Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal

ilustraciones, graficas

Autores:
Morales Suárez, Cristian Felipe
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81096
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81096
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
TRANSPORTE BIOLOGICO
TRANSPORTE AXONAL
Transporte por membranas
Análisis de sensibilidad
Bidireccionalidad
Enfermedades neurodegenerativas
Método de elementos Finitos
Transporte axonal
Sentivity Analysis
Bidirectional
Neurodegenerative diseases
Finite element Method
Axonal Transport
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_0be677e0c865f0fb4b8009ad02de420e
oai_identifier_str oai:repositorio.unal.edu.co:unal/81096
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal
dc.title.translated.eng.fl_str_mv Influence and sensitivity analysis of the parameters involved in modeling the dynamics of axonal transport
title Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal
spellingShingle Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
TRANSPORTE BIOLOGICO
TRANSPORTE AXONAL
Transporte por membranas
Análisis de sensibilidad
Bidireccionalidad
Enfermedades neurodegenerativas
Método de elementos Finitos
Transporte axonal
Sentivity Analysis
Bidirectional
Neurodegenerative diseases
Finite element Method
Axonal Transport
title_short Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal
title_full Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal
title_fullStr Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal
title_full_unstemmed Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal
title_sort Análisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonal
dc.creator.fl_str_mv Morales Suárez, Cristian Felipe
dc.contributor.advisor.none.fl_str_mv Cortés Rodriguez, Carlos Julio
Galeano Ureña, Carlos Humberto
dc.contributor.author.none.fl_str_mv Morales Suárez, Cristian Felipe
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
TRANSPORTE BIOLOGICO
TRANSPORTE AXONAL
Transporte por membranas
Análisis de sensibilidad
Bidireccionalidad
Enfermedades neurodegenerativas
Método de elementos Finitos
Transporte axonal
Sentivity Analysis
Bidirectional
Neurodegenerative diseases
Finite element Method
Axonal Transport
dc.subject.other.none.fl_str_mv TRANSPORTE BIOLOGICO
TRANSPORTE AXONAL
Transporte por membranas
dc.subject.proposal.spa.fl_str_mv Análisis de sensibilidad
Bidireccionalidad
Enfermedades neurodegenerativas
Método de elementos Finitos
Transporte axonal
dc.subject.proposal.eng.fl_str_mv Sentivity Analysis
Bidirectional
Neurodegenerative diseases
Finite element Method
Axonal Transport
description ilustraciones, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-01T16:56:31Z
dc.date.available.none.fl_str_mv 2022-03-01T16:56:31Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81096
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81096
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv J. C. Blackwood and L. M. Childs, “An introduction to compartmental modeling for the budding infectious disease modeler,” Letters in Biomathematics, vol. 5, no. 1, pp. 195–221, 2018.
C. Swi¸etaszczyk and L. Jødal, “Derivation and presentation of formulas for drug con- ´ centrations in two-, three- and four-compartment pharmacokinetic models,” Journal of Pharmacological and Toxicological Methods, vol. 100, no. April, pp. 1–11, 2019
E. P. Esteban and G. Meléndez, “A compartment model for total body irradiation,” Informatics in Medicine Unlocked, vol. 20, 2020
G. Craciun, A. Brown, and A. Friedman, “A dynamical system model of neurofilament transport in axons,” Journal of Theoretical Biology, vol. 237, no. 3, pp. 316–322, 2005
A. Brown, L. Wang, and P. Jung, “Stochastic Simulation of Neurofilament Transport in Axons: The “Stop-and-Go” Hypothesis,” Molecular Biology of the Cell, vol. 16(9), no. September, pp. 4243–4255, 2005
Z. Xu and V. W. Tung, “Overexpression of neurofilament subunit M accelerates axonal transport of neurofilaments,” Brain Research, vol. 866, no. 1-2, pp. 326–332, 2000
S. Millecamps and J. P. Julien, “Axonal transport deficits and neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 14, no. 3, pp. 161–176, 2013
R. Perrot, R. Berges, A. Bocquet, and J. Eyer, “Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration,” Molecular Neurobiology, vol. 38, no. 1, pp. 27–65, 2008
S. R. Chada and P. J. Hollenbeck, “Mitochondrial movement and positioning in axons: The role of growth factor signaling,” Journal of Experimental Biology, vol. 206, no. 12, pp. 1985–1992, 2003.
M. J. Barron, P. Griffiths, D. M. Turnbull, D. Bates, and P. Nichols, “The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head,” British Journal of Ophthalmology, vol. 88, no. 2, pp. 286–290, 2004
P. Weiss and H. B. Hiscoe, “Experiments on the Mechanism of Nerve Growth,” The jounal of experimental zoolooy, vol. 107, no. 3, p. 80, 1948
R. J. Lasek, “Axonal transport: a dynamic view of neuronal structures,” Trends in Neurosciences, vol. 3, no. 4 C, pp. 87–91, 1980.
S. Maday, A. E. Twelvetrees, A. J. Moughamian, and E. L. Holzbaur, “Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation,” Neuron, vol. 84, no. 2, pp. 292–309, 2014
M. A. Welte, “Bidirectional transport along microtubules,” Current Biology, vol. 14, no. 13, pp. 525–537, 2004
P. J. Hollenbeck and D. Bray, “Rapidly transported organelles containing membrane and cytoskeletal components: Their relation to axonal growth,” Journal of Cell Biology, vol. 105, no. 6 I, pp. 2827–2835, 1987
M. Vershinin, B. C. Carter, D. S. Razafsky, S. J. King, and S. P. Gross, “Multiplemotor based transport and its regulation by Tau,” Proc Natl Acad Sci U S A, vol. 104, no. 1, pp. 87–92, 2007
S. Konzack, E. Thies, A. Marx, E. M. Mandelkow, and E. Mandelkow, “Swimming against the tide: Mobility of the microtubule-associated protein tau in neurons,” Journal of Neuroscience, vol. 27, no. 37, pp. 9916–9927, 2007
T. P. Hasaka, K. A. Myers, and P. W. Baas, “Role of actin filaments in the axonal transport of microtubules,” Journal of Neuroscience, vol. 24, no. 50, pp. 11291–11301, 2004
R. D. Vale, T. S. Reese, and M. P. Sheetz, “Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility,” Cell, vol. 42, no. 1, pp. 39–50, 1985
V. Muresan, “One axon, many kinesins: What’s the logic?,” Journal of Neurocytology, vol. 29, no. 11-12, pp. 799–818, 2000
R. L. Radius, “Optic Nerve Fast Axonal Transport Abnormalities in Primates: Occurrence After Short Posterior Ciliary Artery Occlusion,” Archives of Ophthalmology, vol. 98, no. 11, pp. 2018–2022, 1980
R. B. Vallee, J. C. Williams, D. Varma, and L. E. Barnhart, “Dynein: An Ancient Motor Protein Involved in Multiple Modes of Transport,” Journal of Neurobiology, vol. 58, no. 2, pp. 189–200, 2004
B. Grafstein and D. S. Forman, “Intracellular transport in neurons.,” Physiological reviews, vol. 60, no. 4, pp. 1167–1283, 1980
S. Roy, M. J. Winton, M. M. Black, J. Q. Trojanowski, and V. M. Lee, “Cytoskeletal requirements in axonal transport of slow component-b,” Journal of Neuroscience, vol. 28, no. 20, pp. 5248–5256, 2008
A. Brown, “Axonal transport of membranous and nonmembranous cargoes: A unified perspective,” Journal of Cell Biology, vol. 160, no. 6, pp. 817–821, 2003
M. M. Black, “Axonal transport: The orderly motion of axonal structures,” Methods in Cell Biology, vol. 131, pp. 1–19, 2016
L. F. Gumy and C. C. Hoogenraad, “Local mechanisms regulating selective cargo entry and long-range trafficking in axons,” Current Opinion in Neurobiology, vol. 51, pp. 23–28, 2018
J. N. Sleigh, A. Vagnoni, A. E. Twelvetrees, and G. Schiavo, “Methodological advances in imaging intravital axonal transport,” F1000Research, vol. 6, pp. 1–12, 2017
R. H. Miller and R. I. Lasek, “Cross-bridges mediate anterograde and retrograde vesicle transport along microtubules in squid axoplasm,” Journal of Cell Biology, vol. 101, no. 6, pp. 2181–2193, 1985
W. M. Saxton and P. J. Hollenbeck, “The axonal transport of mitochondria,” Journal of Cell Science, vol. 125, no. 9, pp. 2095–2104, 2012.
B. J. Schnapp, R. D. Vale, M. P. Sheetz, and T. S. Reese, “Single microtubules from squid axoplasm support bidirectional movement of organelles,” Cell, vol. 40, no. 2, pp. 455–462, 1985
U. Atsuko, A. H. Nael, and A. Brown, “Tight functional coupling ok Kinesin A1 and Dynein motors in the bidirectional transport of neurofilament,” Molecular Biology of the Cell, vol. 20(23), pp. 4997–5006, 2009
A. Brown, “Slow axonal transport: Stop and go traffic in the axon,” Nature Reviews Molecular Cell Biology, vol. 1, no. 2, pp. 153–156, 2000.
L. Wang, C. L. Ho, D. Sun, R. K. Liem, and A. Brown, “Rapid movement of axonal neurofilaments interrupted by prolonged pauses,” Nature Cell Biology, vol. 2, no. 3, pp. 137–141, 2000
L. Wang and A. Brown, “Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching,” Molecular Biology of the Cell, vol. 12, no. 10, pp. 3257–3267, 2001
R. J. Lasek, P. Paggi, and M. J. Katz, “The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged,” Brain Research, vol. 616, no. 1-2, pp. 58–64, 1993.
Z. Xu and V. W. Tung, “Temporal and spatial variations in slow axonal transport velocity along peripheral motoneuron axons,” Neuroscience, vol. 102, no. 1, pp. 193– 200, 2001
Y. Yan and A. Brown, “Neurofilament polymer transport in axons,” Journal of Neuroscience, vol. 25, no. 30, pp. 7014–7021, 2005.
K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. Miller, “Role of axonal transport in neurodegenerative diseases,” Annual Review of Neuroscience, vol. 31, pp. 151–173, 2008.
C. Ballatore, V. M. Lee, and J. Q. Trojanowski, “Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 663–672, 2007
X. L. Wu, J. Piña-Crespo, Y. W. Zhang, X. C. Chen, and H. X. Xu, “Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer’s disease,” Chinese Medical Journal, vol. 130, no. 24, pp. 2978–2990, 2017
Y. Dong and Y. Chen, “The role of ubiquitinated TDP-43 in amyotrophic lateral sclerosis,” Neuroimmunology and Neuroinflammation, vol. 5, no. 2, p. 5, 2018
W. S. Kim, K. Kagedal, and G. M. Halliday, “Alpha-synuclein biology in Lewy body diseases,” Alzheimer’s Research and Therapy, vol. 6, no. 1, pp. 1–9, 2014
I. Nadelhaft, “Dynamics of fast axonal transport,” Biophysical Journal, vol. 16, no. 10, pp. 1125–1130, 1976.
J. J. Blum and M. C. Reed, “A model for slow axonal transport and its application to neurofilamentous neuropathies,” Cell Motility and the Cytoskeleton, vol. 12, no. 1, pp. 53–65, 1989
D. A. Smith and R. M. Simmons, “Models of motor-assisted transport of intracellular particles,” Biophysical Journal, vol. 80, no. 1, pp. 45–68, 2001
A. Friedman and G. Craciun, “A model of intracellular transport of particles in an axon,” Journal of Mathematical Biology, vol. 51, no. 2, pp. 217–246, 2005
R. F. Niescier, S. K. Kwak, S. H. Joo, K. T. Chang, and K. T. Min, “Dynamics of mitochondrial transport in axons,” Frontiers in Cellular Neuroscience, vol. 10, no. 1662- 5102, pp. 1–10, 2016
P. Jung and A. Brown, “Modeling the slowing of neurofilament transport along the mouse sciatic nerve,” Physical Biology, vol. 6, no. 4, 2009
I. A. Kuznetsov and A. V. Kuznetsov, “Can numerical modeling help understand the fate of tau protein in the axon terminal?,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 19, no. 2, pp. 115–125, 2016
A. V. Kuznetsov, “An exact solution describing slow axonal transport of cytoskeletal elements: The effect of a finite half-life,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 468, no. 2147, pp. 3384–3397, 2012
A. V. Kuznetsov, A. A. Avramenko, and D. G. Blinov, “Effect of protein degradation in the axon on the speed of the bell-shaped concentration wave in slow axonal transport,” International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 641–645, 2009
A. V. Kuznetsov, A. A. Avramenko, and D. G. Blinov, “Effect of diffusion on slowing the velocity of a bell-shaped wave in slow axonal transport,” International Communications in Heat and Mass Transfer, vol. 37, no. 7, pp. 770–774, 2010
A. V. Kuznetsov, A. A. Avramenko, and D. G. Blinov, “Macroscopic modeling of slow axonal transport of rapidly diffusible soluble proteins,” International Communications in Heat and Mass Transfer, vol. 36, no. 4, pp. 293–296, 2009
A. V. Kuznetsov, “Analytical solution of the steady-state molecular-motor-assisted transport equations governing distribution of intracellular particles within a cell dendrite,” International Communications in Heat and Mass Transfer, vol. 35, no. 8, pp. 881– 884, 2008
A. V. Kuznetsov, “Analytical solution of equations governing molecular-motor-assisted transport of intracellular particles,” International Communications in Heat and Mass Transfer, vol. 34, no. 4, pp. 391–398, 2007
K. Sadegh Zadeh and S. B. Shah, “Mathematical modeling and parameter estimation of axonal cargo transport,” Journal of Computational Neuroscience, vol. 28, no. 3, pp. 495–507, 2010.
M. J. Muller, S. Klumpp, and R. Lipowsky, “Motility states of molecular motors engaged in a stochastic tug-of-war,” Journal of Statistical Physics, vol. 133, no. 6, pp. 1059– 1081, 2008
K. L. Gibbs, B. Kalmar, J. N. Sleigh, L. Greensmith, and G. Schiavo, “In vivo imaging of axonal transport in murine motor and sensory neurons,” Journal of Neuroscience Methods, vol. 257, pp. 26–33, 2016
J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. SpringerVerlag Berlin Heidelberg, 3 ed., 2002
R. Larson and B. H. Edwards, Calculus. Learning, Cengage, 9 ed., 2010
M. Ahmed, Q. U. A. Zainab, and S. Qamar, “Analysis of One-Dimensional Advection–Diffusion Model with Variable Coefficients Describing Solute Transport in a Porous medium,” Transport in Porous Media, vol. 118, no. 3, pp. 327–344, 2017
P. Oresta, A. Lippolis, D. Politecnico, V. Turismo, C. Politecnico, V. R. David, and A. Soldati, “Advection Diffusion Model for Particles Deposition in Rayleigh-B´enard Turbulent Flows,” in Physics, pp. 1–15, 2005
T. Tirabassi, A. Tiesi, D. Buske, M. T. Vilhena, and D. M. Moreira, “Some characteristics of a plume from a point source based on analytical solution of the two-dimensional advection-diffusion equation,” Atmospheric Environment, vol. 43, no. 13, pp. 2221– 2227, 2009.
S. Ulfah, S. A. Awalludin, and W. Wahidin, “Advection-diffusion model for the simulation of air pollution distribution from a point source emission,” Journal of Physics: Conference Series, vol. 948, no. 1, 2018.
Y. Lou, X. Q. Zhao, and P. Zhou, “Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments,” Journal des Mathematiques Pures et Appliquees, vol. 121, pp. 47–82, 2019.
R. Cui, K. Y. Lam, and Y. Lou, “Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments,” Journal of Differential Equations, vol. 263, no. 4, pp. 2343–2373, 2017
S. McKee, E. A. Dougall, and N. J. Mottram, “Analytic solutions of a simple advectiondiffusion model of an oxygen transfer device,” Journal of Mathematics in Industry, vol. 6, no. 1, 2016
C. M. Batistela, D. P. Correa, A. M. Bueno, and J. R. C. Piqueira, “SIRSi compartmen- ´ tal model for COVID-19 pandemic with immunity loss,” Chaos, Solitons and Fractals, vol. 142, p. 12, 2020
A. V. Kuznetsov and K. Hooman, “Modeling traffic jams in intracellular transport in axons,” International Journal of Heat and Mass Transfer, vol. 51, no. 23-24, pp. 5695– 5699, 2008
A. V. Kuznetsov, “An exact solution of transient equations describing slow axonal transport,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 16, no. 11, pp. 1232–1239, 2013.
J. Kim and H. S. Mahmassani, “Compound Gamma representation for modeling travel time variability in a traffic network,” Transportation Research Part B: Methodological, vol. 80, pp. 40–63, 2015
S. K. Agarwal and S. L. Kalla, “A generalized gamma distribution and its application in reliability,” Communications in Statistics - Theory and Methods, vol. 25, no. 1, pp. 201–210, 1996
K. J, O. Ngesa, and G. Orwa, “On Generalized Gamma Distribution and Its Application to Survival Data,” International Journal of Statistics and Probability, vol. 8, no. 5, p. 85, 2019
I. A. Kuznetsov and A. V. Kuznetsov, “Simulating tubulin-associated unit transport in an axon: Using bootstrapping for estimating confidence intervals of best-fit parameter values obtained from indirect experimental data,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2201, 2017
A. V. Kuznetsov, “Analytical solution of equations describing slow axonal transport based on the stop-and-go hypothesis,” Central European Journal of Physics, vol. 9, no. 3, pp. 662–673, 2011.
O. Zienkiewicz and R. Taylor, Finite Element Method: Volume 1 - The Basis. Oxford: Butterworth-Heinemann, 5th ed., 2000
K. J. Bathe, Finite Element Procedures. K.J. Bathe, Watertown, MA, 2 ed., 2016.
C. H. Galeano, J. M. Mantilla, and J. C. Galvis, El m´etodo de los elementos finitos. Un enfoque te´orico pr´actico. Colombia: Universidad Nacional de Colombia, 2016
K. J. Bathe and H. Zhang, “A mesh adaptivity procedure for CFD and fluid-structure interactions,” Computers and Structures, vol. 87, no. 11-12, pp. 604–617, 2009
W. Guo, K. Stoklund Dittlau, and L. Van Den Bosch, “Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications,” Seminars in Cell and Developmental Biology, vol. 99, no. March 2019, pp. 133–150, 2020.
P. Maddineni, R. B. Kasetti, P. D. Patel, J. C. Millar, C. Kiehlbauch, A. F. Clark, and G. S. Zode, “CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma,” Molecular Neurodegeneration, vol. 15, no. 1, pp. 1–20, 2020.
M. A. Assmann and P. Lenz, “Characterization of bidirectional molecular motorassisted transport models,” Physical Biology, vol. 10, no. 1, 2013.
A. V. Kuznetsov, “An exact solution describing slow axonal transport of cytoskeletal elements: The effect of a finite half-life,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 468, no. 2147, pp. 3384–3397, 2012
I. A. Kuznetsov and A. V. Kuznetsov, “A coupled model of fast axonal transport of organelles and slow axonal transport of tau protein,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 18, no. 13, pp. 1485–1494, 2015
L. G. Bilsland, E. Sahai, G. Kelly, M. Golding, L. Greensmith, and G. Schiavo, “Deficits in axonal transport precede ALS symptoms in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 47, pp. 20523–20528, 2010
L. Smit-Rigter, R. Rajendran, C. A. Silva, L. Spierenburg, F. Groeneweg, E. M. Ruimschotel, D. van Versendaal, C. van der Togt, U. T. Eysel, J. A. Heimel, C. Lohmann, and C. N. Levelt, “Mitochondrial Dynamics in Visual Cortex Are Limited In Vivo and Not Affected by Axonal Structural Plasticity,” Current Biology, vol. 26, no. 19, pp. 2609–2616, 2016
A. Vagnoni, P. C. Hoffmann, and S. L. Bullock, “Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons,” Journal of Cell Science, vol. 129, no. 1, pp. 178–190, 2016
J. Sleigh and G. Schiavo, “Older but not slower: aging does not alter axonal transport dynamics of signalling endosomes in vivo ,” Matters, pp. 10–15, 2016.
S. P. Gross, “Dynactin: Coordinating Motors with Opposite Inclinations,” Current Biology, vol. 13, no. 8, pp. R320–R322, 2003.
R. L. Radius, “Optic Nerve Fast Axonal Transport Abnormalities in Primates: Occurrence After Short Posterior Ciliary Artery Occlusion,” Archives of Ophthalmology, vol. 98, no. 11, pp. 2018–2022, 1980.
A. V. Kuznetsov and A. A. Avramenko, “A macroscopic model of traffic jams in axons,” Mathematical Biosciences, vol. 218, no. 2, pp. 142–152, 2009
J. E. Morgan, “Circulation and axonal transport in the optic nerve,” Eye, vol. 18, no. 11, pp. 1089–1095, 2004.
A. Korneva, J. Schaub, J. Jefferys, E. Kimball, M. E. Pease, M. Nawathe, T. V. Johnson, I. Pitha, and H. Quigley, “A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice,” Experimental Eye Research, vol. 196, no. February, 2020.
J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998.
C. Audet and J. E. Dennis, “Analysis of generalized pattern searches,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 889–903, 2003
N. H. Alami, R. B. Smith, M. A. Carrasco, L. A. Williams, C. S. Winborn, S. S. Han, E. Kiskinis, B. Winborn, B. D. Freibaum, A. Kanagaraj, A. J. Clare, N. M. Badders, B. Bilican, E. Chaum, S. Chandran, C. E. Shaw, K. C. Eggan, T. Maniatis, and J. P. Taylor, “Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations,” Neuron, vol. 81, no. 3, pp. 536–543, 2014
S. Rosa and D. F. Torres, “Parameter estimation, sensitivity analysis and optimal control of a periodic epidemic model with application to HRSV in Florida,” Statistics, Optimization and Information Computing, vol. 6, no. 1, pp. 139–149, 2018
J. Wu, R. Dhingra, M. Gambhir, and J. V. Remais, “Sensitivity analysis of infectious disease models: Methods, advances and their application,” Journal of the Royal Society Interface, vol. 10, no. 86, 2013.
H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Sensitivity Analysis in a Dengue Epidemiological Model,” Conference Papers in Mathematics, vol. 2013, no. June, pp. 1–7, 2013
Fatmawati, U. D. Purwati, and J. Nainggolan, “Parameter Estimation and Sensitivity Analysis of Malaria Model,” Journal of Physics: Conference Series, vol. 1490, no. 1, 2020.
N. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model,” Bulletin of Mathematical Biology, vol. 70, no. 5, pp. 1272–1296, 2008
Y. Wu, S. Liu, Z. Huang, and W. Yan, “Parameter optimization, sensitivity, and uncertainty analysis of an ecosystemmodel at a forest flux tower site in the United States,” Journal of Advances in Modeling Earth Systems, vol. 6, no. 2, pp. 513–526, 2014
T. M. Perumal and R. Gunawan, “Understanding dynamics using sensitivity analysis : caveat and solution,” BMC Systems Biology, vol. 5, no. 1, p. 41, 2011.
D. Goulet, “Parameter Fitting of Biochemical Kinetic Experiments,” SIAM Review, vol. 58, no. 2, pp. 331–353, 2016.
I. G. Zs´ely, J. Z´ador, and T. Tur´anyi, “On the similarity of the sensitivity functions of methane combustion models,” Combustion Theory and Modelling, vol. 9, no. 4, pp. 721–738, 2005
T. Maly and L. R. Petzold, “Numerical methods and software for sensitivity analysis of differential-algebraic systems,” Applied Numerical Mathematics, vol. 20, no. 1-2, pp. 57–79, 1996
S. Devireddy, A. Liu, T. Lampe, and P. J. Hollenbeck, “The organization of mitochondrial quality control and life cycle in the nervous system In Vivo in the absence of PINK1,” Journal of Neuroscience, vol. 35, no. 25, pp. 9391–9401, 2015
B. T. Helfand, P. Loomis, M. Yoon, and R. D. Goldman, “Rapid transport of neural intermediate filament protein,” Journal of Cell Science, vol. 116, no. 11, pp. 2345–2359, 2003
S. L. Rogers, I. S. Tint, P. C. Fanapour, and V. I. Gelfand, “Regulated bidirectional motility of melanophore pigment granules along micro tubules in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3720–3725, 1997
K. Panchal and A. K. Tiwari, “Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases,” Mitochondrion, vol. 56, no. August 2020, pp. 118–135, 2021
V. K. Lund, M. D. Lycas, A. Schack, R. C. Andersen, U. Gether, and O. Kjaerulff, “Rab2 drives axonal transport of dense core vesicles and lysosomal organelles,” Cell Reports, vol. 35, no. 2, p. 108973, 2021.
R. N. Weinreb, T. Aung, and F. A. Medeiros, “The pathophysiology and treatment of glaucoma: A review,” JAMA - Journal of the American Medical Association, vol. 311, no. 18, pp. 1901–1911, 2014.
E. R. Tamm, C. R. Ethier, J. E. Dowling, C. Downs, M. H. Ellisman, S. Fisher, B. Fortune, M. Fruttiger, T. Jakobs, G. Lewis, R. H. Masland, C. H. Mitchell, J. Morrison, S. C. Sharma, I. Sigal, M. Sofroniew, L. Wang, J. Wiggs, and S. Wu, “Biological aspects of axonal damage in glaucoma: A brief review,” Experimental Eye Research, vol. 157, pp. 5–12, 2017.
A. H. Bunt-Milam, M. B. Dennis Jr, and R. E. Bensinger, “Optic nerve head axonal transport in rabbits with hereditary glaucoma,” Exp Eye Res, vol. 44(4):537-, 1987
D. Prada, A. Harris, G. Guidoboni, B. Siesky, A. M. Huang, and J. Arciero, “Autoregulation and neurovascular coupling in the optic nerve head,” Survey of Ophthalmology, vol. 61, no. 2, pp. 164–186, 2016.
A. Tatone, F. Recrosi, R. Repetto, and G. Guidoboni, “From species diffusion to poroelasticity and the modeling of lamina cribrosa,” Journal of the Mechanics and Physics of Solids, vol. 124, pp. 849–870, 2019
A. P. Voorhees, J. L. Grimm, R. A. Bilonick, L. Kagemann, H. Ishikawa, J. S. Schuman, G. Wollstein, and I. A. Sigal, “What is a typical optic nerve head?,” Experimental Eye Research, vol. 149, pp. 40–47, 2016
I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Experimental Eye Research, vol. 90, no. 1, pp. 70–80, 2010
C. Stowell, C. F. Burgoyne, E. R. Tamm, C. R. Ethier, J. E. Dowling, C. Downs, M. H. Ellisman, S. Fisher, B. Fortune, M. Fruttiger, T. Jakobs, G. Lewis, R. H. Masland, C. H. Mitchell, J. Morrison, S. C. Sharma, I. Sigal, M. Sofroniew, L. Wang, J. Wiggs, and S. Wu, “Biomechanical aspects of axonal damage in glaucoma: A brief review,” Experimental Eye Research, vol. 157, pp. 13–19, 2017
R. E. Norman, J. G. Flanagan, I. A. Sigal, S. M. Rausch, I. Tertinegg, and C. R. Ethier, “Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma,” Experimental Eye Research, vol. 93, no. 1, pp. 4–12, 2011.
J. Crawford Downs, M. D. Roberts, and I. A. Sigal, “Glaucomatous cupping of the lamina cribrosa: A review of the evidence for active progressive remodeling as a mechanism,” Experimental Eye Research, vol. 93, no. 2, pp. 133–140, 2011
A. P. Voorhees, N. J. Jan, and I. A. Sigal, “Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa,” Acta Biomaterialia, vol. 58, pp. 278–290, 2017
R. Grytz, I. A. Sigal, J. W. Ruberti, G. Meschke, and J. Crawford Downs, “Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach,” Mechanics of Materials, vol. 44, pp. 99–109, 2012
M. E. Pease, S. J. McKinnon, H. A. Quigley, L. A. Kerrigan-Baumrind, and D. J. Zack, “Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma,” Investigative Ophthalmology and Visual Science, vol. 41, no. 3, pp. 764–774, 2000
J. A. Kim, T. W. Kim, R. N. Weinreb, E. J. Lee, M. J. Girard, and J. M. Mari, “Lamina Cribrosa Morphology Predicts Progressive Retinal Nerve Fiber Layer Loss in Eyes with Suspected Glaucoma,” Scientific Reports, vol. 8, no. 1, pp. 1–10, 2018.
Z. Wu, G. Xu, R. N. Weinreb, M. Yu, and C. K. Leung, “Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement,” Ophthalmology, vol. 122, no. 7, pp. 1317–1329, 2015
S. Yazdani, A. Naderi Beni, and M. Pakravan, “Laminar and Prelaminar Tissue Characteristics of Glaucomatous Eyes Using Enhanced Depth Imaging OCT,” Ophthalmology. Glaucoma, vol. 4, no. 1, pp. 95–101, 2021
E. J. Lee, T. W. Kim, H. Kim, S. H. Lee, M. J. Girard, and J. M. Mari, “Comparison between Lamina Cribrosa Depth and Curvature as a Predictor of Progressive Retinal Nerve Fiber Layer Thinning in Primary Open-Angle Glaucoma,” Ophthalmology. Glaucoma, vol. 1, no. 1, pp. 44–51, 2018.
M. D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications: Classical and Non–Classical Advanced Mathematics for Real Life Applications. Springer International Publishing, 1 ed., 2013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 113 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81096/1/1022968675.2018%20-%20Cristian%20Felipe%20Morales%20Suarez.pdf
https://repositorio.unal.edu.co/bitstream/unal/81096/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81096/3/Licencia%20y%20%20autorizaci%c3%b3n%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20repositorio%20institucional%20UN%20-%20Cristian%20Felipe%20Morales%20Suarez.pdf
https://repositorio.unal.edu.co/bitstream/unal/81096/4/1022968675.2018%20-%20Cristian%20Felipe%20Morales%20Suarez.pdf.jpg
bitstream.checksum.fl_str_mv 052dc42c8e5ead9c01e39f9d8ce3c30f
8153f7789df02f0a4c9e079953658ab2
0b359cddd6cd88ed4f6a0aab17ccc0f0
b277d9944a6102d09111d2a965ff0ccd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089753371344896
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Rodriguez, Carlos Julio8dcfa4ed77e506e44c8b2c2647fd5437Galeano Ureña, Carlos Humbertofc5c0de50213f17509a6ef6563ae8168Morales Suárez, Cristian Felipe0f3c670b6f15b9e18d7e254126a5f0b1Grupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb2022-03-01T16:56:31Z2022-03-01T16:56:31Z2021https://repositorio.unal.edu.co/handle/unal/81096Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEl transporte axonal (TA) es el medio por el cual todo el material sintetizado en el soma se distribuye a lo largo del axón para procesos funcionales de crecimiento, mantenimiento y supervivencia neuronal. Modelos matemáticos sugeridos logran determinar las principales características sobre su comportamiento, donde cada parámetro representa un estado dinámico especifico observado en estudios experimentales. En este trabajo se estudia la influencia de los parámetros sobre la distribución espacial de las proteínas y su relación con la naturaleza del fenómeno, lo anterior permitirá construir metodologías que concentren los esfuerzos en sus mediciones con las técnicas experimentales y facilitar su modelamiento matemático. El modelo es planteado por un conjunto de ecuaciones diferenciales parciales de Difusión - Advección - Reacción acopladas, su solución es abordada por el método de elementos finitos con una técnica de mallado adaptativo y se ajusta con datos experimentales a través de algoritmos de optimización disponibles en el software Matlab. Finalmente se establece un análisis de sensibilidad local y se acopla con el sistema del TA, logrando así evaluar los parámetros que mas impactan la solución del modelo. Como resultado, se llega a una convergencia numérica y experimental adecuada y un código capaz de representar la dinámica del TA garantizando demandas computacionales óptimas. En tanto a la naturaleza del fenómeno, los hallazgos obtenidos permiten sugerir, a partir del análisis de sensibilidad, que el TA esta determinado por la sinergia entre: Motores moleculares - Microtúbulos (MT) - proteínas logrando una coordinación controlada que conlleva a un balance adecuado de motores unidos a un cargo y conduciendo a movimientos bidireccionales esenciales en los múltiples procesos neuronales. (Texto tomado de la fuente)The axonal transport (AT) is the means by which all the material synthesized in the soma is distributed throughout of axon for functional processes of neuronal growth, maintenance and survival. Suggested mathematicals models achieve determine the characteristics mains about their behavior, where each parameter go represent a specific dynamic state observed in experimental studies. In this work the influence of the parameters on the spatial distribution of the proteins and their relationship with the nature of the phenomenon is studied. This will allow the construction of methodologies that concentrate the efforts in the measurement in the experimental techniques and facilitate their mathematical modeling.The model is posed by a set of coupled partial differential equations of Diffusion - Advection - Reaction, its solution is approached by the finite element method with an adaptive meshing technique and is fitted with experimental data through algorithms of optimization available in Matlab software. Finally, a local sensitivity analysis is established and it is coupled with the TA system, thus managing to evaluate the parameters that most impact the model solution. As results, an adequate numerical and experimental convergence is reached and a code capable of representing the dynamics of the AT guaranteeing optimal computational demands. Regarding the nature of the phenomenon, the findings obtained allow us to suggest, from the sensitivity analysis, that the TA is determined by the synergy between: Molecular motors - Microtubules (MT) - proteins achieving a controlled coordination that entails to an adequate balance of motors attached to a cargoes and leading to essential bidirectional movements in the multiple neural processes.MaestríaMagíster en Ingeniería Mecánicaxiv, 113 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaTRANSPORTE BIOLOGICOTRANSPORTE AXONALTransporte por membranasAnálisis de sensibilidadBidireccionalidadEnfermedades neurodegenerativasMétodo de elementos FinitosTransporte axonalSentivity AnalysisBidirectionalNeurodegenerative diseasesFinite element MethodAxonal TransportAnálisis de influencia y sensibilidad de los parámetros involucrados en el modelamiento de la dinámica del transporte axonalInfluence and sensitivity analysis of the parameters involved in modeling the dynamics of axonal transportTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMJ. C. Blackwood and L. M. Childs, “An introduction to compartmental modeling for the budding infectious disease modeler,” Letters in Biomathematics, vol. 5, no. 1, pp. 195–221, 2018.C. Swi¸etaszczyk and L. Jødal, “Derivation and presentation of formulas for drug con- ´ centrations in two-, three- and four-compartment pharmacokinetic models,” Journal of Pharmacological and Toxicological Methods, vol. 100, no. April, pp. 1–11, 2019E. P. Esteban and G. Meléndez, “A compartment model for total body irradiation,” Informatics in Medicine Unlocked, vol. 20, 2020G. Craciun, A. Brown, and A. Friedman, “A dynamical system model of neurofilament transport in axons,” Journal of Theoretical Biology, vol. 237, no. 3, pp. 316–322, 2005A. Brown, L. Wang, and P. Jung, “Stochastic Simulation of Neurofilament Transport in Axons: The “Stop-and-Go” Hypothesis,” Molecular Biology of the Cell, vol. 16(9), no. September, pp. 4243–4255, 2005Z. Xu and V. W. Tung, “Overexpression of neurofilament subunit M accelerates axonal transport of neurofilaments,” Brain Research, vol. 866, no. 1-2, pp. 326–332, 2000S. Millecamps and J. P. Julien, “Axonal transport deficits and neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 14, no. 3, pp. 161–176, 2013R. Perrot, R. Berges, A. Bocquet, and J. Eyer, “Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration,” Molecular Neurobiology, vol. 38, no. 1, pp. 27–65, 2008S. R. Chada and P. J. Hollenbeck, “Mitochondrial movement and positioning in axons: The role of growth factor signaling,” Journal of Experimental Biology, vol. 206, no. 12, pp. 1985–1992, 2003.M. J. Barron, P. Griffiths, D. M. Turnbull, D. Bates, and P. Nichols, “The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head,” British Journal of Ophthalmology, vol. 88, no. 2, pp. 286–290, 2004P. Weiss and H. B. Hiscoe, “Experiments on the Mechanism of Nerve Growth,” The jounal of experimental zoolooy, vol. 107, no. 3, p. 80, 1948R. J. Lasek, “Axonal transport: a dynamic view of neuronal structures,” Trends in Neurosciences, vol. 3, no. 4 C, pp. 87–91, 1980.S. Maday, A. E. Twelvetrees, A. J. Moughamian, and E. L. Holzbaur, “Axonal Transport: Cargo-Specific