Spaces of morphisms from a projective space to a toric variety

In this note we study the space of morphisms from a complex projective space to a compact smooth toric variety X. It is shown that the first author's stability theorem for the spaces of rational maps from CPm to CPn extends to the spaces of continuous morphisms from CPm to X, essentially, with...

Full description

Autores:
Mostovoy, Jacob
Munguía-Villanueva, Eréndira
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/49347
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/49347
http://bdigital.unal.edu.co/42804/
Palabra clave:
Variedad tórica
espacios de morfismos tóricos
Teorema de Stone-Weierstrass
resolución simplicial
58D15
32Q55
Toric variety
Stone-Weierstrass Theorem
Spaces of toric morphisms
simplicial resolution
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_0bc38947a8a2039489d0fcf8d5ba4fb2
oai_identifier_str oai:repositorio.unal.edu.co:unal/49347
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mostovoy, Jacob39e8a4c0-60b9-455b-a583-a36b9b548539300Munguía-Villanueva, Eréndira28998a7e-0c60-4cd3-9fd5-e494647257bf3002019-06-29T08:36:58Z2019-06-29T08:36:58Z2014-06-25https://repositorio.unal.edu.co/handle/unal/49347http://bdigital.unal.edu.co/42804/In this note we study the space of morphisms from a complex projective space to a compact smooth toric variety X. It is shown that the first author's stability theorem for the spaces of rational maps from CPm to CPn extends to the spaces of continuous morphisms from CPm to X, essentially, with the same proof. In the case of curves, our result improves the known bounds for the stabilization dimension.En esta nota se estudia el espacio de morfismos de un espacio proyectivo complejo a una variedad tórica compacta no singular X. Se prueba que el teorema de estabilidad, demostrado por el primer autor para los espacios de funciones racionales de CPm a CPn, se extiende a los espacios de morfismos continuos de CPm a X, esencialmente con la misma demostración. En el caso de las curvas, nuestro resultado mejora las cotas conocidas para la dimensión de la estabilización.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/45194Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 48, núm. 1 (2014); 41-53 2357-4100 0034-7426Mostovoy, Jacob and Munguía-Villanueva, Eréndira (2014) Spaces of morphisms from a projective space to a toric variety. Revista Colombiana de Matemáticas; Vol. 48, núm. 1 (2014); 41-53 2357-4100 0034-7426 .Spaces of morphisms from a projective space to a toric varietyArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTVariedad tóricaespacios de morfismos tóricosTeorema de Stone-Weierstrassresolución simplicial58D1532Q55Toric varietyStone-Weierstrass TheoremSpaces of toric morphismssimplicial resolutionORIGINAL45194-216959-1-SM.pdfapplication/pdf458565https://repositorio.unal.edu.co/bitstream/unal/49347/1/45194-216959-1-SM.pdf0e6c506a7e8d6172f72a20460c3e8a55MD5145194-216971-1-PB.htmltext/html6996https://repositorio.unal.edu.co/bitstream/unal/49347/2/45194-216971-1-PB.html2dce28397e42f71e0e2a1005aff6b271MD52THUMBNAIL45194-216959-1-SM.pdf.jpg45194-216959-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg5537https://repositorio.unal.edu.co/bitstream/unal/49347/3/45194-216959-1-SM.pdf.jpg4c3dbc0a0bb26160895368d8d52fd512MD53unal/49347oai:repositorio.unal.edu.co:unal/493472023-12-09 23:05:59.53Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Spaces of morphisms from a projective space to a toric variety
title Spaces of morphisms from a projective space to a toric variety
spellingShingle Spaces of morphisms from a projective space to a toric variety
Variedad tórica
espacios de morfismos tóricos
Teorema de Stone-Weierstrass
resolución simplicial
58D15
32Q55
Toric variety
Stone-Weierstrass Theorem
Spaces of toric morphisms
simplicial resolution
title_short Spaces of morphisms from a projective space to a toric variety
title_full Spaces of morphisms from a projective space to a toric variety
title_fullStr Spaces of morphisms from a projective space to a toric variety
title_full_unstemmed Spaces of morphisms from a projective space to a toric variety
title_sort Spaces of morphisms from a projective space to a toric variety
dc.creator.fl_str_mv Mostovoy, Jacob
Munguía-Villanueva, Eréndira
dc.contributor.author.spa.fl_str_mv Mostovoy, Jacob
Munguía-Villanueva, Eréndira
dc.subject.proposal.spa.fl_str_mv Variedad tórica
espacios de morfismos tóricos
Teorema de Stone-Weierstrass
resolución simplicial
58D15
32Q55
Toric variety
Stone-Weierstrass Theorem
Spaces of toric morphisms
simplicial resolution
topic Variedad tórica
espacios de morfismos tóricos
Teorema de Stone-Weierstrass
resolución simplicial
58D15
32Q55
Toric variety
Stone-Weierstrass Theorem
Spaces of toric morphisms
simplicial resolution
description In this note we study the space of morphisms from a complex projective space to a compact smooth toric variety X. It is shown that the first author's stability theorem for the spaces of rational maps from CPm to CPn extends to the spaces of continuous morphisms from CPm to X, essentially, with the same proof. In the case of curves, our result improves the known bounds for the stabilization dimension.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-06-25
dc.date.accessioned.spa.fl_str_mv 2019-06-29T08:36:58Z
dc.date.available.spa.fl_str_mv 2019-06-29T08:36:58Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/49347
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/42804/
url https://repositorio.unal.edu.co/handle/unal/49347
http://bdigital.unal.edu.co/42804/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/45194
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 48, núm. 1 (2014); 41-53 2357-4100 0034-7426
dc.relation.references.spa.fl_str_mv Mostovoy, Jacob and Munguía-Villanueva, Eréndira (2014) Spaces of morphisms from a projective space to a toric variety. Revista Colombiana de Matemáticas; Vol. 48, núm. 1 (2014); 41-53 2357-4100 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/49347/1/45194-216959-1-SM.pdf
https://repositorio.unal.edu.co/bitstream/unal/49347/2/45194-216971-1-PB.html
https://repositorio.unal.edu.co/bitstream/unal/49347/3/45194-216959-1-SM.pdf.jpg
bitstream.checksum.fl_str_mv 0e6c506a7e8d6172f72a20460c3e8a55
2dce28397e42f71e0e2a1005aff6b271
4c3dbc0a0bb26160895368d8d52fd512
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089428495237120