Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques

A Support Vector Machine Regression (SVMR) algorithm was applied to calculate the epicenter distance using a ten seconds signal, after primary waves arrive at a seismological station near to Bogota - Colombia. This algorithm was tested with 863 records of earthquakes, where the input parameters were...

Full description

Autores:
Ochoa Gutierrez, Luis Hernán
Vargas Jimenez, Carlos Alberto
Niño Vasquez, Luis Fernando
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/68576
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/68576
http://bdigital.unal.edu.co/69609/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
earthquake early warning
support vector machine regression
earthquake
rapid response
epicenter distance
seismic event
seismology
Bogota - Colombia
alerta temprana de terremotos
máquinas de soporte vectorial
terremoto
respuesta rápida
distancia epicentral
evento sísmico
sismología
Bogotá - Colombia
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_0c2d8cb47964fc815fdeb29f617cbdd2
oai_identifier_str oai:repositorio.unal.edu.co:unal/68576
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques
title Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques
spellingShingle Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques
62 Ingeniería y operaciones afines / Engineering
earthquake early warning
support vector machine regression
earthquake
rapid response
epicenter distance
seismic event
seismology
Bogota - Colombia
alerta temprana de terremotos
máquinas de soporte vectorial
terremoto
respuesta rápida
distancia epicentral
evento sísmico
sismología
Bogotá - Colombia
title_short Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques
title_full Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques
title_fullStr Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques
title_full_unstemmed Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques
title_sort Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques
dc.creator.fl_str_mv Ochoa Gutierrez, Luis Hernán
Vargas Jimenez, Carlos Alberto
Niño Vasquez, Luis Fernando
dc.contributor.author.spa.fl_str_mv Ochoa Gutierrez, Luis Hernán
Vargas Jimenez, Carlos Alberto
Niño Vasquez, Luis Fernando
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
earthquake early warning
support vector machine regression
earthquake
rapid response
epicenter distance
seismic event
seismology
Bogota - Colombia
alerta temprana de terremotos
máquinas de soporte vectorial
terremoto
respuesta rápida
distancia epicentral
evento sísmico
sismología
Bogotá - Colombia
dc.subject.proposal.spa.fl_str_mv earthquake early warning
support vector machine regression
earthquake
rapid response
epicenter distance
seismic event
seismology
Bogota - Colombia
alerta temprana de terremotos
máquinas de soporte vectorial
terremoto
respuesta rápida
distancia epicentral
evento sísmico
sismología
Bogotá - Colombia
description A Support Vector Machine Regression (SVMR) algorithm was applied to calculate the epicenter distance using a ten seconds signal, after primary waves arrive at a seismological station near to Bogota - Colombia. This algorithm was tested with 863 records of earthquakes, where the input parameters were an exponential function of waveform envelope estimated by least squares and maximum value of recorded waveforms for each component of the seismic station. Cross validation was applied to normalized polynomial kernel functions, obtaining mean absolute error for different exponents and complexity parameters. The epicenter distance was estimated with 10.3 kilometers of absolute error, improving the results previously obtained for this hypocentral parameter. The proposed algorithm is easy to implement in hardware and can be employed directly in the field, generating fast decisions at seismological control centers increasing the possibilities of effective reactions.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-01-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T07:10:36Z
dc.date.available.spa.fl_str_mv 2019-07-03T07:10:36Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2346-2183
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/68576
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/69609/
identifier_str_mv ISSN: 2346-2183
url https://repositorio.unal.edu.co/handle/unal/68576
http://bdigital.unal.edu.co/69609/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/68408
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.references.spa.fl_str_mv Ochoa Gutierrez, Luis Hernán and Vargas Jimenez, Carlos Alberto and Niño Vasquez, Luis Fernando (2018) Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques. DYNA, 85 (204). pp. 161-168. ISSN 2346-2183
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín - Facultad de Minas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/68576/1/68408-376282-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/68576/2/68408-376282-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv bb7798d5011f27840b97405c6b56ef64
b0525799f60fa20490c64f45e85afc23
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089881670909952
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ochoa Gutierrez, Luis Hernán294c1675-bfc7-4900-9f22-e05288f15bcd300Vargas Jimenez, Carlos Albertoc5cb462f-7dab-464b-9234-270906198d9e300Niño Vasquez, Luis Fernando6335a811-aa46-47b5-9e67-5f63e6e25b143002019-07-03T07:10:36Z2019-07-03T07:10:36Z2018-01-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/68576http://bdigital.unal.edu.co/69609/A Support Vector Machine Regression (SVMR) algorithm was applied to calculate the epicenter distance using a ten seconds signal, after primary waves arrive at a seismological station near to Bogota - Colombia. This algorithm was tested with 863 records of earthquakes, where the input parameters were an exponential function of waveform envelope estimated by least squares and maximum value of recorded waveforms for each component of the seismic station. Cross validation was applied to normalized polynomial kernel functions, obtaining mean absolute error for different exponents and complexity parameters. The epicenter distance was estimated with 10.3 kilometers of absolute error, improving the results previously obtained for this hypocentral parameter. The proposed algorithm is easy to implement in hardware and can be employed directly in the field, generating fast decisions at seismological control centers increasing the possibilities of effective reactions.Se aplicó un algoritmo de máquinas de vector de soporte para calcular la distancia epicentral utilizando una señal de diez segundos, después del arribo de ondas primarias a una estación sismológica cercana a Bogotá - Colombia. Este algoritmo fue probado con 863 registros de terremotos donde los parámetros de entrada fueron una función exponencial de la envolvente estimada para los mínimos cuadrados y el valor máximo de las formas de ondas registradas en cada componente de la estación sísmica. Validación cruzada fue aplicada a funciones kernel polinomiales normalizadas, obteniendo la media del error absoluto para diferentes exponentes y parámetros de complejidad. La distancia epicentral se estimó con 10.3 kilómetros de error absoluto, mejorando los resultados previamente obtenidos para este parámetro hipocentral. El algoritmo propuesto es fácil de implementar y puede ser empleado directamente en campo, generando decisiones rápidas en centros de control sismológico incrementado posibilidades de tener reacciones efectivas.application/pdfspaUniversidad Nacional de Colombia - Sede Medellín - Facultad de Minashttps://revistas.unal.edu.co/index.php/dyna/article/view/68408Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaOchoa Gutierrez, Luis Hernán and Vargas Jimenez, Carlos Alberto and Niño Vasquez, Luis Fernando (2018) Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques. DYNA, 85 (204). pp. 161-168. ISSN 2346-218362 Ingeniería y operaciones afines / Engineeringearthquake early warningsupport vector machine regressionearthquakerapid responseepicenter distanceseismic eventseismologyBogota - Colombiaalerta temprana de terremotosmáquinas de soporte vectorialterremotorespuesta rápidadistancia epicentralevento sísmicosismologíaBogotá - ColombiaFast estimation of earthquake epicenter distance using a single seismological station with machine learning techniquesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL68408-376282-1-PB.pdfapplication/pdf1489049https://repositorio.unal.edu.co/bitstream/unal/68576/1/68408-376282-1-PB.pdfbb7798d5011f27840b97405c6b56ef64MD51THUMBNAIL68408-376282-1-PB.pdf.jpg68408-376282-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9706https://repositorio.unal.edu.co/bitstream/unal/68576/2/68408-376282-1-PB.pdf.jpgb0525799f60fa20490c64f45e85afc23MD52unal/68576oai:repositorio.unal.edu.co:unal/685762023-06-04 23:03:19.533Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co