Mechanisms of Motility and Regulation,” Neuron, vol. 84, no. 2, pp. 292–309, 2014M. A. Welte, “Bidirectional transport along microtubules,” Current Biology, vol. 14, no. 13, pp. 525–537, 2004P. J. Hollenbeck and D. Bray, “Rapidly transported organelles containing membrane and cytoskeletal components: Their relation to axonal growth,” Journal of Cell Biology, vol. 105, no. 6 I, pp. 2827–2835, 1987M. Vershinin, B. C. Carter, D. S. Razafsky, S. J. King, and S. P. Gross, “Multiplemotor based transport and its regulation by Tau,” Proc Natl Acad Sci U S A, vol. 104, no. 1, pp. 87–92, 2007S. Konzack, E. Thies, A. Marx, E. M. Mandelkow, and E. Mandelkow, “Swimming against the tide: Mobility of the microtubule-associated protein tau in neurons,” Journal of Neuroscience, vol. 27, no. 37, pp. 9916–9927, 2007T. P. Hasaka, K. A. Myers, and P. W. Baas, “Role of actin filaments in the axonal transport of microtubules,” Journal of Neuroscience, vol. 24, no. 50, pp. 11291–11301, 2004R. D. Vale, T. S. Reese, and M. P. Sheetz, “Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility,” Cell, vol. 42, no. 1, pp. 39–50, 1985V. Muresan, “One axon, many kinesins: What’s the logic?,” Journal of Neurocytology, vol. 29, no. 11-12, pp. 799–818, 2000R. L. Radius, “Optic Nerve Fast Axonal Transport Abnormalities in Primates: Occurrence After Short Posterior Ciliary Artery Occlusion,” Archives of Ophthalmology, vol. 98, no. 11, pp. 2018–2022, 1980R. B. Vallee, J. C. Williams, D. Varma, and L. E. Barnhart, “Dynein: An Ancient Motor Protein Involved in Multiple Modes of Transport,” Journal of Neurobiology, vol. 58, no. 2, pp. 189–200, 2004B. Grafstein and D. S. Forman, “Intracellular transport in neurons.,” Physiological reviews, vol. 60, no. 4, pp. 1167–1283, 1980S. Roy, M. J. Winton, M. M. Black, J. Q. Trojanowski, and V. M. Lee, “Cytoskeletal requirements in axonal transport of slow component-b,” Journal of Neuroscience, vol. 28, no. 20, pp. 5248–5256, 2008A. Brown, “Axonal transport of membranous and nonmembranous cargoes: A unified perspective,” Journal of Cell Biology, vol. 160, no. 6, pp. 817–821, 2003M. M. Black, “Axonal transport: The orderly motion of axonal structures,” Methods in Cell Biology, vol. 131, pp. 1–19, 2016L. F. Gumy and C. C. Hoogenraad, “Local mechanisms regulating selective cargo entry and long-range trafficking in axons,” Current Opinion in Neurobiology, vol. 51, pp. 23–28, 2018J. N. Sleigh, A. Vagnoni, A. E. Twelvetrees, and G. Schiavo, “Methodological advances in imaging intravital axonal transport,” F1000Research, vol. 6, pp. 1–12, 2017R. H. Miller and R. I. Lasek, “Cross-bridges mediate anterograde and retrograde vesicle transport along microtubules in squid axoplasm,” Journal of Cell Biology, vol. 101, no. 6, pp. 2181–2193, 1985W. M. Saxton and P. J. Hollenbeck, “The axonal transport of mitochondria,” Journal of Cell Science, vol. 125, no. 9, pp. 2095–2104, 2012.B. J. Schnapp, R. D. Vale, M. P. Sheetz, and T. S. Reese, “Single microtubules from squid axoplasm support bidirectional movement of organelles,” Cell, vol. 40, no. 2, pp. 455–462, 1985U. Atsuko, A. H. Nael, and A. Brown, “Tight functional coupling ok Kinesin A1 and Dynein motors in the bidirectional transport of neurofilament,” Molecular Biology of the Cell, vol. 20(23), pp. 4997–5006, 2009A. Brown, “Slow axonal transport: Stop and go traffic in the axon,” Nature Reviews Molecular Cell Biology, vol. 1, no. 2, pp. 153–156, 2000.L. Wang, C. L. Ho, D. Sun, R. K. Liem, and A. Brown, “Rapid movement of axonal neurofilaments interrupted by prolonged pauses,” Nature Cell Biology, vol. 2, no. 3, pp. 137–141, 2000L. Wang and A. Brown, “Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching,” Molecular Biology of the Cell, vol. 12, no. 10, pp. 3257–3267, 2001R. J. Lasek, P. Paggi, and M. J. Katz, “The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged,” Brain Research, vol. 616, no. 1-2, pp. 58–64, 1993.Z. Xu and V. W. Tung, “Temporal and spatial variations in slow axonal transport velocity along peripheral motoneuron axons,” Neuroscience, vol. 102, no. 1, pp. 193– 200, 2001Y. Yan and A. Brown, “Neurofilament polymer transport in axons,” Journal of Neuroscience, vol. 25, no. 30, pp. 7014–7021, 2005.K. J. De Vos, A. J. Grierson, S. Ackerley, and C. C. Miller, “Role of axonal transport in neurodegenerative diseases,” Annual Review of Neuroscience, vol. 31, pp. 151–173, 2008.C. Ballatore, V. M. Lee, and J. Q. Trojanowski, “Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 663–672, 2007X. L. Wu, J. Piña-Crespo, Y. W. Zhang, X. C. Chen, and H. X. Xu, “Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer’s disease,” Chinese Medical Journal, vol. 130, no. 24, pp. 2978–2990, 2017Y. Dong and Y. Chen, “The role of ubiquitinated TDP-43 in amyotrophic lateral sclerosis,” Neuroimmunology and Neuroinflammation, vol. 5, no. 2, p. 5, 2018W. S. Kim, K. Kagedal, and G. M. Halliday, “Alpha-synuclein biology in Lewy body diseases,” Alzheimer’s Research and Therapy, vol. 6, no. 1, pp. 1–9, 2014I. Nadelhaft, “Dynamics of fast axonal transport,” Biophysical Journal, vol. 16, no. 10, pp. 1125–1130, 1976.J. J. Blum and M. C. Reed, “A model for slow axonal transport and its application to neurofilamentous neuropathies,” Cell Motility and the Cytoskeleton, vol. 12, no. 1, pp. 53–65, 1989D. A. Smith and R. M. Simmons, “Models of motor-assisted transport of intracellular particles,” Biophysical Journal, vol. 80, no. 1, pp. 45–68, 2001A. Friedman and G. Craciun, “A model of intracellular transport of particles in an axon,” Journal of Mathematical Biology, vol. 51, no. 2, pp. 217–246, 2005R. F. Niescier, S. K. Kwak, S. H. Joo, K. T. Chang, and K. T. Min, “Dynamics of mitochondrial transport in axons,” Frontiers in Cellular Neuroscience, vol. 10, no. 1662- 5102, pp. 1–10, 2016P. Jung and A. Brown, “Modeling the slowing of neurofilament transport along the mouse sciatic nerve,” Physical Biology, vol. 6, no. 4, 2009I. A. Kuznetsov and A. V. Kuznetsov, “Can numerical modeling help understand the fate of tau protein in the axon terminal?,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 19, no. 2, pp. 115–125, 2016A. V. Kuznetsov, “An exact solution describing slow axonal transport of cytoskeletal elements: The effect of a finite half-life,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 468, no. 2147, pp. 3384–3397, 2012A. V. Kuznetsov, A. A. Avramenko, and D. G. Blinov, “Effect of protein degradation in the axon on the speed of the bell-shaped concentration wave in slow axonal transport,” International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 641–645, 2009A. V. Kuznetsov, A. A. Avramenko, and D. G. Blinov, “Effect of diffusion on slowing the velocity of a bell-shaped wave in slow axonal transport,” International Communications in Heat and Mass Transfer, vol. 37, no. 7, pp. 770–774, 2010A. V. Kuznetsov, A. A. Avramenko, and D. G. Blinov, “Macroscopic modeling of slow axonal transport of rapidly diffusible soluble proteins,” International Communications in Heat and Mass Transfer, vol. 36, no. 4, pp. 293–296, 2009A. V. Kuznetsov, “Analytical solution of the steady-state molecular-motor-assisted transport equations governing distribution of intracellular particles within a cell dendrite,” International Communications in Heat and Mass Transfer, vol. 35, no. 8, pp. 881– 884, 2008A. V. Kuznetsov, “Analytical solution of equations governing molecular-motor-assisted transport of intracellular particles,” International Communications in Heat and Mass Transfer, vol. 34, no. 4, pp. 391–398, 2007K. Sadegh Zadeh and S. B. Shah, “Mathematical modeling and parameter estimation of axonal cargo transport,” Journal of Computational Neuroscience, vol. 28, no. 3, pp. 495–507, 2010.M. J. Muller, S. Klumpp, and R. Lipowsky, “Motility states of molecular motors engaged in a stochastic tug-of-war,” Journal of Statistical Physics, vol. 133, no. 6, pp. 1059– 1081, 2008K. L. Gibbs, B. Kalmar, J. N. Sleigh, L. Greensmith, and G. Schiavo, “In vivo imaging of axonal transport in murine motor and sensory neurons,” Journal of Neuroscience Methods, vol. 257, pp. 26–33, 2016J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. SpringerVerlag Berlin Heidelberg, 3 ed., 2002R. Larson and B. H. Edwards, Calculus. Learning, Cengage, 9 ed., 2010M. Ahmed, Q. U. A. Zainab, and S. Qamar, “Analysis of One-Dimensional Advection–Diffusion Model with Variable Coefficients Describing Solute Transport in a Porous medium,” Transport in Porous Media, vol. 118, no. 3, pp. 327–344, 2017P. Oresta, A. Lippolis, D. Politecnico, V. Turismo, C. Politecnico, V. R. David, and A. Soldati, “Advection Diffusion Model for Particles Deposition in Rayleigh-B´enard Turbulent Flows,” in Physics, pp. 1–15, 2005T. Tirabassi, A. Tiesi, D. Buske, M. T. Vilhena, and D. M. Moreira, “Some characteristics of a plume from a point source based on analytical solution of the two-dimensional advection-diffusion equation,” Atmospheric Environment, vol. 43, no. 13, pp. 2221– 2227, 2009.S. Ulfah, S. A. Awalludin, and W. Wahidin, “Advection-diffusion model for the simulation of air pollution distribution from a point source emission,” Journal of Physics: Conference Series, vol. 948, no. 1, 2018.Y. Lou, X. Q. Zhao, and P. Zhou, “Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments,” Journal des Mathematiques Pures et Appliquees, vol. 121, pp. 47–82, 2019.R. Cui, K. Y. Lam, and Y. Lou, “Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments,” Journal of Differential Equations, vol. 263, no. 4, pp. 2343–2373, 2017S. McKee, E. A. Dougall, and N. J. Mottram, “Analytic solutions of a simple advectiondiffusion model of an oxygen transfer device,” Journal of Mathematics in Industry, vol. 6, no. 1, 2016C. M. Batistela, D. P. Correa, A. M. Bueno, and J. R. C. Piqueira, “SIRSi compartmen- ´ tal model for COVID-19 pandemic with immunity loss,” Chaos, Solitons and Fractals, vol. 142, p. 12, 2020A. V. Kuznetsov and K. Hooman, “Modeling traffic jams in intracellular transport in axons,” International Journal of Heat and Mass Transfer, vol. 51, no. 23-24, pp. 5695– 5699, 2008A. V. Kuznetsov, “An exact solution of transient equations describing slow axonal transport,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 16, no. 11, pp. 1232–1239, 2013.J. Kim and H. S. Mahmassani, “Compound Gamma representation for modeling travel time variability in a traffic network,” Transportation Research Part B: Methodological, vol. 80, pp. 40–63, 2015S. K. Agarwal and S. L. Kalla, “A generalized gamma distribution and its application in reliability,” Communications in Statistics - Theory and Methods, vol. 25, no. 1, pp. 201–210, 1996K. J, O. Ngesa, and G. Orwa, “On Generalized Gamma Distribution and Its Application to Survival Data,” International Journal of Statistics and Probability, vol. 8, no. 5, p. 85, 2019I. A. Kuznetsov and A. V. Kuznetsov, “Simulating tubulin-associated unit transport in an axon: Using bootstrapping for estimating confidence intervals of best-fit parameter values obtained from indirect experimental data,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2201, 2017A. V. Kuznetsov, “Analytical solution of equations describing slow axonal transport based on the stop-and-go hypothesis,” Central European Journal of Physics, vol. 9, no. 3, pp. 662–673, 2011.O. Zienkiewicz and R. Taylor, Finite Element Method: Volume 1 - The Basis. Oxford: Butterworth-Heinemann, 5th ed., 2000K. J. Bathe, Finite Element Procedures. K.J. Bathe, Watertown, MA, 2 ed., 2016.C. H. Galeano, J. M. Mantilla, and J. C. Galvis, El m´etodo de los elementos finitos. Un enfoque te´orico pr´actico. Colombia: Universidad Nacional de Colombia, 2016K. J. Bathe and H. Zhang, “A mesh adaptivity procedure for CFD and fluid-structure interactions,” Computers and Structures, vol. 87, no. 11-12, pp. 604–617, 2009W. Guo, K. Stoklund Dittlau, and L. Van Den Bosch, “Axonal transport defects and neurodegeneration: Molecular mechanisms and therapeutic implications,” Seminars in Cell and Developmental Biology, vol. 99, no. March 2019, pp. 133–150, 2020.P. Maddineni, R. B. Kasetti, P. D. Patel, J. C. Millar, C. Kiehlbauch, A. F. Clark, and G. S. Zode, “CNS axonal degeneration and transport deficits at the optic nerve head precede structural and functional loss of retinal ganglion cells in a mouse model of glaucoma,” Molecular Neurodegeneration, vol. 15, no. 1, pp. 1–20, 2020.M. A. Assmann and P. Lenz, “Characterization of bidirectional molecular motorassisted transport models,” Physical Biology, vol. 10, no. 1, 2013.A. V. Kuznetsov, “An exact solution describing slow axonal transport of cytoskeletal elements: The effect of a finite half-life,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 468, no. 2147, pp. 3384–3397, 2012I. A. Kuznetsov and A. V. Kuznetsov, “A coupled model of fast axonal transport of organelles and slow axonal transport of tau protein,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 18, no. 13, pp. 1485–1494, 2015L. G. Bilsland, E. Sahai, G. Kelly, M. Golding, L. Greensmith, and G. Schiavo, “Deficits in axonal transport precede ALS symptoms in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 47, pp. 20523–20528, 2010L. Smit-Rigter, R. Rajendran, C. A. Silva, L. Spierenburg, F. Groeneweg, E. M. Ruimschotel, D. van Versendaal, C. van der Togt, U. T. Eysel, J. A. Heimel, C. Lohmann, and C. N. Levelt, “Mitochondrial Dynamics in Visual Cortex Are Limited In Vivo and Not Affected by Axonal Structural Plasticity,” Current Biology, vol. 26, no. 19, pp. 2609–2616, 2016A. Vagnoni, P. C. Hoffmann, and S. L. Bullock, “Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons,” Journal of Cell Science, vol. 129, no. 1, pp. 178–190, 2016J. Sleigh and G. Schiavo, “Older but not slower: aging does not alter axonal transport dynamics of signalling endosomes in vivo ,” Matters, pp. 10–15, 2016.S. P. Gross, “Dynactin: Coordinating Motors with Opposite Inclinations,” Current Biology, vol. 13, no. 8, pp. R320–R322, 2003.R. L. Radius, “Optic Nerve Fast Axonal Transport Abnormalities in Primates: Occurrence After Short Posterior Ciliary Artery Occlusion,” Archives of Ophthalmology, vol. 98, no. 11, pp. 2018–2022, 1980.A. V. Kuznetsov and A. A. Avramenko, “A macroscopic model of traffic jams in axons,” Mathematical Biosciences, vol. 218, no. 2, pp. 142–152, 2009J. E. Morgan, “Circulation and axonal transport in the optic nerve,” Eye, vol. 18, no. 11, pp. 1089–1095, 2004.A. Korneva, J. Schaub, J. Jefferys, E. Kimball, M. E. Pease, M. Nawathe, T. V. Johnson, I. Pitha, and H. Quigley, “A method to quantify regional axonal transport blockade at the optic nerve head after short term intraocular pressure elevation in mice,” Experimental Eye Research, vol. 196, no. February, 2020.J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998.C. Audet and J. E. Dennis, “Analysis of generalized pattern searches,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 889–903, 2003N. H. Alami, R. B. Smith, M. A. Carrasco, L. A. Williams, C. S. Winborn, S. S. Han, E. Kiskinis, B. Winborn, B. D. Freibaum, A. Kanagaraj, A. J. Clare, N. M. Badders, B. Bilican, E. Chaum, S. Chandran, C. E. Shaw, K. C. Eggan, T. Maniatis, and J. P. Taylor, “Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations,” Neuron, vol. 81, no. 3, pp. 536–543, 2014S. Rosa and D. F. Torres, “Parameter estimation, sensitivity analysis and optimal control of a periodic epidemic model with application to HRSV in Florida,” Statistics, Optimization and Information Computing, vol. 6, no. 1, pp. 139–149, 2018J. Wu, R. Dhingra, M. Gambhir, and J. V. Remais, “Sensitivity analysis of infectious disease models: Methods, advances and their application,” Journal of the Royal Society Interface, vol. 10, no. 86, 2013.H. S. Rodrigues, M. T. T. Monteiro, and D. F. M. Torres, “Sensitivity Analysis in a Dengue Epidemiological Model,” Conference Papers in Mathematics, vol. 2013, no. June, pp. 1–7, 2013Fatmawati, U. D. Purwati, and J. Nainggolan, “Parameter Estimation and Sensitivity Analysis of Malaria Model,” Journal of Physics: Conference Series, vol. 1490, no. 1, 2020.N. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model,” Bulletin of Mathematical Biology, vol. 70, no. 5, pp. 1272–1296, 2008Y. Wu, S. Liu, Z. Huang, and W. Yan, “Parameter optimization, sensitivity, and uncertainty analysis of an ecosystemmodel at a forest flux tower site in the United States,” Journal of Advances in Modeling Earth Systems, vol. 6, no. 2, pp. 513–526, 2014T. M. Perumal and R. Gunawan, “Understanding dynamics using sensitivity analysis : caveat and solution,” BMC Systems Biology, vol. 5, no. 1, p. 41, 2011.D. Goulet, “Parameter Fitting of Biochemical Kinetic Experiments,” SIAM Review, vol. 58, no. 2, pp. 331–353, 2016.I. G. Zs´ely, J. Z´ador, and T. Tur´anyi, “On the similarity of the sensitivity functions of methane combustion models,” Combustion Theory and Modelling, vol. 9, no. 4, pp. 721–738, 2005T. Maly and L. R. Petzold, “Numerical methods and software for sensitivity analysis of differential-algebraic systems,” Applied Numerical Mathematics, vol. 20, no. 1-2, pp. 57–79, 1996S. Devireddy, A. Liu, T. Lampe, and P. J. Hollenbeck, “The organization of mitochondrial quality control and life cycle in the nervous system In Vivo in the absence of PINK1,” Journal of Neuroscience, vol. 35, no. 25, pp. 9391–9401, 2015B. T. Helfand, P. Loomis, M. Yoon, and R. D. Goldman, “Rapid transport of neural intermediate filament protein,” Journal of Cell Science, vol. 116, no. 11, pp. 2345–2359, 2003S. L. Rogers, I. S. Tint, P. C. Fanapour, and V. I. Gelfand, “Regulated bidirectional motility of melanophore pigment granules along micro tubules in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3720–3725, 1997K. Panchal and A. K. Tiwari, “Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases,” Mitochondrion, vol. 56, no. August 2020, pp. 118–135, 2021V. K. Lund, M. D. Lycas, A. Schack, R. C. Andersen, U. Gether, and O. Kjaerulff, “Rab2 drives axonal transport of dense core vesicles and lysosomal organelles,” Cell Reports, vol. 35, no. 2, p. 108973, 2021.R. N. Weinreb, T. Aung, and F. A. Medeiros, “The pathophysiology and treatment of glaucoma: A review,” JAMA - Journal of the American Medical Association, vol. 311, no. 18, pp. 1901–1911, 2014.E. R. Tamm, C. R. Ethier, J. E. Dowling, C. Downs, M. H. Ellisman, S. Fisher, B. Fortune, M. Fruttiger, T. Jakobs, G. Lewis, R. H. Masland, C. H. Mitchell, J. Morrison, S. C. Sharma, I. Sigal, M. Sofroniew, L. Wang, J. Wiggs, and S. Wu, “Biological aspects of axonal damage in glaucoma: A brief review,” Experimental Eye Research, vol. 157, pp. 5–12, 2017.A. H. Bunt-Milam, M. B. Dennis Jr, and R. E. Bensinger, “Optic nerve head axonal transport in rabbits with hereditary glaucoma,” Exp Eye Res, vol. 44(4):537-, 1987D. Prada, A. Harris, G. Guidoboni, B. Siesky, A. M. Huang, and J. Arciero, “Autoregulation and neurovascular coupling in the optic nerve head,” Survey of Ophthalmology, vol. 61, no. 2, pp. 164–186, 2016.A. Tatone, F. Recrosi, R. Repetto, and G. Guidoboni, “From species diffusion to poroelasticity and the modeling of lamina cribrosa,” Journal of the Mechanics and Physics of Solids, vol. 124, pp. 849–870, 2019A. P. Voorhees, J. L. Grimm, R. A. Bilonick, L. Kagemann, H. Ishikawa, J. S. Schuman, G. Wollstein, and I. A. Sigal, “What is a typical optic nerve head?,” Experimental Eye Research, vol. 149, pp. 40–47, 2016I. A. Sigal, J. G. Flanagan, I. Tertinegg, and C. R. Ethier, “3D morphometry of the human optic nerve head,” Experimental Eye Research, vol. 90, no. 1, pp. 70–80, 2010C. Stowell, C. F. Burgoyne, E. R. Tamm, C. R. Ethier, J. E. Dowling, C. Downs, M. H. Ellisman, S. Fisher, B. Fortune, M. Fruttiger, T. Jakobs, G. Lewis, R. H. Masland, C. H. Mitchell, J. Morrison, S. C. Sharma, I. Sigal, M. Sofroniew, L. Wang, J. Wiggs, and S. Wu, “Biomechanical aspects of axonal damage in glaucoma: A brief review,” Experimental Eye Research, vol. 157, pp. 13–19, 2017R. E. Norman, J. G. Flanagan, I. A. Sigal, S. M. Rausch, I. Tertinegg, and C. R. Ethier, “Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma,” Experimental Eye Research, vol. 93, no. 1, pp. 4–12, 2011.J. Crawford Downs, M. D. Roberts, and I. A. Sigal, “Glaucomatous cupping of the lamina cribrosa: A review of the evidence for active progressive remodeling as a mechanism,” Experimental Eye Research, vol. 93, no. 2, pp. 133–140, 2011A. P. Voorhees, N. J. Jan, and I. A. Sigal, “Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa,” Acta Biomaterialia, vol. 58, pp. 278–290, 2017R. Grytz, I. A. Sigal, J. W. Ruberti, G. Meschke, and J. Crawford Downs, “Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach,” Mechanics of Materials, vol. 44, pp. 99–109, 2012M. E. Pease, S. J. McKinnon, H. A. Quigley, L. A. Kerrigan-Baumrind, and D. J. Zack, “Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma,” Investigative Ophthalmology and Visual Science, vol. 41, no. 3, pp. 764–774, 2000J. A. Kim, T. W. Kim, R. N. Weinreb, E. J. Lee, M. J. Girard, and J. M. Mari, “Lamina Cribrosa Morphology Predicts Progressive Retinal Nerve Fiber Layer Loss in Eyes with Suspected Glaucoma,” Scientific Reports, vol. 8, no. 1, pp. 1–10, 2018.Z. Wu, G. Xu, R. N. Weinreb, M. Yu, and C. K. Leung, “Optic Nerve Head Deformation in Glaucoma: A Prospective Analysis of Optic Nerve Head Surface and Lamina Cribrosa Surface Displacement,” Ophthalmology, vol. 122, no. 7, pp. 1317–1329, 2015S. Yazdani, A. Naderi Beni, and M. Pakravan, “Laminar and Prelaminar Tissue Characteristics of Glaucomatous Eyes Using Enhanced Depth Imaging OCT,” Ophthalmology. Glaucoma, vol. 4, no. 1, pp. 95–101, 2021E. J. Lee, T. W. Kim, H. Kim, S. H. Lee, M. J. Girard, and J. M. Mari, “Comparison between Lamina Cribrosa Depth and Curvature as a Predictor of Progressive Retinal Nerve Fiber Layer Thinning in Primary Open-Angle Glaucoma,” Ophthalmology. Glaucoma, vol. 1, no. 1, pp. 44–51, 2018.M. D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications: Classical and Non–Classical Advanced Mathematics for Real Life Applications. Springer International Publishing, 1 ed., 2013.Público generalORIGINAL1022968675.2018 - Cristian Felipe Morales Suarez.pdf1022968675.2018 - Cristian Felipe Morales Suarez.pdfTesis de Maestría en Ingeniería - Ingeniería Mecánicaapplication/pdf17898979https://repositorio.unal.edu.co/bitstream/unal/81096/1/1022968675.2018%20-%20Cristian%20Felipe%20Morales%20Suarez.pdf052dc42c8e5ead9c01e39f9d8ce3c30fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81096/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52Licencia y autorización para publicación de obras en el repositorio institucional UN - Cristian Felipe Morales Suarez.pdfLicencia y autorización para publicación de obras en el repositorio institucional UN - Cristian Felipe Morales Suarez.pdfLicencia de publicaciónapplication/pdf344159https://repositorio.unal.edu.co/bitstream/unal/81096/3/Licencia%20y%20%20autorizaci%c3%b3n%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20repositorio%20institucional%20UN%20-%20Cristian%20Felipe%20Morales%20Suarez.pdf0b359cddd6cd88ed4f6a0aab17ccc0f0MD53THUMBNAIL1022968675.2018 - Cristian Felipe Morales Suarez.pdf.jpg1022968675.2018 - Cristian Felipe Morales Suarez.pdf.jpgGenerated Thumbnailimage/jpeg4781https://repositorio.unal.edu.co/bitstream/unal/81096/4/1022968675.2018%20-%20Cristian%20Felipe%20Morales%20Suarez.pdf.jpgb277d9944a6102d09111d2a965ff0ccdMD54unal/81096oai:repositorio.unal.edu.co:unal/810962024-08-03 23:10:43.999Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK