Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB

ilustraciones, diagramas

Autores:
Chamorro Ceron, Jhonatan Camilo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85424
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85424
https://repositorio.unal.edu.co/
Palabra clave:
Microwaves
Fotones
Microondas
Photons
Generación de señales microondas
Sintonización
Heterodinación
Inyección óptica
Oscilador optoelectrónico
VCSEL
DFB
Microwave signals generation
Tuning
Heterodyning
Optical injection
Optoelectronic oscillator
VCSEL
DFB
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_0d5d64267eb98323d5d8d18f195b466a
oai_identifier_str oai:repositorio.unal.edu.co:unal/85424
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB
dc.title.translated.eng.fl_str_mv Photonic generation of tunable microwave signals using VCSEL and DFB technology
title Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB
spellingShingle Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB
Microwaves
Fotones
Microondas
Photons
Generación de señales microondas
Sintonización
Heterodinación
Inyección óptica
Oscilador optoelectrónico
VCSEL
DFB
Microwave signals generation
Tuning
Heterodyning
Optical injection
Optoelectronic oscillator
VCSEL
DFB
title_short Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB
title_full Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB
title_fullStr Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB
title_full_unstemmed Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB
title_sort Generación fotónica de señales microondas sintonizables usando tecnología VCSEL y DFB
dc.creator.fl_str_mv Chamorro Ceron, Jhonatan Camilo
dc.contributor.advisor.none.fl_str_mv Varón Durán, Gloria Margarita
dc.contributor.author.none.fl_str_mv Chamorro Ceron, Jhonatan Camilo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación: Grupo de Investigación en Electrónica de Altas frecuencias y Telecomunicaciones (CMUN)
dc.subject.armarc.eng.fl_str_mv Microwaves
topic Microwaves
Fotones
Microondas
Photons
Generación de señales microondas
Sintonización
Heterodinación
Inyección óptica
Oscilador optoelectrónico
VCSEL
DFB
Microwave signals generation
Tuning
Heterodyning
Optical injection
Optoelectronic oscillator
VCSEL
DFB
dc.subject.lemb.spa.fl_str_mv Fotones
Microondas
dc.subject.lemb.eng.fl_str_mv Photons
dc.subject.proposal.spa.fl_str_mv Generación de señales microondas
Sintonización
Heterodinación
Inyección óptica
Oscilador optoelectrónico
VCSEL
dc.subject.proposal.eng.fl_str_mv DFB
Microwave signals generation
Tuning
Heterodyning
Optical injection
Optoelectronic oscillator
VCSEL
DFB
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-24T19:59:34Z
dc.date.available.none.fl_str_mv 2024-01-24T19:59:34Z
dc.date.issued.none.fl_str_mv 2024-01-24
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85424
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85424
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv X. S. Yao y L. Maleki, «Optoelectronic Oscillator for Photonic Systems,» IEEE journal of Quantum, vol. 32, nº 7, 1996
A. J. Seeds, «Microwave Photonics,» IEEE Trans. Microwave Theory Tech, pp. 877-887, 2002
B. Romeira y J. Figuereido, «Optoelectronic Oscillators for Communication Systems,» Centro de Optoelectrónica e Telecomunicações, Departamento de Física, Universidade do Algarve, 2010
G. P. Agrawal, Fiber-Optic Communications System, Third Edition, 2002
J. Yao, «Microwave photonics,» J. Lightw. Technol., vol. 27, nº 3, pp. 314-335, Feb. 2009
A. J. Seeds y K. Williams, «Microwave photonics,» J. Lightw. Technol., vol. 24, nº 12, pp. 4628-4641, Dec. 2006
4G Américas, «Recomendaciones Sobre el espectro para 5G,» Ago. 2015
S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily y &. H. Ahmad, «Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,» Scientific Reports, vol. 6, 2016
J. Yao, «A Tutorial on Microwave Photonics,» Photonics Society Newsletter, vol. 26, nº 3, p. 4–12, 2012
A. Hirata, M. Harada y T. Nagatsuma, «120-GHz Wireless Link using Photonic Techniques for Generation, Modulation, and Emission of Millimeter-wave Signals,» IEEE J. Lightwave Technology, vol. 21, p. 2145–215, 2003
A. U. T. Y. S. A. Y. S. S. Takano, T. Noguchi, M. Ishiguro, H. Takara, S. Kawanishi, H. Ito, A. Hirata y T. Nagatsuma, «he First Radioastronomical Observation with Photonic Local Oscillator,» Publ. Astron. Soc. Japan, vol. 55, p. L53–L56, 2003
T. Nagatsuma, «Photonic Measurement Technologies for High-speed Electronics,» Meas. Sci. and Technol., vol. 13, nº 11, p. 1655–1663, 2002
J. A. Nanzer, P. T. Callahan, M. L. Dennis y T. R. Clark, «Photonic Signal Generation for Millimeter-Wave Communications,» Johns Hopkins Apl Techincal Digest, vol. 30, nº 4, pp. 299-308, 2012
N. Tadao, I. Hiroshi y I. Katsumi, «Photonic Generation of Millimeter/Terahertz Waves and Its Applications,» NTT Technical Review, vol. 5, nº 2, pp. 55-61, 2007
J. Yao y J. Company, «Microwave photonics,» Sci China Inf Sci, vol. 65, nº 12, Dec 2022
A. Stöhr, «Pushing the boundaries,» IEEE Microwave Magazine, vol. 10, nº 4, pp. 106-115, Jun. 2009
U. Gliese, T. N. Nielsen, S. Nørskov y K. E. Stubkjaer, «Multifunctional FiberOptic Microwave Links Based on Remote Heterodyne Detection,» IEEE Transactions on Microwave Theory and Techniques, vol. 46, nº 5, p. 458–468, 1998
A. Stöhr, «Photonic Technologies for Broadband Microwave Wireless Systems, Instrumentation and Sensig,» PhD thesis, Universität Duisburg-Essen, 2013
A. Stöhr, M. Weiß, A. Malcoci, A. G. Steffan, D. Trommer, A. Umbach y D. Jäger, «Wideband photonic millimeter-wave synthesizer using a high-power pin waveguide,» de European Microwave Conference, 2007
S. Fedderwitz, V. Rymanov, M. Weiß, A. Stöhr, D. Jäger, A. G. Steffan y A. Umbach, «Ultra-broadband and low phase noise photonic millimeter-wave generation,» de International Topical Meeting on Microwave Photonics. Jointly held with the 2008 AsiaPacific Microwave Photonics Conference, MWP/APMP, 2008
M. Weiß, A. Stöhr, A. Malcoc, A. G. Steffan, D. Trommer, A. Umbach y D. Jäge, «Ultra-wideband photonic millimeter-wave synthesizers with coaxial (DC-110GHz) and rectangular waveguide (69-112GHz) output ports,» de European Conference on Optical Communication, Berlin , 2007
J. Yao, «Microwave Photonic Systems,» Journ of Lightwave Technology, vol. 40, nº 20, pp. 6595-6607, Oct. 2022
A. Stöhr, R. Heinzelmann, C. Kaczmarek y D. Jäger, «Ultra-broadband Ka to W-band 1.55 µm travelling-wave photomixer,» Electronics Letters, vol. 36, pp. 970-972, 2000
M. Weiß, «60 GHz photonic millimeter-wave communication systems,» PhD thesis, Universität Duisburg-Essen, 2010
T. Nagatsuma, N. Kukutsu y Y. Kado, «Photonic Generation of Millimeter and TerahertzWaves and Its Applications,» Automatika, vol. 49, nº 1, p. 51–59, 2008
A. Hirata, M. Harada, K. Sato y T. Nagatsuma, «Low-cost millimeter-wave photonic techniques for Gigabit/s wireless link,» IEICE Transactions on Electronics, vol. 86, nº 7, p. 1123–1128, 2003
S. Fedderwitz, «Generation of Frequency Tunable and Low Phase Noise Micro- and MillimeterWave Signals using Photonic Technologies,» PhD thesis, Universität Duisburg-Essen, 2015
K. Sato, «100 GHz optical pulse generation using Fabry-Perot laser under continuous wave operation,» Electron Letters, vol. 37, pp. 763-764, 2001
K. Sato, «Active mode locking at 50 GHz repetition frequency by half‐ frequency modulation of monolithic semiconductor lasers integrated with electro absorption modulators,» Appl. Phys. Lett., vol. 69, pp. 2626-2628, 1996
S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu y Y. Ogawa, «Repetition frequency multiplication of mode-locked pulses using fiber dispersion,» IEEE Journal of Lightwave Technolog, vol. 16, nº 3, p. 405–410, 1998
B. A. Khawaja y M. J. Cryan, «Wireless hybrid mode locked lasers for next generation radio-over-fiber system,» IEEE/OSA Journal of Lightwave Technology, vol. 28, pp. 2268-227, 2010
T. Ohno, F. Nakajima, T. Furuta y H. Ito, «240 GHz active mode locked laser diode,» Electronics Letters, vol. 41, nº 19, p. 1057–1059, 2005
O. P. Gough, C. F. C. Silva y A. J. Seeds, «Exact millimetre wave frequency synthesis by injection locked laser comb line selection,» de International Topical Meeting on Microwave Photonics, 1999
A. Coldren, S. Parker, A. Sivananthan, M. Lu y L. Johansson, «Integrated Phase-locked Multi THz Comb for Broadband Offset Locking,» University of California , Santa Barbara, 2012
L. Goldberg, A. Yurek, H. F. Taylor y J. F. Weller, «35 GHz microwave signal generation with an injection-locked laser diode,» Electron Lett., vol. 21, nº 18, pp. 714-715, 1985
S. Fukushima, C. F. C. Silva, Y. Muramoto y A. J. Seeds, «Optoelectronic millimeter-wave synthesis using an optical frequency comb Generator, optically injection locked lasers, and a unitraveling-carrier photodiode,» J. Lightw. Technol., vol. 21, nº 12, pp. 3043-3051, 2003
A. Ngoma, «Radio-over-Fibre Technology for Broadband Wireless Communication Systems,» PhD thesis, Technische Universiteit Eindhoven, Netherlands, 2005
E. K. Lau, «High-speed modulation of optical injection-locked semiconductor lasers,» PhD Thesis, EECS Department, University of California, Berkeley, 2006
L. Enloe y J. Rodda, «Laser phase-locked loop,» Proceedings of the IEEE, vol. 53, pp. 165-166, 1965
L. Langley, M. Elkin, C. Edge, M. Wale, U. Gliese, X. Huang y A. Seeds, «Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,» IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 1257-126, 1999
J. E. Bowers, A. Ramaswamy, L. A. Johansson, J. Klamkin, M. Sysak, D. Zibar, L. Coldren, M. Rodwell, L. Lembo, R. Yoshimitsu, D. Scott, R. Davis y P. Ly, «Linear coherent receiver based on a broadband and sampling optical phase-locked loop,» International Topical Meeting on Microwave Photonics, pp. 225-228, 2007
P. Shen, Davies, Shillue, D'Addario y Payne, «Millimetre wave generation using an optical comb generator with optical phase-locked loops,» International Topical Meeting on Microwave Photonics, p. 101–104, 2002
M. Bhattacharya, A. Saw y T. Chattopadhyay, «Millimeter-wave generation through phase-locking of two modulation sidebands of a pair of laser diodes,» IEEE Photonics Technol. Lett, vol. 16, nº 2, p. 596–598, 2004
H. Shams, K. Balakier, M. J. Fice, L. Ponnampalam, C. S. Graham, C. C. Renaud, A. J. Seeds y F. V. Dijk, «Coherent frequency tuneable thz wireless signal generation using an optical phase lock loop system,» International Topical Meeting on Microwave Photonics (MWP), pp. 1-4, 2017
A. B. Dar y F. Ahmad, «Optical millimeter-wave generation techniques: An overview,» Optik, vol. 258, nº 168858, 2022
C. Walton, A. C. Bordonalli y A. J. Seeds, «High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,» IEEE Photonics Technology Letter, vol. 10, pp. 427-429, 1998
A. C. Bordonalli, C. Walton y A. J. Seeds, «High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical,» IEEE/OSA Journal of Lightwave Technology, vol. 17, nº 2, p. 328–342, 1999
L. Kazovsky, «Balanced phase-locked loops for optical homodyne receivers: Performance analysis, design considerations, and laser linewidth requirements,» IEEE/OSA Journal of Lightwave Technology, vol. 4, pp. 182-195, 1986
K. J. Williams, «6–34 GHz offset phase locking of Nd: YAG 1319 nm nonplanar ring laser,» Electron. Lett, vol. 25, nº 18, p. 1242–1243, 1989
IPHOBAC, «Publishable final IPHOBAC activity report,» Duisburg, 2010
R. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds y A. Bordonalli, «Optical injection locking and phase-lock loop combined systems,» Optics Letters, vol. 19, nº 1, pp. 4-6, 1994
L. Johansson y A. Seeds, «Fibre-integrated heterodyne optical injection phase-lock loop for optical generation of millimetre-wave carriers,» IEEE MTT-S International Microwave Symposium Diges, vol. 3, p. 1737–1740, 2000
L. Johansson, D. Wake y A. Seeds, «Millimetre-wave over fibre transmission using a BPSK reference-modulated optical injection phase-lock loop,» Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition, pp. WV3-WV3, 2001
D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang y Y. Shi, «Demonstration of 110 GHz electro-optic polymer modulators,» pplied Physics, vol. 70, p. 3335–3337, 1997
G. Qi, J. Yao, J. Seregelyi, S. Paquet y C. Belisle, «Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,» IEEE Transactions on Microwave Theory and Techniques, vol. 53, nº 10, pp. 3090 - 3097, 2005
W. Li y J. Yao, «Investigation of photonically assisted microwave frequency multiplication based on external modulation,» IEEE Transactions on Microwave Theory and Techniques, vol. 58, nº 11, pp. 3259 - 3268, 2010
G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu y R. Kashyap, «Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques,» Journal of Lightwave Technology, vol. 24, nº 12, pp. 4861 - 4875, 2006
X. S. Yao y L. Maleki, «High frequency optical subcarrier generator,» Electronics Letters, vol. 30, nº 18, p. 1525–1526, 1994
X. S. Yao y L. Maleki, «A novel photonic oscillator,» The Telecommunications and Data Acquisition Report, p. 32–43, 1995
X. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Am. B, vol. 13, nº 8, p. 1725–1735, 1996
A. Neyer y E. Voges, «Nonlinear electrooptic oscillator using an integrated interferometerometer,» Optics Communications, vol. 37, nº 3, p. 169–174, 1981
A. Neyer y E. Voges, «High-frequency electro-optic oscillator using an integrated interferometer,» Applied Physics Letters, vol. 40, nº 1, p. 6–8, 1982
C. Muñoz, «Optical Microwave Signal Generation for Data Transmission in Optical Networks,» PhD tesis, Universidad Nacional de Colombia, Bogotá, 2020
W. Andreas, «Generation, Modulation, and Detection of Signals in Microwave Photonic Systems,» PhD tesis, Chalmers University of Technology, 2008
X. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Amer. B, vol. 13, nº 8, p. 1725–1735, 1999
N. Yu, E. Salik y L. Maleki, «Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,» Optics Lett., vol. 30, nº 10, p. 1231–1233, 2005
K. Volyanskiy, Y. K. Chembo, L. Larger y E. Rubiola, «Contribution of Laser Frequency and Power Fluctuations to the Microwave Phase Noise of Optoelectronic Oscillators,» Journal of Lightwave Technology, vol. 28, nº 18, p. 2730–2735, 2010
X. S. Yao y L. Maleki, «Multiloop optoelectronic oscillator,» IEEE J. Quantum Electron., vol. 36, nº 1, p. 79–84, 2000
D. Eliyahu y L. Maleki, «Low phase noise and spurious level in multi-loop optoelectronic oscillators,» IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, p. 405–410, 2003
T. Bánky, B. Horváth y T. Berceli, «Optimum configuration of multiloop optoelectronic oscillators,» J. Opt. Soc. Am B, vol. 23, nº 7, pp. 1371-1380, 2006
K.-H. Lee, J.-Y. Kim y W.-Y. Choi, «Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Operation,» IEEE Photon. Technol. Lett, vol. 20, nº 19, pp. 1645-1647, 2008
P. Devgan, «A Review of Optoelectronic Oscillators for High Speed Signal Processing Applications,» ISRN Electronics, vol. 2013, p. 1–16, 2013
G. Charalambous, G. K. M. Hasanuzzaman, A. Perentos y S. Iezekiel, «High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multiloop topology,» Optics Communications, vol. 387, p. 361–365, 2017
K. Saleh, «High spectral purity microwave sources based on optical resonators,» PhD tesis, Université de Toulouse, 2012
Z. Abdallah, «Microwave sources based on high quality factor resonators; Modeling, Optimization and Metrology,» PhD tesis, Université Toulouse 3 Paul Sabatier, 2016
C. Muñoz, J. Coronel, J. Chamorro, A. Rissons y M. Varón, «Microwave signal generation with optical injection locking,» de Latin America Optics and Photonics Conference, (Optical Society of America, 2016), 2016
J. P. Zhuang y S. C. Chan, «Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,» Optic Express, vol. 23, nº 3, pp. 2777-2797, 2015
P. Zhou, N. Li y S. Pan, «Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications,» Photonics , vol. 9, nº 227, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv cv, 61 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85424/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85424/4/1031144663.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85424/5/1031144663.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
9d958de2c3aa3b9b5aba51e697350a93
075f39961efc60b723e667b24da5052a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089503267094528
