Algebro-geometric characterizations of commuting differential operators in semi-graded rings

In this thesis, we study algebro-geometric characterizations of commuting differential operators in families of semi-graded rings. First, we present some ring-theoretical notions of semi-graded rings that are necessary throughout the thesis. We include a non-exhaustive list of noncommutative rings t...

Full description

Autores:
Niño Torres, Diego Arturo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86565
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86565
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::516 - Geometría
510 - Matemáticas::512 - Álgebra
Operadores diferenciales
Differential operators
Anillos (Álgebra)
Rings (Algebra)
Semi-graded ring
Quantum algebra
Ore extension
PBW basis
Valuation
Sylvester matrix
Resultant
Determinant polynomial
Centralizer
Gelfand-Kirillov dimension
Anillo semi-graduado
Álgebra cuántica
Extensión de Ore
Base PBW
Valuación
Matriz de Sylvester
Resultante
Polinomio determinante
Centralizador
Dimensión de Gelfand-Kirillov
Teoría de anillos
Ring theory
Matriz de Sylveste
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_0d3656e357ec16d735a82edb26162050
oai_identifier_str oai:repositorio.unal.edu.co:unal/86565
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Algebro-geometric characterizations of commuting differential operators in semi-graded rings
dc.title.translated.spa.fl_str_mv Caracterizaciones algebro-geométricas de operadores diferenciales conmutativos en anillos semi-graduados
title Algebro-geometric characterizations of commuting differential operators in semi-graded rings
spellingShingle Algebro-geometric characterizations of commuting differential operators in semi-graded rings
510 - Matemáticas::516 - Geometría
510 - Matemáticas::512 - Álgebra
Operadores diferenciales
Differential operators
Anillos (Álgebra)
Rings (Algebra)
Semi-graded ring
Quantum algebra
Ore extension
PBW basis
Valuation
Sylvester matrix
Resultant
Determinant polynomial
Centralizer
Gelfand-Kirillov dimension
Anillo semi-graduado
Álgebra cuántica
Extensión de Ore
Base PBW
Valuación
Matriz de Sylvester
Resultante
Polinomio determinante
Centralizador
Dimensión de Gelfand-Kirillov
Teoría de anillos
Ring theory
Matriz de Sylveste
title_short Algebro-geometric characterizations of commuting differential operators in semi-graded rings
title_full Algebro-geometric characterizations of commuting differential operators in semi-graded rings
title_fullStr Algebro-geometric characterizations of commuting differential operators in semi-graded rings
title_full_unstemmed Algebro-geometric characterizations of commuting differential operators in semi-graded rings
title_sort Algebro-geometric characterizations of commuting differential operators in semi-graded rings
dc.creator.fl_str_mv Niño Torres, Diego Arturo
dc.contributor.advisor.none.fl_str_mv Reyes Villamil, Milton Armando
dc.contributor.author.none.fl_str_mv Niño Torres, Diego Arturo
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::516 - Geometría
510 - Matemáticas::512 - Álgebra
topic 510 - Matemáticas::516 - Geometría
510 - Matemáticas::512 - Álgebra
Operadores diferenciales
Differential operators
Anillos (Álgebra)
Rings (Algebra)
Semi-graded ring
Quantum algebra
Ore extension
PBW basis
Valuation
Sylvester matrix
Resultant
Determinant polynomial
Centralizer
Gelfand-Kirillov dimension
Anillo semi-graduado
Álgebra cuántica
Extensión de Ore
Base PBW
Valuación
Matriz de Sylvester
Resultante
Polinomio determinante
Centralizador
Dimensión de Gelfand-Kirillov
Teoría de anillos
Ring theory
Matriz de Sylveste
dc.subject.lemb.none.fl_str_mv Operadores diferenciales
Differential operators
Anillos (Álgebra)
Rings (Algebra)
dc.subject.proposal.eng.fl_str_mv Semi-graded ring
Quantum algebra
Ore extension
PBW basis
Valuation
Sylvester matrix
Resultant
Determinant polynomial
Centralizer
Gelfand-Kirillov dimension
dc.subject.proposal.spa.fl_str_mv Anillo semi-graduado
Álgebra cuántica
Extensión de Ore
Base PBW
Valuación
Matriz de Sylvester
Resultante
Polinomio determinante
Centralizador
Dimensión de Gelfand-Kirillov
dc.subject.wikidata.none.fl_str_mv Teoría de anillos
Ring theory
Matriz de Sylveste
description In this thesis, we study algebro-geometric characterizations of commuting differential operators in families of semi-graded rings. First, we present some ring-theoretical notions of semi-graded rings that are necessary throughout the thesis. We include a non-exhaustive list of noncommutative rings that are particular examples of these rings. Second, to motivate the study of commuting differential operators beloging to noncommutative algebras, and hence to develop a possible Burchnall-Chaundy (BC) theory for them, we review algebraic and matrix results appearing in the literature on the theory of these operators in some families of semi-graded rings. Third, we introduce the notion of pseudo-multidegree function as a generalization of pseudo-degree function, and hence we establish a criterion to determine whether the centralizer of an element has finite dimension over a noncommutative ring having PBW basis. In this way, we formulate a BC theorem for rings having pseudo-multidegree functions. We illustrate our results with families of algebras appearing in ring theory and noncommutative geometry. Fourth, we develop a first approach to the BC theory for quadratic algebras having PBW bases defined by Golovashkin and Maksimov. We prove combinatorial properties on products of elements in these algebras, and then consider the notions of Sylvester matrix and resultant for quadratic algebras with the purpose of exploring common right factors. Then, by using the concept of determinant polynomial, we formulate the version of BC theory for these algebras. We present illustrative examples of the assertions about these algebras. Finally, we establish some bridging ideas with the aim of extending results on centralizers for graded rings to the setting of semi-graded rings.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-07-18T16:08:55Z
dc.date.available.none.fl_str_mv 2024-07-18T16:08:55Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86565
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86565
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv V. A. Artamonov. Derivations of Skew PBW-Extensions. Commun. Math. Stat., 3:449– 457, 2015.
M. Artin and J. T. Stafford. Noncommutative graded domains with quadratic growth. Invent. Math., 122(1):231–276, 1995.
V. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992.
V. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023.
J. L. Burchnall and T. W. Chaundy. Commutative Ordinary Differential Operators. Proc. London Math. Soc., 2(21):420–440, 1923.
J. L. Burchnall and T. W. Chaundy. Commutative Ordinary Differential Operators. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 118:557–583, 1928.
J. P. Bell. Centralizers in domains of finite Gelfand-Kirillov dimension. Bull. London Math. Soc., 41(3):559–562, 2009.
G. Carra’-Ferro. A resultant theory for systems of linear PDEs. In Proc. of Modern Group Analysis, volume 35, 1994.
G. Carra’-Ferro. A resultant theory for the systems of two ordinary algebraic differential equations. Appl. Algebra Engrg. Comm. Comput, 8:539–560, 1997.
R. C. Carlson and K. R. Goodearl. Commutants of Ordinary Differential Operators. J. Diff. Equat., 35:339–365, 1980.
M. Chardin. Differential resultants and subresultants. In L. Budach, editor, Proceedings of Fundamentals of Computation Theory. FCT 1991., volume 529 of Lecture Notes in Computer Science 529, pages 180–189. Springer, Berlin, Heidelberg, 1991.
D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015.
P. M. Cohn. Skew Fields, Theory of General Division Rings. Cambridge University Press, 1995.
A. Chacón and A. Reyes. On the schematicness of some Ore polynomials of higher order generated by homogeneous quadratic relations. J. Algebra Appl., https://www. worldscientific.com/doi/abs/10.1142/S021949882550207X, 2024.
M. de Jeu, C. Svensson, and S. Silvestrov. Algebraic curves for commuting elements in the q-deformed Heisenberg algebra. J. Algebra, 321(4):1239–1255, 2009.
F. Dumas. Sous-corps de fractions rationnelles des corps gauches de séries de laurent. In Topics in Invariant Theory, volume 1478 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1991.
A. Lj. Eri´c. The resultant of non-commutative polynomials. Matematiˇcki Vesnik, 60(1):3–8, 2008.
J. Gaddis. PBW Deformations of Artin-Schelter Regular Algebras and Their Homogenizations. PhD thesis, University of Wisconsin-Milwaukee, USA, 2013.
K. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004.
A. V. Golovashkin and V. M. Maksimov. Skew Ore polynomials of higher orders generated by homogeneous quadratic relations. Russian Math. Surveys, 53(2):384–386, 1998.
A. V. Golovashkin and V. M. Maksimov. On algebras of skew polynomials generated by quadratic homogeneous relations. J. Math. Sci. (N.Y.), 129(2):3757–3771, 2005.
R.C. Goodearl. Centralizers in differential, pseudodifferential, and fractional differential operator rings. Rocky Mountain J. Math., 13(4):573–618, 1983.
T. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990.
F. H. Jackson. On q-functions and a certain difference operator. Trans. Roy. Soc. Edin., 46:253–281, 1908.
F. H. Jackson. A q-form of taylor’s theorem. Mess. Math., 38:62–64, 1909.
F. H. Jackson. On q-definite integrals. Quart. J. Pure Appl. Math., 41:193–203, 1910.
D. A. Jordan. Finite-dimensional simple modules over certain iterated skew polynomial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995.
D. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001.
I. M. Krichever and S. P. Novikov. Holomorphic bundles over algebraic curves, and non-linearequations. Uspekhi Mat. Nauk, 35(6):47–68, 1980.
J. Richter. Algebraic Properties of Ore Extensions and their Commutative Subrings. PhD thesis, Lund University, 2014.
S. A. Amitsur. Commutative Linear Differential Operators. Pacific J.Math., 8(1):1–10, 1958.
J. Apel. Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung. PhD thesis, University of Leipzig, 1998.
M. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., 23(05):2450089, 2024.
J. L. Burchnall and T. W. Chaundy. Commutative Ordinary Differential Operators. ii.—the identity pn Æ qm. Proc. R. Soc. Lond. A., 134:471–485, 1931.
H. B. Benaoum. (q,h)-analogue of Newton’s binomial formula. J. Phys. A:Math. Gen., 32(10):2037–2040, 1999.
G. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In S. Geun Hahn, H. Chul Myung, and E. Zelmanov, editors, Recent Progress in Algebra. An International Conference on Recent Progress in Algebra, August 11–15, KAIST, Taejon, South Korea, volume 224 of ContemporaryMathematics, pages 29–45. AmericanMathematical Society, Providence, Rhode Island, 1999.
G. M. Bergman. Centralizers in free associative algebras. Trans. Amer. Math. Soc., 137:327–344, 1969.
R. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992.
A. Bell and K. Goodearl. Uniformrank over differential operator rings and Poincaré- Birkhoff-Witt extensions. Pacific J.Math., 131(1):13–37, 1988.
K. Brown and K. R.Goodearl. Lectures on AlgebraicQuantumGroups. Birkäuser-Verlag, 2002.
G. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998.
J. P. Bell and D. Rogalski. Z-Graded Simple Rings. Trans. Amer.Math. Soc., 368(6):4461– 4496, 2016.
A. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin,Milwaukee, preprint, 1990.
W. S. Brown and F. Traub. On the Euclid’s Algorithm and the Theory of Subresultants. J. ACM, 18:505–514, 1971.
J. P. Bell and J. J. Zhang. Zariski cancellation problem for noncommutative algebras. SelectaMath. (N.S.), 23(3):1709–1737, 2017.
A. Cayley. On the Theory of Elimination. Cambridge and DublinMath. J., 3(1):116–120, 1848.
A. Chacón. On the Noncommutative Geometry of Semi-graded Rings. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2022.
P. M. Cohn. Quadratic extensions of skew fields. Proc. Lond. Math. Soc, 11(3):531–556, 1961.
P.M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985.
G. Collins. Subresultant and reduced polynomial remainder sequences. J. ACM, 16:708–712, 1967.
S. C. Coutinho. A Primer of Algebraic D-modules. Cambridge University Press. London Mathematical Society, Student Texts 33, 1995.
F. Calderón and A. Reyes. Some interactions between Hopf Galois extensions and noncommutative rings. Univ. Sci., 27(2):58–161, 2022.
A. Chacón and A. Reyes. Noncommutative scheme theory and the Serre-Artin-Zhang- Verevkin theorem for semi-graded rings. [Submitted for publication].
T. Cassidy and B. Shelton. Generalizing the notion of Koszul algebra. Math.Z., 260(1):93–14, 2008.
T. Cassidy andM. Vancliff. Generalizations of graded Clifford algebras and of complete intersections. J. Lond.Math. Soc., 81(1):91–112, 2010.
J. Dixmier. Sur les algébres de Weyl. Bull. Soc.Math. France, 96:209–242, 1968.
V. G. Drinfeld. Quantumgroups. J.Math. Sci., 41(2):898–915, 1988.
H. Exton. q-Hypergeometric functions and applications. Ellis Horwood Limited Chichester, 1983
W. Fajardo. Extended modules over skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2018.
W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Springer, Cham, 2020.
H. Flanders. Commutative linear differential operators. Department ofMathematics, University of California, Berkeley, Technical Report No. 1, 1955.
W. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A.Martsinkovsky, editor, Functor Categories, Model Theory, Algebraic Analysis and ConstructiveMethods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings inMathematics & Statistics, pages 45–116. Springer, Cham, 2024.
J. Gaddis. PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl., 15(04):1650064, 2016.
J. Gaddis. PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl., 15(04):1650064, 2016.
C. Gallego. Matrix methods for projective modules over ¾-PBWextensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2015.
I. M. Gelfand and A. A. Kirillov. On fields connected with the enveloping algebras of Lie algebras. Dokl. Akad. Nauk, 167(3):503–505, 1966.
I. M. Gelfand and A. A. Kirillov. Sur les corps liés aux algèbres enveloppantes des algèbres de Lie. Publ.Math. IHES, 31:5–19, 1966.
C. Gallego and O. Lezama. Gröbner Bases for Ideals of ¾-PBW Extensions. Comm. Algebra, 39(1):50–75, 2011.
C. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW extensions. DissertationesMath, 521:1–50, 2017.
O.W. Greenberg and A.M. L.Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965.
H. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270–273, 1953.
A. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995.
M. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra, 28(1):75–97, 2020.
O. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005.
M. Havlíˇcek, A. U. Klimyk, and S. Pošta. Central elements of the algebrasU0(som) and U(isom). Czech. J. Phys., 50(1):79–84, 2000.
S. Higuera and A. Reyes. A survey on the fusible property for skew PBW extensions. J. Algebr. Syst., 10(1):1–29, 2022.
S. Higuera and A. Reyes. On weak annihilators and nilpotent associated primes of skew PBW extensions. Comm. Algebra, 51(11):4839–4861, 2023.
L. Hellström and S. Silvestrov. Commuting Elements in q¡Deformed Heisenberg Algebras. World Scientific Publishing, Co., Inc. River Edge, NJ, 2000.
L. Hellström and S. Silvestrov. Ergodipotentmaps and commutativity of elements in noncommutative rings and algebras with twisted intertwining. J. Algebra, 314(1):17– 41, 2007. IV
A. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A., 34(29):5815– 5834, 2001.
F. H. Jackson. A q-series corresponding to taylo’s series. Mess.Math., 39:26–28, 1909.
F. H. Jackson. q-definite equations. American J.Math., 32:305–314, 1910.
N. Jacobson. Structure of rings. Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Providence, RI, 1964.
J. C. Jantzen. Lectures on Quantum Groups. Amer.Math. Soc. Vol. 6, 1996.
M. Jimbo. A q-Difference analogue ofU(g) and the Yang-Baxter Equation. Lett.Math. Phys., 10(1):63–69, 1985.
A. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Liedeformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995.
D. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000.
J. Jaramillo and A. Reyes. Symmetry and Reversibility Properties for Quantum Algebras and Skew Poincaré-Birkhoff-Witt Extensions. Ingeniería y Ciencia, 14(27):29–52, 2018.
D. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb.Math. Soc., 39(3):461–472, 1996.
H. P. Jakobsen and H. Zhang. The Center of the QuantizedMatrix Algebra. J. Algebra, 196(2):458–474, 1997.
K. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Silvestrov and E. Paal and V. Abramov and A. Stolin (eds).Generalized Lie Theory inMathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009.
G. R. Krause and T. H. Lenagan. Growth of Algebras and Gelfand-Kirillov Dimension. Revised Edition. Graduate Studies inMathematics 22. Amer.Math. Soc., Providence, RI, 2000.
E. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer.Math. Soc., 127(11):3161–3167, 1999.
I. M. Krichever. Algebraic curves and commuting matricial differential operators. Funct. Anal. Appl., 10(2):144–146, 1976.
I.M. Krichever. Integration of nonlinear equations by methods of algebraic geometry. Funct. Anal. Appl., 11:12–26, 1977.
I. M. Krichever. Methods of algebraic geometry in the theory of nonlinear equations. UspekhiMat. Nauk, 32(6):183–208, 1977.
I.M. Krichever. Algebraic curves and non-linear difference equations. Comm.Moscow Math.Soc., 33:170–171, 1978.
I.M. Krichever. Commutative rings of ordinary linear differential operators. Funktz. Anal. Priloz., 12(3):20–31, 1978.
I. M. Krichever. Holomorphic fiberings and nonlinear equations. finite zone solutions of rank 2. SovietMath. Dokl., 20:650–654, 1979.
K. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantumspin chains. J. Phys. A:Math. Gen., 30(9):3165–3173, 1997.
R. S. Kulkarni. Irreducible Representations of Witten’s deformations of U(sl2). J. Algebra, 214(1):64–91, 1999.
D. Larsson. Burchnal-Chaundy theory, Ore extensions and ¾-differential operators. J. Algebra Appl., 13(07):1450049, 2014.
O. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015.
L. Le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994.
L. Le Bruyn. Central singularities of quantumspaces. J. Algebra, 177(1):142–153, 1995.
V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, University of Kaiserslautern, 2005, Kaiserslautern.
O. Lezama. Computation of point modules of finitely semi-graded rings. Comm. Algebra, 48(2):866–878, 2020.
O. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semigraded Rings. Commun.Math. Stat., 9:347—-378, 2021.
O. Lezama and J. Gómez. Koszulity and PointModules of Finitely Semi-Graded Rings and Algebras. Symmetry, 11(7):1–22, 2019.
Z. Li. A Subresultant Theory for Linear Differential, Linear Difference and Ore Polynomials, with Applications. PhD thesis, Johannes Kepler Universität Linz, 1996.
Z. Li. A Subresultant Theory for Ore Polynomials with Applications. In V.Weispfenning and B. Trager, editors, Proceedings of the 1998 International Symposiumon Symbolic and Algebraic Computation, ISSAC’ 98, pages 132–139, New York, NY, USA, 1998. Association for ComputingMachinery.
O. Lezama and E. Latorre. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput., 27(4):361–389, 2017.
R. Loos. Generalized Polynomial Remainder Sequence. In B. Buchberger, G. Collins, and R. Loos, editors, Computer Algebra, Symbolic and Algebraic Computation, Springer-Verlag,Wien-New York, pages 115–137. Springer, 1982.
M. Lothaire. Algebraic Combinatorics onWords. First edition. Encyclopedia ofMathematics and Its Applications. 2002.
O. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014.
M. Louzari and A. Reyes. Generalized RigidModules and Their Polynomial Extensions. In M. Siles Molina, L. El Kaoutit, M. Louzari, L. Ben Yakoub, and M. Benslimane, editors, Associative and Non-Associative Algebras and Applications. MAMAA 2018, volume 311 of Springer Proceedings inMathematics Statistics, pages 147–158. Springer, Cham, 2020.
M. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. ColombianaMat., 54(1):39–63, 2020.
D. Larsson and S. Silvestrov. Burchnall-Chaundy Theory for q-Difference Operators and q-Deformed Heisenberg Algebras. J. NonlinearMath. Phys., 10(2):95–106, 2003.
O. Lezama and H. Venegas. Center of skew PBW extensions. Internat. J. Algebra Comput., 30(08):1625–1650, 2020.
O. Lezama and H. Venegas. The center of the total ring of fractions. SerdicaMath. J., 46(2):109–120, 2020.
O. Lezama and H. Venegas. Gelfand-Kirillov dimension for rings. São Paulo J.Math. Sci., 14(1):207–222, 2020.
V.M.Maksimov. A generalization of the ring of Ore skew polynomials. RussianMath. Surveys, 55(4):817–818, 2000.
V. M. Maksimov. Canonical forms of skew polynomial rings. J. Math. Sci. (N.Y.), 126(2):1064–1076, 2005.
B. Mishra. Algorithmic Algebra. Monographs in Computer Science, Springer New York, 1993.
L.Makar-Limanov. Centralizers in the quantumplane algebra. In Joseph Bernstein, Vladimir Hinich, and Alexei Melnikov, editors, Studies in Lie Theory, volume 243. Birkhäuser Boston, 2006.
L.Makar-Limanov and E. Previato. Centralizers of differential operators of rank h. J. Geom. Phys., 188:104812, 2023.
J.McConnell and J. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies inMathematics. AmericanMathematical Society, Second edition, 2001.
A. Y.Morozov and S. R. Shakirov. New and old results in resultant theory. Sov. Phys. Usp., 163(2):587–617, 2010.
M. Mulase. Algebraic Theory of the KP Equations. Perspectives in Mathematical Physics, 3:151–217, 1994.
D. Mumford. An algebro-geometric construction of commuting operators of solutions to the Toda lattice equation, Korteweg deVries equation and related non-linear equations. Proc. Int. Symp. Algebraic Geometric, 346:115–153, 1977.
S.McCallum and F.Winkler. Differential Resultants. In ITMWeb Conf. International Conference onMathematics (ICM 2018), volume 40–61 of Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics, 2018.
A. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Bol.Mat., 24(2):131–148, 2017.
A. Niño and A. Reyes. Some remarks about minimal prime ideals of skew Poincaré- Birkhoff-Witt extensions. Algebra DiscreteMath., 30(2):207–229, 2020.
A. Niño,M. C. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 48(12):5038–5055, 2020.
E. Noether andW. Schmeidler. Moduln in nichtkommutativen bereichen, insbesondere aus differential - und differenzenausdrücken. Math. Z., 8:1–35, 1920.
C. N˘ast˘asescu and F. van Oystaeyen. Graded Ring Theory. North Holland. Amsterdam, 1982.
O. Ore. Linear Equations inNon-commutative Fields. Ann. ofMath. (2), 32(3):463–477, 1931.
O. Ore. Theory of non-commutative polynomials. Ann. ofMath. (2), 34(3):480–508, 1933.
V. L. Ostrovskii and Yu. S. Samoilenko. Representation of ¤-algebras with two generators and polynomial relations. Journal ofMathematical Sciences, 59(5):1107–1113, 1989.
C. Phan. The Yoneda Algebra of a Graded Ore Extension. Comm. Algebra, 40(3):834– 844, 2012.
E. Previato. Seventy years of spectral curves: 1923-1993. In Integrable Systems and Quantum Groups, Lecture Notes inMathematics Vol, 1620, pages 419–481. Springer, Berlin, 1996.
E. Previato. Burchnall-Chaundy bundles. In P. Newstead, editor, Algebraic Geometry, volume 200 of Lecture Notes in Pure and Appl. Math. EUROPROJ, Catania, 1993 / Barcelona, 1994, pages 377–383.Marcel Dekker, New York, 1998.
E. Previato, L. Sonia, and M. A. Zurro. Burchnall-Chaundy polynomials for matrix ODOs and Picard-Vessiot Theory. Phys. D: Nonlinear Phenom., 453:133811, 2023.
P. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002.
E. Previato and G. Wilson. Differential operators and rank 2 bundles over elliptic curves. Compos.Math., 1(81):107–119, 1992.
I. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University ofWisconsin -Milwaukee, 1996.
I. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999.
