau, «High-speed modulation of optical injection-locked semiconductor lasers,» PhD Thesis, EECS Department, University of California, Berkeley, 2006L. Enloe y J. Rodda, «Laser phase-locked loop,» Proceedings of the IEEE, vol. 53, pp. 165-166, 1965L. Langley, M. Elkin, C. Edge, M. Wale, U. Gliese, X. Huang y A. Seeds, «Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,» IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 1257-126, 1999J. E. Bowers, A. Ramaswamy, L. A. Johansson, J. Klamkin, M. Sysak, D. Zibar, L. Coldren, M. Rodwell, L. Lembo, R. Yoshimitsu, D. Scott, R. Davis y P. Ly, «Linear coherent receiver based on a broadband and sampling optical phase-locked loop,» International Topical Meeting on Microwave Photonics, pp. 225-228, 2007P. Shen, Davies, Shillue, D'Addario y Payne, «Millimetre wave generation using an optical comb generator with optical phase-locked loops,» International Topical Meeting on Microwave Photonics, p. 101–104, 2002M. Bhattacharya, A. Saw y T. Chattopadhyay, «Millimeter-wave generation through phase-locking of two modulation sidebands of a pair of laser diodes,» IEEE Photonics Technol. Lett, vol. 16, nº 2, p. 596–598, 2004H. Shams, K. Balakier, M. J. Fice, L. Ponnampalam, C. S. Graham, C. C. Renaud, A. J. Seeds y F. V. Dijk, «Coherent frequency tuneable thz wireless signal generation using an optical phase lock loop system,» International Topical Meeting on Microwave Photonics (MWP), pp. 1-4, 2017A. B. Dar y F. Ahmad, «Optical millimeter-wave generation techniques: An overview,» Optik, vol. 258, nº 168858, 2022C. Walton, A. C. Bordonalli y A. J. Seeds, «High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,» IEEE Photonics Technology Letter, vol. 10, pp. 427-429, 1998A. C. Bordonalli, C. Walton y A. J. Seeds, «High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical,» IEEE/OSA Journal of Lightwave Technology, vol. 17, nº 2, p. 328–342, 1999L. Kazovsky, «Balanced phase-locked loops for optical homodyne receivers: Performance analysis, design considerations, and laser linewidth requirements,» IEEE/OSA Journal of Lightwave Technology, vol. 4, pp. 182-195, 1986K. J. Williams, «6–34 GHz offset phase locking of Nd: YAG 1319 nm nonplanar ring laser,» Electron. Lett, vol. 25, nº 18, p. 1242–1243, 1989IPHOBAC, «Publishable final IPHOBAC activity report,» Duisburg, 2010R. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds y A. Bordonalli, «Optical injection locking and phase-lock loop combined systems,» Optics Letters, vol. 19, nº 1, pp. 4-6, 1994L. Johansson y A. Seeds, «Fibre-integrated heterodyne optical injection phase-lock loop for optical generation of millimetre-wave carriers,» IEEE MTT-S International Microwave Symposium Diges, vol. 3, p. 1737–1740, 2000L. Johansson, D. Wake y A. Seeds, «Millimetre-wave over fibre transmission using a BPSK reference-modulated optical injection phase-lock loop,» Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition, pp. WV3-WV3, 2001D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang y Y. Shi, «Demonstration of 110 GHz electro-optic polymer modulators,» pplied Physics, vol. 70, p. 3335–3337, 1997G. Qi, J. Yao, J. Seregelyi, S. Paquet y C. Belisle, «Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,» IEEE Transactions on Microwave Theory and Techniques, vol. 53, nº 10, pp. 3090 - 3097, 2005W. Li y J. Yao, «Investigation of photonically assisted microwave frequency multiplication based on external modulation,» IEEE Transactions on Microwave Theory and Techniques, vol. 58, nº 11, pp. 3259 - 3268, 2010G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu y R. Kashyap, «Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques,» Journal of Lightwave Technology, vol. 24, nº 12, pp. 4861 - 4875, 2006X. S. Yao y L. Maleki, «High frequency optical subcarrier generator,» Electronics Letters, vol. 30, nº 18, p. 1525–1526, 1994X. S. Yao y L. Maleki, «A novel photonic oscillator,» The Telecommunications and Data Acquisition Report, p. 32–43, 1995X. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Am. B, vol. 13, nº 8, p. 1725–1735, 1996A. Neyer y E. Voges, «Nonlinear electrooptic oscillator using an integrated interferometerometer,» Optics Communications, vol. 37, nº 3, p. 169–174, 1981A. Neyer y E. Voges, «High-frequency electro-optic oscillator using an integrated interferometer,» Applied Physics Letters, vol. 40, nº 1, p. 6–8, 1982C. Muñoz, «Optical Microwave Signal Generation for Data Transmission in Optical Networks,» PhD tesis, Universidad Nacional de Colombia, Bogotá, 2020W. Andreas, «Generation, Modulation, and Detection of Signals in Microwave Photonic Systems,» PhD tesis, Chalmers University of Technology, 2008X. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Amer. B, vol. 13, nº 8, p. 1725–1735, 1999N. Yu, E. Salik y L. Maleki, «Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,» Optics Lett., vol. 30, nº 10, p. 1231–1233, 2005K. Volyanskiy, Y. K. Chembo, L. Larger y E. Rubiola, «Contribution of Laser Frequency and Power Fluctuations to the Microwave Phase Noise of Optoelectronic Oscillators,» Journal of Lightwave Technology, vol. 28, nº 18, p. 2730–2735, 2010X. S. Yao y L. Maleki, «Multiloop optoelectronic oscillator,» IEEE J. Quantum Electron., vol. 36, nº 1, p. 79–84, 2000D. Eliyahu y L. Maleki, «Low phase noise and spurious level in multi-loop optoelectronic oscillators,» IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, p. 405–410, 2003T. Bánky, B. Horváth y T. Berceli, «Optimum configuration of multiloop optoelectronic oscillators,» J. Opt. Soc. Am B, vol. 23, nº 7, pp. 1371-1380, 2006K.-H. Lee, J.-Y. Kim y W.-Y. Choi, «Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Operation,» IEEE Photon. Technol. Lett, vol. 20, nº 19, pp. 1645-1647, 2008P. Devgan, «A Review of Optoelectronic Oscillators for High Speed Signal Processing Applications,» ISRN Electronics, vol. 2013, p. 1–16, 2013G. Charalambous, G. K. M. Hasanuzzaman, A. Perentos y S. Iezekiel, «High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multiloop topology,» Optics Communications, vol. 387, p. 361–365, 2017K. Saleh, «High spectral purity microwave sources based on optical resonators,» PhD tesis, Université de Toulouse, 2012Z. Abdallah, «Microwave sources based on high quality factor resonators; Modeling, Optimization and Metrology,» PhD tesis, Université Toulouse 3 Paul Sabatier, 2016C. Muñoz, J. Coronel, J. Chamorro, A. Rissons y M. Varón, «Microwave signal generation with optical injection locking,» de Latin America Optics and Photonics Conference, (Optical Society of America, 2016), 2016J. P. Zhuang y S. C. Chan, «Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,» Optic Express, vol. 23, nº 3, pp. 2777-2797, 2015P. Zhou, N. Li y S. Pan, «Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications,» Photonics , vol. 9, nº 227, 2022MicrowavesFotonesMicroondasPhotonsGeneración de señales microondasSintonizaciónHeterodinaciónInyección ópticaOscilador optoelectrónicoVCSELDFBMicrowave signals generationTuningHeterodyningOptical injectionOptoelectronic oscillatorVCSELDFBLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85424/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1031144663.2023.pdf1031144663.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Electrónicaapplication/pdf2452755https://repositorio.unal.edu.co/bitstream/unal/85424/4/1031144663.2023.pdf9d958de2c3aa3b9b5aba51e697350a93MD54THUMBNAIL1031144663.2023.pdf.jpg1031144663.2023.pdf.jpgGenerated Thumbnailimage/jpeg4453https://repositorio.unal.edu.co/bitstream/unal/85424/5/1031144663.2023.pdf.jpg075f39961efc60b723e667b24da5052aMD55unal/85424oai:repositorio.unal.edu.co:unal/854242024-01-24 23:04:17.243Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |