Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones

Human gait analysis is used to indirectly monitor the rehabilitation of patients affected by diseases or to directly monitor patients under orthotic care. Visualization of gait patterns on the instrument are used to capture the data. In this study, we created a mobile application that serves as a wi...

Full description

Autores:
Teknomo, Kardi
Estuar, Maria Regina
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66565
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66565
http://bdigital.unal.edu.co/67593/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Decision Tree Analysis
Feature Selection
Gait Monitoring
Transtibial Amputees
Wireless Sensors
Análisis de árboles de decisión
Discapacitados
Monitores de paso
Selección de característica
Sensores inalámbricos.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_0b86b1307b1f02fc7e3d132003d9e075
oai_identifier_str oai:repositorio.unal.edu.co:unal/66565
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones
title Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones
spellingShingle Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Decision Tree Analysis
Feature Selection
Gait Monitoring
Transtibial Amputees
Wireless Sensors
Análisis de árboles de decisión
Discapacitados
Monitores de paso
Selección de característica
Sensores inalámbricos.
title_short Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones
title_full Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones
title_fullStr Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones
title_full_unstemmed Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones
title_sort Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones
dc.creator.fl_str_mv Teknomo, Kardi
Estuar, Maria Regina
dc.contributor.author.spa.fl_str_mv Teknomo, Kardi
Estuar, Maria Regina
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
topic 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Decision Tree Analysis
Feature Selection
Gait Monitoring
Transtibial Amputees
Wireless Sensors
Análisis de árboles de decisión
Discapacitados
Monitores de paso
Selección de característica
Sensores inalámbricos.
dc.subject.proposal.spa.fl_str_mv Decision Tree Analysis
Feature Selection
Gait Monitoring
Transtibial Amputees
Wireless Sensors
Análisis de árboles de decisión
Discapacitados
Monitores de paso
Selección de característica
Sensores inalámbricos.
description Human gait analysis is used to indirectly monitor the rehabilitation of patients affected by diseases or to directly monitor patients under orthotic care. Visualization of gait patterns on the instrument are used to capture the data. In this study, we created a mobile application that serves as a wireless sensor to capture movement through a smartphone accelerometer. The application was used to collect gait data from two groups (able-bodied and unilateral transtibial amputees). Standard gait activities such as walking, running and climbing, including non-movement, sitting were captured, stored and analyzed. This paper discusses different visualization techniques that can be derived from accelerometer data. Removing gravity data, accelerometer data can be transformed into distribution data using periodicity; features were derived from histograms. Decision tree analysis shows that only three significant features are necessary to classify subject activity, namely: average of minimum peak values, student t-statistics of minimum peak values and mode of maximum peak values. We found that the amputee group had a higher acceleration and a lower skewness period between peaks of accelerations than the able-bodied group.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T02:23:05Z
dc.date.available.spa.fl_str_mv 2019-07-03T02:23:05Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2389-8976
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/66565
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/67593/
identifier_str_mv ISSN: 2389-8976
url https://repositorio.unal.edu.co/handle/unal/66565
http://bdigital.unal.edu.co/67593/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/estad/article/view/47951
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística
Revista Colombiana de Estadística
dc.relation.references.spa.fl_str_mv Teknomo, Kardi and Estuar, Maria Regina (2014) Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones. Revista Colombiana de Estadística, 37 (2Spe). pp. 471-488. ISSN 2389-8976
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/66565/1/47951-237221-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/66565/2/47951-237221-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 753911e3b618ec2f44f3c0957e6a10a4
e192b65cf95d4966735808f0422868f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090009648562176
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Teknomo, Kardidd74e428-70ac-4416-bd20-08b0e1c1e625300Estuar, Maria Regina439871fb-255b-4498-8447-dc2b991faf803002019-07-03T02:23:05Z2019-07-03T02:23:05Z2014-07-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66565http://bdigital.unal.edu.co/67593/Human gait analysis is used to indirectly monitor the rehabilitation of patients affected by diseases or to directly monitor patients under orthotic care. Visualization of gait patterns on the instrument are used to capture the data. In this study, we created a mobile application that serves as a wireless sensor to capture movement through a smartphone accelerometer. The application was used to collect gait data from two groups (able-bodied and unilateral transtibial amputees). Standard gait activities such as walking, running and climbing, including non-movement, sitting were captured, stored and analyzed. This paper discusses different visualization techniques that can be derived from accelerometer data. Removing gravity data, accelerometer data can be transformed into distribution data using periodicity; features were derived from histograms. Decision tree analysis shows that only three significant features are necessary to classify subject activity, namely: average of minimum peak values, student t-statistics of minimum peak values and mode of maximum peak values. We found that the amputee group had a higher acceleration and a lower skewness period between peaks of accelerations than the able-bodied group.Análisis del paso de humanos es usado como una manera indirecta de monitorear la rehabilitación de pacientes afectados por enfermedades o bajo el cuidado ortopédico. La visualización de patrones de paso se usa para captura de datos. En este estudio, se creó una aplicación móvil que sirve como un sensor inalámbrico para capturar el movimiento a través de un acelerómetro en un teléfono móvil. Se recolectaron datos de dos grupos (con y sin discapacidad tibial). Datos de actividades de paso estándar tales como caminar, correr y escalar, incluso moverse o sentarse fueron recogidos, grabados y analizados. Este artículo discute diferentes técnicas de visualizaciíon que fueron derivadas de estos datos de acelerómetro. Removiendo datos de gravedad, los datos del acelerómetro pueden ser transformados en datos de distribución usando periodicidad a partir de histogramas. Análisis del árbol de decisión muestra que sólo tres características significativas son necesarios para clasificar la actividad de los sujetos: promedio estadísticas t-student y moda de valores altos mínimos. Se encontró que el grupo de personas con discapacidad tibial tienen una aceleración alta, y un período de sesgo más bajo entre picos de aceleración que el grupo de no discapacitados.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/47951Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaTeknomo, Kardi and Estuar, Maria Regina (2014) Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart Phones. Revista Colombiana de Estadística, 37 (2Spe). pp. 471-488. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsDecision Tree AnalysisFeature SelectionGait MonitoringTranstibial AmputeesWireless SensorsAnálisis de árboles de decisiónDiscapacitadosMonitores de pasoSelección de característicaSensores inalámbricos.Visualizing Gait Patterns of Able bodied Individuals and Transtibial Amputees with the Use of Accelerometry in Smart PhonesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL47951-237221-1-PB.pdfapplication/pdf1062383https://repositorio.unal.edu.co/bitstream/unal/66565/1/47951-237221-1-PB.pdf753911e3b618ec2f44f3c0957e6a10a4MD51THUMBNAIL47951-237221-1-PB.pdf.jpg47951-237221-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5535https://repositorio.unal.edu.co/bitstream/unal/66565/2/47951-237221-1-PB.pdf.jpge192b65cf95d4966735808f0422868f9MD52unal/66565oai:repositorio.unal.edu.co:unal/665652023-05-25 23:03:12.975Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co