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Varón Durán, Gloria Margarita8bdc5c7e4f0de45f39e7e6ddff6cb899Chamorro Ceron, Jhonatan Camilo016484481f139c1647731ba4ea3b25b7Grupo de Investigación: Grupo de Investigación en Electrónica de Altas frecuencias y Telecomunicaciones (CMUN)2024-01-24T19:59:34Z2024-01-24T19:59:34Z2024-01-24https://repositorio.unal.edu.co/handle/unal/85424Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEste documento compila y presenta los resultados producto del trabajo de investigación titulado “Generación Fotónica de Señales Microondas Sintonizables Usando Tecnología VCSEL y DFB”, en el cual se investigan y exploran experimentalmente diferentes esquemas fotónicos de generación de señales microondas de baja complejidad que posibiliten la generación de señales microondas sintonizables en frecuencia. Para ello, se realizó una revisión del estado del arte de diferentes esquemas fotónicos de generación de señales microondas, donde un análisis comparativo entre cada una de ellas permitió elegir las técnicas de generación más apropiadas, de acuerdo con los objetivos de este proyecto, que posteriormente se implementaron experimentalmente. Se encontró que la implementación experimental para la generación fotónica de señales microondas basada en el esquema de heterodinación óptica y el esquema de inyección óptica – OIL, posibilita la generación de señales microondas continuamente sintonizables desde 5 hasta 20 GHz. Además, La implementación de osciladores optoelectrónicos OEO a 5,75 GHz y 2,25 GHz, mostró la capacidad de generar señales microondas a 5,75 GHz con un ruido de fase de -131,1 dBc/Hz a 10 kHz de la portadora, y señales microondas a 2,25 GHz con un ruido de fase de -110,7 dBc/Hz a 10 kHz de la portadora, posibilitando generar varias señales microondas en un ancho de banda más amplio, con una frecuencia de sintonización discreta, gracias la configuración del OEO para generar armónicos. (Texto tomado de la fuente)This paper presents the results of the research work entitled "Photonic Generation of Tunable Microwave Signals Using VCSEL and DFB Technology", in this document different low complexity photonic schemes for the generation of frequency tunable microwave signals are investigated and explored. To this end, a review of the state of the art of different photonic schemes of microwave signal generation was carried out, where a comparative analysis between each of them allowed to choose the most appropriate generation techniques, according to the objectives of this project, which were subsequently implemented experimentally. It was found that the experimental implementation for the photonic generation of microwave signals based on the optical heterodyning scheme and the optical injection scheme – OIL, enables the generation of continuously tunable microwave signals from 5 to 20 GHz. In addition, the implementation of OEO optoelectronic oscillators at 5.75 GHz and 2.25 GHz, showed the ability to generate microwave signals at 5.75 GHz with a phase noise of -131.1 dBc/Hz at 10 kHz of the carrier, and microwave signals at 2.25 GHz with a phase noise of -110.7 dBc/Hz at 10 kHz of the carrier, making it possible to generate several microwave signals in a wider bandwidth, with a discrete tuning frequency, thanks to the configuration of the OEO to generate harmonics.MaestríaGeneración de Señales Microondascv, 61 páginasapplication/pdfGeneración fotónica de señales microondas sintonizables usando tecnología VCSEL y DFBPhotonic generation of tunable microwave signals using VCSEL and DFB technologyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáX. S. Yao y L. Maleki, «Optoelectronic Oscillator for Photonic Systems,» IEEE journal of Quantum, vol. 32, nº 7, 1996A. J. Seeds, «Microwave Photonics,» IEEE Trans. Microwave Theory Tech, pp. 877-887, 2002B. Romeira y J. Figuereido, «Optoelectronic Oscillators for Communication Systems,» Centro de Optoelectrónica e Telecomunicações, Departamento de Física, Universidade do Algarve, 2010G. P. Agrawal, Fiber-Optic Communications System, Third Edition, 2002J. Yao, «Microwave photonics,» J. Lightw. Technol., vol. 27, nº 3, pp. 314-335, Feb. 2009A. J. Seeds y K. Williams, «Microwave photonics,» J. Lightw. Technol., vol. 24, nº 12, pp. 4628-4641, Dec. 20064G Américas, «Recomendaciones Sobre el espectro para 5G,» Ago. 2015S. E. Alavi, M. R. K. Soltanian, I. S. Amiri, M. Khalily y &. H. Ahmad, «Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul,» Scientific Reports, vol. 6, 2016J. Yao, «A Tutorial on Microwave Photonics,» Photonics Society Newsletter, vol. 26, nº 3, p. 4–12, 2012A. Hirata, M. Harada y T. Nagatsuma, «120-GHz Wireless Link using Photonic Techniques for Generation, Modulation, and Emission of Millimeter-wave Signals,» IEEE J. Lightwave Technology, vol. 21, p. 2145–215, 2003A. U. T. Y. S. A. Y. S. S. Takano, T. Noguchi, M. Ishiguro, H. Takara, S. Kawanishi, H. Ito, A. Hirata y T. Nagatsuma, «he First Radioastronomical Observation with Photonic Local Oscillator,» Publ. Astron. Soc. Japan, vol. 55, p. L53–L56, 2003T. Nagatsuma, «Photonic Measurement Technologies for High-speed Electronics,» Meas. Sci. and Technol., vol. 13, nº 11, p. 1655–1663, 2002J. A. Nanzer, P. T. Callahan, M. L. Dennis y T. R. Clark, «Photonic Signal Generation for Millimeter-Wave Communications,» Johns Hopkins Apl Techincal Digest, vol. 30, nº 4, pp. 299-308, 2012N. Tadao, I. Hiroshi y I. Katsumi, «Photonic Generation of Millimeter/Terahertz Waves and Its Applications,» NTT Technical Review, vol. 5, nº 2, pp. 55-61, 2007J. Yao y J. Company, «Microwave photonics,» Sci China Inf Sci, vol. 65, nº 12, Dec 2022A. Stöhr, «Pushing the boundaries,» IEEE Microwave Magazine, vol. 10, nº 4, pp. 106-115, Jun. 2009U. Gliese, T. N. Nielsen, S. Nørskov y K. E. Stubkjaer, «Multifunctional FiberOptic Microwave Links Based on Remote Heterodyne Detection,» IEEE Transactions on Microwave Theory and Techniques, vol. 46, nº 5, p. 458–468, 1998A. Stöhr, «Photonic Technologies for Broadband Microwave Wireless Systems, Instrumentation and Sensig,» PhD thesis, Universität Duisburg-Essen, 2013A. Stöhr, M. Weiß, A. Malcoci, A. G. Steffan, D. Trommer, A. Umbach y D. Jäger, «Wideband photonic millimeter-wave synthesizer using a high-power pin waveguide,» de European Microwave Conference, 2007S. Fedderwitz, V. Rymanov, M. Weiß, A. Stöhr, D. Jäger, A. G. Steffan y A. Umbach, «Ultra-broadband and low phase noise photonic millimeter-wave generation,» de International Topical Meeting on Microwave Photonics. Jointly held with the 2008 AsiaPacific Microwave Photonics Conference, MWP/APMP, 2008M. Weiß, A. Stöhr, A. Malcoc, A. G. Steffan, D. Trommer, A. Umbach y D. Jäge, «Ultra-wideband photonic millimeter-wave synthesizers with coaxial (DC-110GHz) and rectangular waveguide (69-112GHz) output ports,» de European Conference on Optical Communication, Berlin , 2007J. Yao, «Microwave Photonic Systems,» Journ of Lightwave Technology, vol. 40, nº 20, pp. 6595-6607, Oct. 2022A. Stöhr, R. Heinzelmann, C. Kaczmarek y D. Jäger, «Ultra-broadband Ka to W-band 1.55 µm travelling-wave photomixer,» Electronics Letters, vol. 36, pp. 970-972, 2000M. Weiß, «60 GHz photonic millimeter-wave communication systems,» PhD thesis, Universität Duisburg-Essen, 2010T. Nagatsuma, N. Kukutsu y Y. Kado, «Photonic Generation of Millimeter and TerahertzWaves and Its Applications,» Automatika, vol. 49, nº 1, p. 51–59, 2008A. Hirata, M. Harada, K. Sato y T. Nagatsuma, «Low-cost millimeter-wave photonic techniques for Gigabit/s wireless link,» IEICE Transactions on Electronics, vol. 86, nº 7, p. 1123–1128, 2003S. Fedderwitz, «Generation of Frequency Tunable and Low Phase Noise Micro- and MillimeterWave Signals using Photonic Technologies,» PhD thesis, Universität Duisburg-Essen, 2015K. Sato, «100 GHz optical pulse generation using Fabry-Perot laser under continuous wave operation,» Electron Letters, vol. 37, pp. 763-764, 2001K. Sato, «Active mode locking at 50 GHz repetition frequency by half‐ frequency modulation of monolithic semiconductor lasers integrated with electro absorption modulators,» Appl. Phys. Lett., vol. 69, pp. 2626-2628, 1996S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu y Y. Ogawa, «Repetition frequency multiplication of mode-locked pulses using fiber dispersion,» IEEE Journal of Lightwave Technolog, vol. 16, nº 3, p. 405–410, 1998B. A. Khawaja y M. J. Cryan, «Wireless hybrid mode locked lasers for next generation radio-over-fiber system,» IEEE/OSA Journal of Lightwave Technology, vol. 28, pp. 2268-227, 2010T. Ohno, F. Nakajima, T. Furuta y H. Ito, «240 GHz active mode locked laser diode,» Electronics Letters, vol. 41, nº 19, p. 1057–1059, 2005O. P. Gough, C. F. C. Silva y A. J. Seeds, «Exact millimetre wave frequency synthesis by injection locked laser comb line selection,» de International Topical Meeting on Microwave Photonics, 1999A. Coldren, S. Parker, A. Sivananthan, M. Lu y L. Johansson, «Integrated Phase-locked Multi THz Comb for Broadband Offset Locking,» University of California , Santa Barbara, 2012L. Goldberg, A. Yurek, H. F. Taylor y J. F. Weller, «35 GHz microwave signal generation with an injection-locked laser diode,» Electron Lett., vol. 21, nº 18, pp. 714-715, 1985S. Fukushima, C. F. C. Silva, Y. Muramoto y A. J. Seeds, «Optoelectronic millimeter-wave synthesis using an optical frequency comb Generator, optically injection locked lasers, and a unitraveling-carrier photodiode,» J. Lightw. Technol., vol. 21, nº 12, pp. 3043-3051, 2003A. Ngoma, «Radio-over-Fibre Technology for Broadband Wireless Communication Systems,» PhD thesis, Technische Universiteit Eindhoven, Netherlands, 2005E. K. Lau, «High-speed modulation of optical injection-locked semiconductor lasers,» PhD Thesis, EECS Department, University of California, Berkeley, 2006L. Enloe y J. Rodda, «Laser phase-locked loop,» Proceedings of the IEEE, vol. 53, pp. 165-166, 1965L. Langley, M. Elkin, C. Edge, M. Wale, U. Gliese, X. Huang y A. Seeds, «Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals,» IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 1257-126, 1999J. E. Bowers, A. Ramaswamy, L. A. Johansson, J. Klamkin, M. Sysak, D. Zibar, L. Coldren, M. Rodwell, L. Lembo, R. Yoshimitsu, D. Scott, R. Davis y P. Ly, «Linear coherent receiver based on a broadband and sampling optical phase-locked loop,» International Topical Meeting on Microwave Photonics, pp. 225-228, 2007P. Shen, Davies, Shillue, D'Addario y Payne, «Millimetre wave generation using an optical comb generator with optical phase-locked loops,» International Topical Meeting on Microwave Photonics, p. 101–104, 2002M. Bhattacharya, A. Saw y T. Chattopadhyay, «Millimeter-wave generation through phase-locking of two modulation sidebands of a pair of laser diodes,» IEEE Photonics Technol. Lett, vol. 16, nº 2, p. 596–598, 2004H. Shams, K. Balakier, M. J. Fice, L. Ponnampalam, C. S. Graham, C. C. Renaud, A. J. Seeds y F. V. Dijk, «Coherent frequency tuneable thz wireless signal generation using an optical phase lock loop system,» International Topical Meeting on Microwave Photonics (MWP), pp. 1-4, 2017A. B. Dar y F. Ahmad, «Optical millimeter-wave generation techniques: An overview,» Optik, vol. 258, nº 168858, 2022C. Walton, A. C. Bordonalli y A. J. Seeds, «High-performance heterodyne optical injection phase-lock loop using wide linewidth semiconductor lasers,» IEEE Photonics Technology Letter, vol. 10, pp. 427-429, 1998A. C. Bordonalli, C. Walton y A. J. Seeds, «High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical,» IEEE/OSA Journal of Lightwave Technology, vol. 17, nº 2, p. 328–342, 1999L. Kazovsky, «Balanced phase-locked loops for optical homodyne receivers: Performance analysis, design considerations, and laser linewidth requirements,» IEEE/OSA Journal of Lightwave Technology, vol. 4, pp. 182-195, 1986K. J. Williams, «6–34 GHz offset phase locking of Nd: YAG 1319 nm nonplanar ring laser,» Electron. Lett, vol. 25, nº 18, p. 1242–1243, 1989IPHOBAC, «Publishable final IPHOBAC activity report,» Duisburg, 2010R. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds y A. Bordonalli, «Optical injection locking and phase-lock loop combined systems,» Optics Letters, vol. 19, nº 1, pp. 4-6, 1994L. Johansson y A. Seeds, «Fibre-integrated heterodyne optical injection phase-lock loop for optical generation of millimetre-wave carriers,» IEEE MTT-S International Microwave Symposium Diges, vol. 3, p. 1737–1740, 2000L. Johansson, D. Wake y A. Seeds, «Millimetre-wave over fibre transmission using a BPSK reference-modulated optical injection phase-lock loop,» Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition, pp. WV3-WV3, 2001D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang y Y. Shi, «Demonstration of 110 GHz electro-optic polymer modulators,» pplied Physics, vol. 70, p. 3335–3337, 1997G. Qi, J. Yao, J. Seregelyi, S. Paquet y C. Belisle, «Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique,» IEEE Transactions on Microwave Theory and Techniques, vol. 53, nº 10, pp. 3090 - 3097, 2005W. Li y J. Yao, «Investigation of photonically assisted microwave frequency multiplication based on external modulation,» IEEE Transactions on Microwave Theory and Techniques, vol. 58, nº 11, pp. 3259 - 3268, 2010G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu y R. Kashyap, «Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques,» Journal of Lightwave Technology, vol. 24, nº 12, pp. 4861 - 4875, 2006X. S. Yao y L. Maleki, «High frequency optical subcarrier generator,» Electronics Letters, vol. 30, nº 18, p. 1525–1526, 1994X. S. Yao y L. Maleki, «A novel photonic oscillator,» The Telecommunications and Data Acquisition Report, p. 32–43, 1995X. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Am. B, vol. 13, nº 8, p. 1725–1735, 1996A. Neyer y E. Voges, «Nonlinear electrooptic oscillator using an integrated interferometerometer,» Optics Communications, vol. 37, nº 3, p. 169–174, 1981A. Neyer y E. Voges, «High-frequency electro-optic oscillator using an integrated interferometer,» Applied Physics Letters, vol. 40, nº 1, p. 6–8, 1982C. Muñoz, «Optical Microwave Signal Generation for Data Transmission in Optical Networks,» PhD tesis, Universidad Nacional de Colombia, Bogotá, 2020W. Andreas, «Generation, Modulation, and Detection of Signals in Microwave Photonic Systems,» PhD tesis, Chalmers University of Technology, 2008X. S. Yao y L. Maleki, «Optoelectronic microwave oscillator,» J. Opt. Soc. Amer. B, vol. 13, nº 8, p. 1725–1735, 1999N. Yu, E. Salik y L. Maleki, «Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,» Optics Lett., vol. 30, nº 10, p. 1231–1233, 2005K. Volyanskiy, Y. K. Chembo, L. Larger y E. Rubiola, «Contribution of Laser Frequency and Power Fluctuations to the Microwave Phase Noise of Optoelectronic Oscillators,» Journal of Lightwave Technology, vol. 28, nº 18, p. 2730–2735, 2010X. S. Yao y L. Maleki, «Multiloop optoelectronic oscillator,» IEEE J. Quantum Electron., vol. 36, nº 1, p. 79–84, 2000D. Eliyahu y L. Maleki, «Low phase noise and spurious level in multi-loop optoelectronic oscillators,» IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, p. 405–410, 2003T. Bánky, B. Horváth y T. Berceli, «Optimum configuration of multiloop optoelectronic oscillators,» J. Opt. Soc. Am B, vol. 23, nº 7, pp. 1371-1380, 2006K.-H. Lee, J.-Y. Kim y W.-Y. Choi, «Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Operation,» IEEE Photon. Technol. Lett, vol. 20, nº 19, pp. 1645-1647, 2008P. Devgan, «A Review of Optoelectronic Oscillators for High Speed Signal Processing Applications,» ISRN Electronics, vol. 2013, p. 1–16, 2013G. Charalambous, G. K. M. Hasanuzzaman, A. Perentos y S. Iezekiel, «High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multiloop topology,» Optics Communications, vol. 387, p. 361–365, 2017K. Saleh, «High spectral purity microwave sources based on optical resonators,» PhD tesis, Université de Toulouse, 2012Z. Abdallah, «Microwave sources based on high quality factor resonators; Modeling, Optimization and Metrology,» PhD tesis, Université Toulouse 3 Paul Sabatier, 2016C. Muñoz, J. Coronel, J. Chamorro, A. Rissons y M. Varón, «Microwave signal generation with optical injection locking,» de Latin America Optics and Photonics Conference, (Optical Society of America, 2016), 2016J. P. Zhuang y S. C. Chan, «Phase noise characteristics of microwave signals generated by semiconductor laser dynamics,» Optic Express, vol. 23, nº 3, pp. 2777-2797, 2015P. Zhou, N. Li y S. Pan, «Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications,» Photonics , vol. 9, nº 227, 2022MicrowavesFotonesMicroondasPhotonsGeneración de señales microondasSintonizaciónHeterodinaciónInyección ópticaOscilador optoelectrónicoVCSELDFBMicrowave signals generationTuningHeterodyningOptical injectionOptoelectronic oscillatorVCSELDFBLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85424/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1031144663.2023.pdf1031144663.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Electrónicaapplication/pdf2452755https://repositorio.unal.edu.co/bitstream/unal/85424/4/1031144663.2023.pdf9d958de2c3aa3b9b5aba51e697350a93MD54THUMBNAIL1031144663.2023.pdf.jpg1031144663.2023.pdf.jpgGenerated Thumbnailimage/jpeg4453https://repositorio.unal.edu.co/bitstream/unal/85424/5/1031144663.2023.pdf.jpg075f39961efc60b723e667b24da5052aMD55unal/85424oai:repositorio.unal.edu.co:unal/854242024-01-24 23:04:17.243Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=