A. Reyes. Gelfand-Kirillov Dimension of Skew PBW Extensions. Rev. Colombiana Mat., 47(1):95–111, 2013.
A. Reyes. Ring andModule Theoretic Properties of Skew PBWExtensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2013.
A. Reyes. Jacobson’s conjecture and skew PBWextensions. Rev. Integr. Temas Mat., 32(2):139–152, 2014.
A. Reyes. Armendariz modules over skew PBWextensions. Comm. Algebra, 47(3):1248– 1270, 2019.
J. Richter. Burchnall-Chaundy Theory for Ore Extensions. Makhlouf, A. et.al. (eds. ) Algebra, Geometry andMathematical Physics, AGMP, 85:61–70, 2014.
J. Richter. Centralizers and Pseudo-Degree Functions. In S. Silvestrov andM. Ranci´c, editors, Engineering Mathematics II, volume 179 of Springer Proceedings in Mathematics and Statistics, pages 65–73. Springer, 2016.
A. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Math. Appl. (Soviet Ser.), 330 Kluwer Academic Publishers, 1995.
H. Rosengreen. A non-commutative binomial formula. J. Geom. Phys, 32(4):349–363, 2000.
A. Reyes and C. Rodríguez. TheMcCoy Condition on Skew Poincaré-Birkhoff-Witt Extensions. Commun.Math. Stat., 9(1):1–21, 2021.
J. Richter and S. Silvestrov. On Algebraic Curves for Commuting Elements in q- Heisenberg Algebras. J. Gen. Lie Theory Appl., 3(4):321–328, 2009.
S. Rueda and J. R. Sendra. Linear complete differential resultants and the implicitization of linear DPPEs. J. Symbolic Comput., 45(3):324–341, 2010.
J. Richter and S. Silvestrov. Burchnall-Chaundy Annihilating Polynomials for Commuting Elements in Ore Extension Rings. In V. Abramov, editor, Journal of Physics: Conference Series 2010, volume 346 of Algebra, Geometry, andMathematical Physics, pages 17–41. IOP Publishing, Bristol, 2012.
J. Richter and S. Silvestrov. Centralizers in Ore Extensions of Polynomial Rings. International Electronic Journal of Algebra, 15(1):196–207, 2014.
A. Reyes and H. Suárez. A note on zip and reversible skew PBW extensions. Bol.Mat., 23(1):71–79, 2016.
A. Reyes and H. Suárez. Some Remarks About the Cyclic Homology of Skew PBW extensions. Ciencia en Desarrollo, 7(2):99–107, 2016.
A. Reyes and H. Suárez. Bases for Quantum Algebras and Skew Poincaré-Birkhoff- Witt-Extensions. Momento, 54(1):54–75, 2017.
A. Reyes and H. Suárez. Enveloping algebra and skew Calabi-Yau Algebras over skew Poincaré-Birkhoff-Witt extensions. Far East J.Math. Sci., 102(2):373–397, 2017.
A. Reyes and H. Suárez. Burchnall-Chaundy theory for skew Poincaré-Birkhoff-Witt extensions. Far East J.Math. Sci., 106(1):237–252, 2018.
A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr. Algebra Geom., 60(2):197–216, 2019.
A. Reyes andH. Suárez. Skew Poincaré-Birkhoff-Witt extensions overweak compatible rings. J. Algebra Appl., 19(12):2050225(1)–2050225(21), 2020.
A. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(3):529– 559, 2022.
R. Resco, L.W. Small, and A.Wadsworth. Tensor Products of Division Rings and Finite Generation of Subfields. Proc. Amer.Math. Soc., 77(1):7–10, 1979.
H. Suárez, F. Anaya, and A. Reyes. Propiedad  en extensiones PBW torcidas graduadas. Ciencia en Desarrollo, 12(1):33–41, 2021.
I. Schur. Über vertauschbare lineare Differentialausdrücke. BerlinMath. Gesellschaft, Sitzungsbericht 3, 3(8):2–8, 1904.
H. Suárez, D. Cáceres, and A. Reyes. Some special types of determinants in graded skew PBW extensions. Rev. Integr. TemasMat., 391(1):91–107, 2021.
H. Suárez, A. Chacón, and A. Reyes. On NI and NJ skew PBW extensions. Comm. Algebra, 50(8):3261–3275, 2022.
Y. Sharifi. Centralizers in Associative Algebras. PhD thesis, Simon Fraser University, 2013.
H. Suárez, O. Lezama, and A. Reyes. Some relations between N-Koszul, Artin-Schelter regular and Calabi-Yau algebras with skew PBW extensions. Ciencia en Desarrollo, 6(2):205–213, 2015.
H. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. ColombianaMat., 51(2):221–238, 2017.
T. H.M. Smits. Skew polynomial rings. Indag.Math. (N.S.), 30:209–224, 1968.
S. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991.
H. Suárez and A. Reyes. A generalized Koszul property for skew PBW extensions. Far East J.Math. Sci., 101(2):301–320, 2017.
H. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J.Math. (Springer)., 12(1):247–263, 2023.
S. Silvestrov, C. Svensson, and M. de Jeu. Algebraic Dependence of Commuting Elements in Algebras. In Sergei Silvestrov, Eva Paal, Viktor Abramov, and Alexander Stolin, editors, Generalized Lie Theory inMathematics, Physics and Beyond. Springer, Berlin, Heidelberg, 2009, pp. 265–280.
H. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569– 4580, 2017.
H. Suárez. N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2017.
J. P. Tignol. Value Functions on Simple Algebras, and Associated Graded Rings. Springer Monographs inMathematics. Springer, Cham, 2015.
A. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In S. Silvestrov, A.Malyarenko, and M. Ranˇci´c, editors, Algebraic Structures and Applications. SPAS 2017, volume 317 of Springer Proc.Math. Stat., pages 469–490. Springer, Cham, 2020.
R. Twarok. Representations for Selected Types of Diffusion Systems. In: E. Kapuscik and A. Horzela (eds). Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland,World Scientific Publishing Co. Pte. Ltd., pp. 615–620, 2002.
V. A. Ufnarovskii. Combinatorial and asymptotic methods in algebra. Algebra – 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl.Mat. Fund. Napr, 57:5–177, 1990.
H. Venegas. Zariski cancellation problem for skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2020.
A.P. Veselov. Hamiltonian formalism for the Novikov-Krichever equations for the commutativity of two operators. Funct. Anal. Appl., 13(1):1–6, 1979.
A. P. Veselov. Integrable maps. RussianMath. Surveys, 46(5):1–51, 1991.
N. Ja. Vilenkin and A. U. Klimyk. Representation of Lie Groups and Special Functions. Kluwer Academic Publishers, 1995.
P. vanMoerbeke and D.Mumford. The spectrumof difference operators and algebraic curves. ActaMath., 143:93–154, 1979.
G.Wilson. Commuting flows and conservation lows for Lax equations. Math. Proc. Camb. Phil. Soc., 86:131–143, 1979.
G.Wilson. Hamiltonian and algebro-geometric integrals of stationary equations of KdV type. Math. Proc. Camb. Phil. Soc., 87:295–305, 1980.
E. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990.
E.Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm.Math. Phys., 137(1):29–66, 1991.
S. L.Woronowicz. Twisted SU(2)-Group. An Example of a Non-commutative Differential Calculus. Publ. Res. Inst.Math. Sci., 23:117–181, 1987.
H. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN. Publ. RIMS Kyoto Univ., 25(3):503–520, 1989.
G. Yunus, Z. Gao, and A. Obul. Gröbner-Shirshov Basis of Quantum Groups. Algebra Colloq., 22(3):495–516, 2015.
A. Zaks. Dedekind subrings of [x1,x2, . . . ,xn] are rings of polynomials. Israel J.Math., 9:285–289, 1971.
A. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991.
Z. Y. Zhang, C. M. Yuan, and X. S. Gao. Matrix Formulae of Differential Resultant for First Order Generic Ordinary Differential Polynomials. In R. Feng, Ws. Lee, and Y. Sato, editors, 9th Asian Symposium (ASCM2009), Fukuoka, December 2009, 10th Asian Symposium (ASCM2012), Beijing, October 2012, Contributed Papers and Invited Talks, ComputerMathematics, pages 479–503. Springer Berlin, Heidelberg, 2014.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv vii, 120 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86565/2/1016069203.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86565/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86565/4/1016069203.2024.pdf.jpg
bitstream.checksum.fl_str_mv f641b57734c17e9a7e96a131773cf9a2
eb34b1cf90b7e1103fc9dfd26be24b4a
6a49e2c9aaf789014e06eb0d33422894
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089313781022720
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Villamil, Milton Armando767f31307c790697ee2bf5d2c4f57583600Niño Torres, Diego Arturod7596f25bf9c21fa97f66fa0103e5dbb2024-07-18T16:08:55Z2024-07-18T16:08:55Z2023https://repositorio.unal.edu.co/handle/unal/86565Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/In this thesis, we study algebro-geometric characterizations of commuting differential operators in families of semi-graded rings. First, we present some ring-theoretical notions of semi-graded rings that are necessary throughout the thesis. We include a non-exhaustive list of noncommutative rings that are particular examples of these rings. Second, to motivate the study of commuting differential operators beloging to noncommutative algebras, and hence to develop a possible Burchnall-Chaundy (BC) theory for them, we review algebraic and matrix results appearing in the literature on the theory of these operators in some families of semi-graded rings. Third, we introduce the notion of pseudo-multidegree function as a generalization of pseudo-degree function, and hence we establish a criterion to determine whether the centralizer of an element has finite dimension over a noncommutative ring having PBW basis. In this way, we formulate a BC theorem for rings having pseudo-multidegree functions. We illustrate our results with families of algebras appearing in ring theory and noncommutative geometry. Fourth, we develop a first approach to the BC theory for quadratic algebras having PBW bases defined by Golovashkin and Maksimov. We prove combinatorial properties on products of elements in these algebras, and then consider the notions of Sylvester matrix and resultant for quadratic algebras with the purpose of exploring common right factors. Then, by using the concept of determinant polynomial, we formulate the version of BC theory for these algebras. We present illustrative examples of the assertions about these algebras. Finally, we establish some bridging ideas with the aim of extending results on centralizers for graded rings to the setting of semi-graded rings.En esta tesis, estudiamos caracterizaciones algebro-geométricas de operadores diferenciales conmutativos en familias de anillos semi-graduados. Primero, presentamos algunas nociones de la teoría de anillos de anillos semi-graduados que son necesarias a lo largo de la tesis. Incluimos una lista no exhaustiva de anillos no conmutativos que son ejemplos particulares de estos anillos. Segundo, para motivar el estudio de operadores diferenciales conmutativos pertenecientes a álgebras no conmutativas, y así desarrollar una posible teoría Burchnall-Chaundy (BC) para ellos, consideramos resultados algebraicos y matriciales presentes en la literatura sobre la teoría de estos operadores en algunas familias de anillos semi-graduados. Tercero, introducimos la noción de función pseudo-multigrado como una generalización de función pseudo-grado, y así establecemos un criterio para determinar si el centralizador de un elemento tiene dimensión finita sobre un anillo no conmutativo con base PBW. De esta manera, formulamos un teorema BC para anillos que tienen funciones pseudo-multigrado. Ilustramos nuestros resultados con familias de álgebras presentes en la teoría de anillos y la geometría no conmutativa. Cuarto, desarrollamos un primer acercamiento a la teoría BC para las álgebras cuadráticas con base PBW definidas por Golovashkin y Maksimov. Demostramos propiedades combinatoriales sobre productos de elementos en estas álgebras, y luego consideramos las nociones de matriz de Sylvester y resultante para álgebras cuadráticas con el fin de explorar factores comunes a derecha. Después, utilizando el concepto de determinante polinomial, formulamos la versión de la teoría BC para estas álgebras. Presentamos ejemplos ilustrativos de las afirmaciones sobre estas álgebras. Finalmente, formulamos algunas ideas con el propósito de extender resultados sobre centralizadores para anillos graduados al contexto de los anillos semi-graduados. (Texto tomado de la fuente)DoctoradoDoctor en Ciencias - Matemáticasvii, 120 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::516 - Geometría510 - Matemáticas::512 - ÁlgebraOperadores diferencialesDifferential operatorsAnillos (Álgebra)Rings (Algebra)Semi-graded ringQuantum algebraOre extensionPBW basisValuationSylvester matrixResultantDeterminant polynomialCentralizerGelfand-Kirillov dimensionAnillo semi-graduadoÁlgebra cuánticaExtensión de OreBase PBWValuaciónMatriz de SylvesterResultantePolinomio determinanteCentralizadorDimensión de Gelfand-KirillovTeoría de anillosRing theoryMatriz de SylvesteAlgebro-geometric characterizations of commuting differential operators in semi-graded ringsCaracterizaciones algebro-geométricas de operadores diferenciales conmutativos en anillos semi-graduadosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDV. A. Artamonov. Derivations of Skew PBW-Extensions. Commun. Math. Stat., 3:449– 457, 2015.M. Artin and J. T. Stafford. Noncommutative graded domains with quadratic growth. Invent. Math., 122(1):231–276, 1995.V. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992.V. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023.J. L. Burchnall and T. W. Chaundy. Commutative Ordinary Differential Operators. Proc. London Math. Soc., 2(21):420–440, 1923.J. L. Burchnall and T. W. Chaundy. Commutative Ordinary Differential Operators. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 118:557–583, 1928.J. P. Bell. Centralizers in domains of finite Gelfand-Kirillov dimension. Bull. London Math. Soc., 41(3):559–562, 2009.G. Carra’-Ferro. A resultant theory for systems of linear PDEs. In Proc. of Modern Group Analysis, volume 35, 1994.G. Carra’-Ferro. A resultant theory for the systems of two ordinary algebraic differential equations. Appl. Algebra Engrg. Comm. Comput, 8:539–560, 1997.R. C. Carlson and K. R. Goodearl. Commutants of Ordinary Differential Operators. J. Diff. Equat., 35:339–365, 1980.M. Chardin. Differential resultants and subresultants. In L. Budach, editor, Proceedings of Fundamentals of Computation Theory. FCT 1991., volume 529 of Lecture Notes in Computer Science 529, pages 180–189. Springer, Berlin, Heidelberg, 1991.D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015.P. M. Cohn. Skew Fields, Theory of General Division Rings. Cambridge University Press, 1995.A. Chacón and A. Reyes. On the schematicness of some Ore polynomials of higher order generated by homogeneous quadratic relations. J. Algebra Appl., https://www. worldscientific.com/doi/abs/10.1142/S021949882550207X, 2024.M. de Jeu, C. Svensson, and S. Silvestrov. Algebraic curves for commuting elements in the q-deformed Heisenberg algebra. J. Algebra, 321(4):1239–1255, 2009.F. Dumas. Sous-corps de fractions rationnelles des corps gauches de séries de laurent. In Topics in Invariant Theory, volume 1478 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1991.A. Lj. Eri´c. The resultant of non-commutative polynomials. Matematiˇcki Vesnik, 60(1):3–8, 2008.J. Gaddis. PBW Deformations of Artin-Schelter Regular Algebras and Their Homogenizations. PhD thesis, University of Wisconsin-Milwaukee, USA, 2013.K. R. Goodearl and R. B. Warfield Jr. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004.A. V. Golovashkin and V. M. Maksimov. Skew Ore polynomials of higher orders generated by homogeneous quadratic relations. Russian Math. Surveys, 53(2):384–386, 1998.A. V. Golovashkin and V. M. Maksimov. On algebras of skew polynomials generated by quadratic homogeneous relations. J. Math. Sci. (N.Y.), 129(2):3757–3771, 2005.R.C. Goodearl. Centralizers in differential, pseudodifferential, and fractional differential operator rings. Rocky Mountain J. Math., 13(4):573–618, 1983.T. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990.F. H. Jackson. On q-functions and a certain difference operator. Trans. Roy. Soc. Edin., 46:253–281, 1908.F. H. Jackson. A q-form of taylor’s theorem. Mess. Math., 38:62–64, 1909.F. H. Jackson. On q-definite integrals. Quart. J. Pure Appl. Math., 41:193–203, 1910.D. A. Jordan. Finite-dimensional simple modules over certain iterated skew polynomial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995.D. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001.I. M. Krichever and S. P. Novikov. Holomorphic bundles over algebraic curves, and non-linearequations. Uspekhi Mat. Nauk, 35(6):47–68, 1980.J. Richter. Algebraic Properties of Ore Extensions and their Commutative Subrings. PhD thesis, Lund University, 2014.S. A. Amitsur. Commutative Linear Differential Operators. Pacific J.Math., 8(1):1–10, 1958.J. Apel. Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung. PhD thesis, University of Leipzig, 1998.M. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., 23(05):2450089, 2024.J. L. Burchnall and T. W. Chaundy. Commutative Ordinary Differential Operators. ii.—the identity pn Æ qm. Proc. R. Soc. Lond. A., 134:471–485, 1931.H. B. Benaoum. (q,h)-analogue of Newton’s binomial formula. J. Phys. A:Math. Gen., 32(10):2037–2040, 1999.G. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In S. Geun Hahn, H. Chul Myung, and E. Zelmanov, editors, Recent Progress in Algebra. An International Conference on Recent Progress in Algebra, August 11–15, KAIST, Taejon, South Korea, volume 224 of ContemporaryMathematics, pages 29–45. AmericanMathematical Society, Providence, Rhode Island, 1999.G. M. Bergman. Centralizers in free associative algebras. Trans. Amer. Math. Soc., 137:327–344, 1969.R. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992.A. Bell and K. Goodearl. Uniformrank over differential operator rings and Poincaré- Birkhoff-Witt extensions. Pacific J.Math., 131(1):13–37, 1988.K. Brown and K. R.Goodearl. Lectures on AlgebraicQuantumGroups. Birkäuser-Verlag, 2002.G. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998.J. P. Bell and D. Rogalski. Z-Graded Simple Rings. Trans. Amer.Math. Soc., 368(6):4461– 4496, 2016.A. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin,Milwaukee, preprint, 1990.W. S. Brown and F. Traub. On the Euclid’s Algorithm and the Theory of Subresultants. J. ACM, 18:505–514, 1971.J. P. Bell and J. J. Zhang. Zariski cancellation problem for noncommutative algebras. SelectaMath. (N.S.), 23(3):1709–1737, 2017.A. Cayley. On the Theory of Elimination. Cambridge and DublinMath. J., 3(1):116–120, 1848.A. Chacón. On the Noncommutative Geometry of Semi-graded Rings. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2022.P. M. Cohn. Quadratic extensions of skew fields. Proc. Lond. Math. Soc, 11(3):531–556, 1961.P.M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985.G. Collins. Subresultant and reduced polynomial remainder sequences. J. ACM, 16:708–712, 1967.S. C. Coutinho. A Primer of Algebraic D-modules. Cambridge University Press. London Mathematical Society, Student Texts 33, 1995.F. Calderón and A. Reyes. Some interactions between Hopf Galois extensions and noncommutative rings. Univ. Sci., 27(2):58–161, 2022.A. Chacón and A. Reyes. Noncommutative scheme theory and the Serre-Artin-Zhang- Verevkin theorem for semi-graded rings. [Submitted for publication].T. Cassidy and B. Shelton. Generalizing the notion of Koszul algebra. Math.Z., 260(1):93–14, 2008.T. Cassidy andM. Vancliff. Generalizations of graded Clifford algebras and of complete intersections. J. Lond.Math. Soc., 81(1):91–112, 2010.J. Dixmier. Sur les algébres de Weyl. Bull. Soc.Math. France, 96:209–242, 1968.V. G. Drinfeld. Quantumgroups. J.Math. Sci., 41(2):898–915, 1988.H. Exton. q-Hypergeometric functions and applications. Ellis Horwood Limited Chichester, 1983W. Fajardo. Extended modules over skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2018.W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Springer, Cham, 2020.H. Flanders. Commutative linear differential operators. Department ofMathematics, University of California, Berkeley, Technical Report No. 1, 1955.W. Fajardo, O. Lezama, C. Payares, A. Reyes, and C. Rodríguez. Introduction to Algebraic Analysis on Ore Extensions. In A.Martsinkovsky, editor, Functor Categories, Model Theory, Algebraic Analysis and ConstructiveMethods FCMTCCT2 2022, Almería, Spain, July 11-15, Invited and Selected Contributions, volume 450 of Springer Proceedings inMathematics & Statistics, pages 45–116. Springer, Cham, 2024.J. Gaddis. PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl., 15(04):1650064, 2016.J. Gaddis. PBW deformations of Artin-Schelter regular algebras. J. Algebra Appl., 15(04):1650064, 2016.C. Gallego. Matrix methods for projective modules over ¾-PBWextensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2015.I. M. Gelfand and A. A. Kirillov. On fields connected with the enveloping algebras of Lie algebras. Dokl. Akad. Nauk, 167(3):503–505, 1966.I. M. Gelfand and A. A. Kirillov. Sur les corps liés aux algèbres enveloppantes des algèbres de Lie. Publ.Math. IHES, 31:5–19, 1966.C. Gallego and O. Lezama. Gröbner Bases for Ideals of ¾-PBW Extensions. Comm. Algebra, 39(1):50–75, 2011.C. Gallego and O. Lezama. Projective modules and Gröbner bases for skew PBW extensions. DissertationesMath, 521:1–50, 2017.O.W. Greenberg and A.M. L.Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965.H. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270–273, 1953.A. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995.M. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra, 28(1):75–97, 2020.O. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005.M. Havlíˇcek, A. U. Klimyk, and S. Pošta. Central elements of the algebrasU0(som) and U(isom). Czech. J. Phys., 50(1):79–84, 2000.S. Higuera and A. Reyes. A survey on the fusible property for skew PBW extensions. J. Algebr. Syst., 10(1):1–29, 2022.S. Higuera and A. Reyes. On weak annihilators and nilpotent associated primes of skew PBW extensions. Comm. Algebra, 51(11):4839–4861, 2023.L. Hellström and S. Silvestrov. Commuting Elements in q¡Deformed Heisenberg Algebras. World Scientific Publishing, Co., Inc. River Edge, NJ, 2000.L. Hellström and S. Silvestrov. Ergodipotentmaps and commutativity of elements in noncommutative rings and algebras with twisted intertwining. J. Algebra, 314(1):17– 41, 2007. IVA. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A., 34(29):5815– 5834, 2001.F. H. Jackson. A q-series corresponding to taylo’s series. Mess.Math., 39:26–28, 1909.F. H. Jackson. q-definite equations. American J.Math., 32:305–314, 1910.N. Jacobson. Structure of rings. Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Providence, RI, 1964.J. C. Jantzen. Lectures on Quantum Groups. Amer.Math. Soc. Vol. 6, 1996.M. Jimbo. A q-Difference analogue ofU(g) and the Yang-Baxter Equation. Lett.Math. Phys., 10(1):63–69, 1985.A. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Liedeformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995.D. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000.J. Jaramillo and A. Reyes. Symmetry and Reversibility Properties for Quantum Algebras and Skew Poincaré-Birkhoff-Witt Extensions. Ingeniería y Ciencia, 14(27):29–52, 2018.D. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb.Math. Soc., 39(3):461–472, 1996.H. P. Jakobsen and H. Zhang. The Center of the QuantizedMatrix Algebra. J. Algebra, 196(2):458–474, 1997.K. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Silvestrov and E. Paal and V. Abramov and A. Stolin (eds).Generalized Lie Theory inMathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009.G. R. Krause and T. H. Lenagan. Growth of Algebras and Gelfand-Kirillov Dimension. Revised Edition. Graduate Studies inMathematics 22. Amer.Math. Soc., Providence, RI, 2000.E. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer.Math. Soc., 127(11):3161–3167, 1999.I. M. Krichever. Algebraic curves and commuting matricial differential operators. Funct. Anal. Appl., 10(2):144–146, 1976.I.M. Krichever. Integration of nonlinear equations by methods of algebraic geometry. Funct. Anal. Appl., 11:12–26, 1977.I. M. Krichever. Methods of algebraic geometry in the theory of nonlinear equations. UspekhiMat. Nauk, 32(6):183–208, 1977.I.M. Krichever. Algebraic curves and non-linear difference equations. Comm.Moscow Math.Soc., 33:170–171, 1978.I.M. Krichever. Commutative rings of ordinary linear differential operators. Funktz. Anal. Priloz., 12(3):20–31, 1978.I. M. Krichever. Holomorphic fiberings and nonlinear equations. finite zone solutions of rank 2. SovietMath. Dokl., 20:650–654, 1979.K. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantumspin chains. J. Phys. A:Math. Gen., 30(9):3165–3173, 1997.R. S. Kulkarni. Irreducible Representations of Witten’s deformations of U(sl2). J. Algebra, 214(1):64–91, 1999.D. Larsson. Burchnal-Chaundy theory, Ore extensions and ¾-differential operators. J. Algebra Appl., 13(07):1450049, 2014.O. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015.L. Le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994.L. Le Bruyn. Central singularities of quantumspaces. J. Algebra, 177(1):142–153, 1995.V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, University of Kaiserslautern, 2005, Kaiserslautern.O. Lezama. Computation of point modules of finitely semi-graded rings. Comm. Algebra, 48(2):866–878, 2020.O. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semigraded Rings. Commun.Math. Stat., 9:347—-378, 2021.O. Lezama and J. Gómez. Koszulity and PointModules of Finitely Semi-Graded Rings and Algebras. Symmetry, 11(7):1–22, 2019.Z. Li. A Subresultant Theory for Linear Differential, Linear Difference and Ore Polynomials, with Applications. PhD thesis, Johannes Kepler Universität Linz, 1996.Z. Li. A Subresultant Theory for Ore Polynomials with Applications. In V.Weispfenning and B. Trager, editors, Proceedings of the 1998 International Symposiumon Symbolic and Algebraic Computation, ISSAC’ 98, pages 132–139, New York, NY, USA, 1998. Association for ComputingMachinery.O. Lezama and E. Latorre. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput., 27(4):361–389, 2017.R. Loos. Generalized Polynomial Remainder Sequence. In B. Buchberger, G. Collins, and R. Loos, editors, Computer Algebra, Symbolic and Algebraic Computation, Springer-Verlag,Wien-New York, pages 115–137. Springer, 1982.M. Lothaire. Algebraic Combinatorics onWords. First edition. Encyclopedia ofMathematics and Its Applications. 2002.O. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014.M. Louzari and A. Reyes. Generalized RigidModules and Their Polynomial Extensions. In M. Siles Molina, L. El Kaoutit, M. Louzari, L. Ben Yakoub, and M. Benslimane, editors, Associative and Non-Associative Algebras and Applications. MAMAA 2018, volume 311 of Springer Proceedings inMathematics Statistics, pages 147–158. Springer, Cham, 2020.M. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. ColombianaMat., 54(1):39–63, 2020.D. Larsson and S. Silvestrov. Burchnall-Chaundy Theory for q-Difference Operators and q-Deformed Heisenberg Algebras. J. NonlinearMath. Phys., 10(2):95–106, 2003.O. Lezama and H. Venegas. Center of skew PBW extensions. Internat. J. Algebra Comput., 30(08):1625–1650, 2020.O. Lezama and H. Venegas. The center of the total ring of fractions. SerdicaMath. J., 46(2):109–120, 2020.O. Lezama and H. Venegas. Gelfand-Kirillov dimension for rings. São Paulo J.Math. Sci., 14(1):207–222, 2020.V.M.Maksimov. A generalization of the ring of Ore skew polynomials. RussianMath. Surveys, 55(4):817–818, 2000.V. M. Maksimov. Canonical forms of skew polynomial rings. J. Math. Sci. (N.Y.), 126(2):1064–1076, 2005.B. Mishra. Algorithmic Algebra. Monographs in Computer Science, Springer New York, 1993.L.Makar-Limanov. Centralizers in the quantumplane algebra. In Joseph Bernstein, Vladimir Hinich, and Alexei Melnikov, editors, Studies in Lie Theory, volume 243. Birkhäuser Boston, 2006.L.Makar-Limanov and E. Previato. Centralizers of differential operators of rank h. J. Geom. Phys., 188:104812, 2023.J.McConnell and J. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies inMathematics. AmericanMathematical Society, Second edition, 2001.A. Y.Morozov and S. R. Shakirov. New and old results in resultant theory. Sov. Phys. Usp., 163(2):587–617, 2010.M. Mulase. Algebraic Theory of the KP Equations. Perspectives in Mathematical Physics, 3:151–217, 1994.D. Mumford. An algebro-geometric construction of commuting operators of solutions to the Toda lattice equation, Korteweg deVries equation and related non-linear equations. Proc. Int. Symp. Algebraic Geometric, 346:115–153, 1977.S.McCallum and F.Winkler. Differential Resultants. In ITMWeb Conf. International Conference onMathematics (ICM 2018), volume 40–61 of Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics, 2018.A. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Bol.Mat., 24(2):131–148, 2017.A. Niño and A. Reyes. Some remarks about minimal prime ideals of skew Poincaré- Birkhoff-Witt extensions. Algebra DiscreteMath., 30(2):207–229, 2020.A. Niño,M. C. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 48(12):5038–5055, 2020.E. Noether andW. Schmeidler. Moduln in nichtkommutativen bereichen, insbesondere aus differential - und differenzenausdrücken. Math. Z., 8:1–35, 1920.C. N˘ast˘asescu and F. van Oystaeyen. Graded Ring Theory. North Holland. Amsterdam, 1982.O. Ore. Linear Equations inNon-commutative Fields. Ann. ofMath. (2), 32(3):463–477, 1931.O. Ore. Theory of non-commutative polynomials. Ann. ofMath. (2), 34(3):480–508, 1933.V. L. Ostrovskii and Yu. S. Samoilenko. Representation of ¤-algebras with two generators and polynomial relations. Journal ofMathematical Sciences, 59(5):1107–1113, 1989.C. Phan. The Yoneda Algebra of a Graded Ore Extension. Comm. Algebra, 40(3):834– 844, 2012.E. Previato. Seventy years of spectral curves: 1923-1993. In Integrable Systems and Quantum Groups, Lecture Notes inMathematics Vol, 1620, pages 419–481. Springer, Berlin, 1996.E. Previato. Burchnall-Chaundy bundles. In P. Newstead, editor, Algebraic Geometry, volume 200 of Lecture Notes in Pure and Appl. Math. EUROPROJ, Catania, 1993 / Barcelona, 1994, pages 377–383.Marcel Dekker, New York, 1998.E. Previato, L. Sonia, and M. A. Zurro. Burchnall-Chaundy polynomials for matrix ODOs and Picard-Vessiot Theory. Phys. D: Nonlinear Phenom., 453:133811, 2023.P. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002.E. Previato and G. Wilson. Differential operators and rank 2 bundles over elliptic curves. Compos.Math., 1(81):107–119, 1992.I. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University ofWisconsin -Milwaukee, 1996.I. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999.A. Reyes. Gelfand-Kirillov Dimension of Skew PBW Extensions. Rev. Colombiana Mat., 47(1):95–111, 2013.A. Reyes. Ring andModule Theoretic Properties of Skew PBWExtensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2013.A. Reyes. Jacobson’s conjecture and skew PBWextensions. Rev. Integr. Temas Mat., 32(2):139–152, 2014.A. Reyes. Armendariz modules over skew PBWextensions. Comm. Algebra, 47(3):1248– 1270, 2019.J. Richter. Burchnall-Chaundy Theory for Ore Extensions. Makhlouf, A. et.al. (eds. ) Algebra, Geometry andMathematical Physics, AGMP, 85:61–70, 2014.J. Richter. Centralizers and Pseudo-Degree Functions. In S. Silvestrov andM. Ranci´c, editors, Engineering Mathematics II, volume 179 of Springer Proceedings in Mathematics and Statistics, pages 65–73. Springer, 2016.A. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Math. Appl. (Soviet Ser.), 330 Kluwer Academic Publishers, 1995.H. Rosengreen. A non-commutative binomial formula. J. Geom. Phys, 32(4):349–363, 2000.A. Reyes and C. Rodríguez. TheMcCoy Condition on Skew Poincaré-Birkhoff-Witt Extensions. Commun.Math. Stat., 9(1):1–21, 2021.J. Richter and S. Silvestrov. On Algebraic Curves for Commuting Elements in q- Heisenberg Algebras. J. Gen. Lie Theory Appl., 3(4):321–328, 2009.S. Rueda and J. R. Sendra. Linear complete differential resultants and the implicitization of linear DPPEs. J. Symbolic Comput., 45(3):324–341, 2010.J. Richter and S. Silvestrov. Burchnall-Chaundy Annihilating Polynomials for Commuting Elements in Ore Extension Rings. In V. Abramov, editor, Journal of Physics: Conference Series 2010, volume 346 of Algebra, Geometry, andMathematical Physics, pages 17–41. IOP Publishing, Bristol, 2012.J. Richter and S. Silvestrov. Centralizers in Ore Extensions of Polynomial Rings. International Electronic Journal of Algebra, 15(1):196–207, 2014.A. Reyes and H. Suárez. A note on zip and reversible skew PBW extensions. Bol.Mat., 23(1):71–79, 2016.A. Reyes and H. Suárez. Some Remarks About the Cyclic Homology of Skew PBW extensions. Ciencia en Desarrollo, 7(2):99–107, 2016.A. Reyes and H. Suárez. Bases for Quantum Algebras and Skew Poincaré-Birkhoff- Witt-Extensions. Momento, 54(1):54–75, 2017.A. Reyes and H. Suárez. Enveloping algebra and skew Calabi-Yau Algebras over skew Poincaré-Birkhoff-Witt extensions. Far East J.Math. Sci., 102(2):373–397, 2017.A. Reyes and H. Suárez. Burchnall-Chaundy theory for skew Poincaré-Birkhoff-Witt extensions. Far East J.Math. Sci., 106(1):237–252, 2018.A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr. Algebra Geom., 60(2):197–216, 2019.A. Reyes andH. Suárez. Skew Poincaré-Birkhoff-Witt extensions overweak compatible rings. J. Algebra Appl., 19(12):2050225(1)–2050225(21), 2020.A. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(3):529– 559, 2022.R. Resco, L.W. Small, and A.Wadsworth. Tensor Products of Division Rings and Finite Generation of Subfields. Proc. Amer.Math. Soc., 77(1):7–10, 1979.H. Suárez, F. Anaya, and A. Reyes. Propiedad  en extensiones PBW torcidas graduadas. Ciencia en Desarrollo, 12(1):33–41, 2021.I. Schur. Über vertauschbare lineare Differentialausdrücke. BerlinMath. Gesellschaft, Sitzungsbericht 3, 3(8):2–8, 1904.H. Suárez, D. Cáceres, and A. Reyes. Some special types of determinants in graded skew PBW extensions. Rev. Integr. TemasMat., 391(1):91–107, 2021.H. Suárez, A. Chacón, and A. Reyes. On NI and NJ skew PBW extensions. Comm. Algebra, 50(8):3261–3275, 2022.Y. Sharifi. Centralizers in Associative Algebras. PhD thesis, Simon Fraser University, 2013.H. Suárez, O. Lezama, and A. Reyes. Some relations between N-Koszul, Artin-Schelter regular and Calabi-Yau algebras with skew PBW extensions. Ciencia en Desarrollo, 6(2):205–213, 2015.H. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. ColombianaMat., 51(2):221–238, 2017.T. H.M. Smits. Skew polynomial rings. Indag.Math. (N.S.), 30:209–224, 1968.S. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991.H. Suárez and A. Reyes. A generalized Koszul property for skew PBW extensions. Far East J.Math. Sci., 101(2):301–320, 2017.H. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J.Math. (Springer)., 12(1):247–263, 2023.S. Silvestrov, C. Svensson, and M. de Jeu. Algebraic Dependence of Commuting Elements in Algebras. In Sergei Silvestrov, Eva Paal, Viktor Abramov, and Alexander Stolin, editors, Generalized Lie Theory inMathematics, Physics and Beyond. Springer, Berlin, Heidelberg, 2009, pp. 265–280.H. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569– 4580, 2017.H. Suárez. N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., Colombia, 2017.J. P. Tignol. Value Functions on Simple Algebras, and Associated Graded Rings. Springer Monographs inMathematics. Springer, Cham, 2015.A. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In S. Silvestrov, A.Malyarenko, and M. Ranˇci´c, editors, Algebraic Structures and Applications. SPAS 2017, volume 317 of Springer Proc.Math. Stat., pages 469–490. Springer, Cham, 2020.R. Twarok. Representations for Selected Types of Diffusion Systems. In: E. Kapuscik and A. Horzela (eds). Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland,World Scientific Publishing Co. Pte. Ltd., pp. 615–620, 2002.V. A. Ufnarovskii. Combinatorial and asymptotic methods in algebra. Algebra – 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl.Mat. Fund. Napr, 57:5–177, 1990.H. Venegas. Zariski cancellation problem for skew PBW extensions. PhD thesis, Universidad Nacional de Colombia, Bogotá, D. C., 2020.A.P. Veselov. Hamiltonian formalism for the Novikov-Krichever equations for the commutativity of two operators. Funct. Anal. Appl., 13(1):1–6, 1979.A. P. Veselov. Integrable maps. RussianMath. Surveys, 46(5):1–51, 1991.N. Ja. Vilenkin and A. U. Klimyk. Representation of Lie Groups and Special Functions. Kluwer Academic Publishers, 1995.P. vanMoerbeke and D.Mumford. The spectrumof difference operators and algebraic curves. ActaMath., 143:93–154, 1979.G.Wilson. Commuting flows and conservation lows for Lax equations. Math. Proc. Camb. Phil. Soc., 86:131–143, 1979.G.Wilson. Hamiltonian and algebro-geometric integrals of stationary equations of KdV type. Math. Proc. Camb. Phil. Soc., 87:295–305, 1980.E. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990.E.Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm.Math. Phys., 137(1):29–66, 1991.S. L.Woronowicz. Twisted SU(2)-Group. An Example of a Non-commutative Differential Calculus. Publ. Res. Inst.Math. Sci., 23:117–181, 1987.H. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN. Publ. RIMS Kyoto Univ., 25(3):503–520, 1989.G. Yunus, Z. Gao, and A. Obul. Gröbner-Shirshov Basis of Quantum Groups. Algebra Colloq., 22(3):495–516, 2015.A. Zaks. Dedekind subrings of [x1,x2, . . . ,xn] are rings of polynomials. Israel J.Math., 9:285–289, 1971.A. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991.Z. Y. Zhang, C. M. Yuan, and X. S. Gao. Matrix Formulae of Differential Resultant for First Order Generic Ordinary Differential Polynomials. In R. Feng, Ws. Lee, and Y. Sato, editors, 9th Asian Symposium (ASCM2009), Fukuoka, December 2009, 10th Asian Symposium (ASCM2012), Beijing, October 2012, Contributed Papers and Invited Talks, ComputerMathematics, pages 479–503. Springer Berlin, Heidelberg, 2014.BibliotecariosEstudiantesInvestigadoresPúblico generalORIGINAL1016069203.2024.pdf1016069203.2024.pdfTesis de Doctorado en Ciencias Matemáticasapplication/pdf1063455https://repositorio.unal.edu.co/bitstream/unal/86565/2/1016069203.2024.pdff641b57734c17e9a7e96a131773cf9a2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86565/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1016069203.2024.pdf.jpg1016069203.2024.pdf.jpgGenerated Thumbnailimage/jpeg4284https://repositorio.unal.edu.co/bitstream/unal/86565/4/1016069203.2024.pdf.jpg6a49e2c9aaf789014e06eb0d33422894MD54unal/86565oai:repositorio.unal.edu.co:unal/865652024-08-26 23:10:57.101Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=