Understanding bio-oil droplets microexplosions in oxyfuel combustion.
ilustraciones, diagramas, tablas
- Autores:
-
Ordoñez Loza, Javier Alonso
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80555
- Palabra clave:
- 540 - Química y ciencias afines
Aceite de bagazo de caña
Combustibles
Transformation of waste
Transformación de residuos
Pyrolysis
CO2
Char reactivity
Droplet evaporation
Bio-oil
Char
Bio-aceite
Pirólisis
Carbón
Reactividad del carbón
Evaporación de gotas
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_0b7f1dc9f6e7c6b8995592453fec537e |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80555 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Understanding bio-oil droplets microexplosions in oxyfuel combustion. |
dc.title.translated.spa.fl_str_mv |
Comprensiónde las micro explosiones de gotas de bio-aceite en condiciones de oxicombustión. |
title |
Understanding bio-oil droplets microexplosions in oxyfuel combustion. |
spellingShingle |
Understanding bio-oil droplets microexplosions in oxyfuel combustion. 540 - Química y ciencias afines Aceite de bagazo de caña Combustibles Transformation of waste Transformación de residuos Pyrolysis CO2 Char reactivity Droplet evaporation Bio-oil Char Bio-aceite Pirólisis Carbón Reactividad del carbón Evaporación de gotas |
title_short |
Understanding bio-oil droplets microexplosions in oxyfuel combustion. |
title_full |
Understanding bio-oil droplets microexplosions in oxyfuel combustion. |
title_fullStr |
Understanding bio-oil droplets microexplosions in oxyfuel combustion. |
title_full_unstemmed |
Understanding bio-oil droplets microexplosions in oxyfuel combustion. |
title_sort |
Understanding bio-oil droplets microexplosions in oxyfuel combustion. |
dc.creator.fl_str_mv |
Ordoñez Loza, Javier Alonso |
dc.contributor.advisor.none.fl_str_mv |
Chejne Jana, Farid Amell Arrieta, Andrés |
dc.contributor.author.none.fl_str_mv |
Ordoñez Loza, Javier Alonso |
dc.contributor.researchgroup.spa.fl_str_mv |
Termodinámica Aplicada y Energías Alternativas |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines |
topic |
540 - Química y ciencias afines Aceite de bagazo de caña Combustibles Transformation of waste Transformación de residuos Pyrolysis CO2 Char reactivity Droplet evaporation Bio-oil Char Bio-aceite Pirólisis Carbón Reactividad del carbón Evaporación de gotas |
dc.subject.other.none.fl_str_mv |
Aceite de bagazo de caña |
dc.subject.lemb.none.fl_str_mv |
Combustibles Transformation of waste Transformación de residuos |
dc.subject.proposal.eng.fl_str_mv |
Pyrolysis CO2 Char reactivity Droplet evaporation Bio-oil Char |
dc.subject.proposal.spa.fl_str_mv |
Bio-aceite Pirólisis Carbón Reactividad del carbón Evaporación de gotas |
description |
ilustraciones, diagramas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-14T19:33:00Z |
dc.date.available.none.fl_str_mv |
2021-10-14T19:33:00Z |
dc.date.issued.none.fl_str_mv |
2021-06-21 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80555 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80555 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] R. Calabria, F. Chiariello, P. Massoli, Combustion fundamentals of pyrolysis oil based fuels, Exp. Therm. Fluid Sci. 31 (2007) 413–420. https://doi.org/10.1016/j.expthermflusci.2006.04.010. [2] M. Garcia-Perez, P. Lappas, P. Hughes, L. Dell, A. Chaala, D. Kretschmer, C. Roy, Evaporation and combustion characteristics of biomass vacuum pyrolysis oils, IFRF Combust. J. 200601 (2006) 1–27. [3] Á. Muelas, M.S. Callén, R. Murillo, J. Ballester, Production and droplet combustion characteristics of waste tire pyrolysis oil, Fuel Process. Technol. 196 (2019). https://doi.org/10.1016/j.fuproc.2019.106149. [4] C. Branca, C. Di Blasi, Combustion kinetics of secondary biomass chars in the kinetic regime, Energy and Fuels. 24 (2010) 5741–5750. https://doi.org/10.1021/ef100952x. [5] Z. Xiong, S.S.A. Syed-hassan, X. Hu, J. Guo, J. Qiu, X. Zhao, Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil : Characterization of coke structure and elucidation of coke formation mechanism, Appl. Energy. 239 (2019) 981–990. https://doi.org/10.1016/j.apenergy.2019.01.253. [6] P. Eng, D. Scarpete, Diesel-water emulsion, an alternative fuel to reduce diesel engine emissions. A review, Mach. Technol. Mater. (2013) 7–10. [7] C.Y. Hsuan, S.S. Hou, Y.L. Wang, T.H. Lin, Water-In-Oil emulsion as boiler fuel for Reduced NOx emissions and improved energy saving, Energies. 12 (2019) 1–14. https://doi.org/10.3390/en12061002. [8] M.L. Botero, Y. Huang, D.L. Zhu, A. Molina, C.K. Law, Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures, Fuel. 94 (2012) 342–347. https://doi.org/10.1016/j.fuel.2011.10.049. [9] C.K. Law, C.H. Lee, N. Srinivasan, Combustion characteristics of water-in-oil emulsion droplets, Combust. Flame. 37 (1980) 125–143. https://doi.org/10.1016/0010-2180(80)90080-2. [10] R.H. C. R. Shaddix, D, Combustion Properties of Biomass Flash Pyrolysis Oils : Final Project Report, 1999. https://doi.org/10.2172/5983. [11] C.R. Shaddix, S.P. Huey, Combustion characteristics of fast pyrolysis oils derived from hybrid poplar, Dev. Thermochem. Biomass Convers. (1997) 1630. [12] M.J. Wornat, B.G. Porter, N.Y.C. Yang, Single Droplet Combustion of Biomass Pyrolysis Oils, Energy & Fuels. 8 (1994) 1131–1142. https://doi.org/10.1021/Ef00047a018. [13] C. Branca, C. Di Blasi, Multistep mechanism for the devolatilization of biomass fast pyrolysis oils, Ind. Eng. Chem. Res. 45 (2006) 5891–5899. https://doi.org/10.1021/ie060161x. [14] F. Stankovikj, A.G. McDonald, G.L. Helms, M. Garcia-Perez, Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins, Energy and Fuels. 30 (2016) 6505–6524. https://doi.org/10.1021/acs.energyfuels.6b01242. [15] D.C.K. Rao, S. Syam, S. Karmakar, R. Joarder, Experimental investigations on nucleation , bubble growth , and micro- explosion characteristics during the combustion of ethanol / Jet A-1 fuel droplets, Exp. Therm. Fluid Sci. 89 (2017) 284–294. https://doi.org/10.1016/j.expthermflusci.2017.08.025. [16] A.R. Teixeira, K.G. Mooney, J.S. Kruger, C.L. Williams, W.J. Suszynski, L.D. Schmidt, D.P. Schmidt, P.J. Dauenhauer, Aerosol generation by reactive boiling ejection of molten cellulose, Energy Environ. Sci. 4 (2011) 4306–4321. https://doi.org/10.1039/c1ee01876k. [17] J.H. Han, C.D.A.E. Han, Bubble Nucleation in Polymeric Liquids . 11 . Theoretical Considerations, J. Polym. Sci. B Polym. Phys. 28 (1990) 743–761. https://doi.org/10.1002/polb.1990.090280510. [18] J.L. Katz, Bubble Nucleation in Liquids, AIChE J. 21 (1975) 833–848. https://doi.org/10.1002/aic.690210502. [19] D.C. Venerus, N. Yala, B. Bernstein, Analysis of diffusion-induced bubble growth in viscoelastic liquids, J. Non-Newtonian Fluid Mech. 75 (1998) 55–75. https://doi.org/10.1016/S0377-0257(97)00076-1. [20] H. Schulz, Short history and present trends of Fischer – Tropsch synthesis, 186 (1999) 3–12. [21] B.H. Davis, Overview of reactors for liquid phase Fischer – Tropsch synthesis, 71 (2002) 249–300. [21] B.H. Davis, Overview of reactors for liquid phase Fischer – Tropsch synthesis, 71 (2002) 249–300. [22] Y. Cheng, Y. Shen, D. Liu, J. Xu, Y. Sui, Numerical analysis of bubble bursting at the liquid surface by wave propagation, Int. J. Therm. Sci. 152 (2020) 106341. https://doi.org/10.1016/j.ijthermalsci.2020.106341. [23] B.Y. Ni, A.M. Zhang, G.X. Wu, Simulation of a fully submerged bubble bursting through a free surface, Eur. J. Mech. B/Fluids. 55 (2016) 1–14. https://doi.org/10.1016/j.euromechflu.2015.08.001. [24] K.M. Butler, A Numerical Model for Combustion of Bubbling Thermoplastic Materials in Microgravity, 2002. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861181. [25] H.-Y. Kwak, Y.W. Kim, Homogeneous nucleation and macroscopic growth of gas bubble in organic solutions, Int. J. Heat Mass Transf. 41 (1998) 757–767. https://doi.org/10.1016/S0017-9310(97)00182-8. [26] L. Hao, Analysis of bubble growth and motion dynamics in superheated liquid during flash evaporation, Int. J. Heat Mass Transf. 151 (2020) 119356. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119356. [27] S. Hoon, C. Park, J. Lee, B. Lee, A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool, Nucl. Eng. Technol. 49 (2017) 692–699. https://doi.org/10.1016/j.net.2016.12.006. [28] F. Stankovikj, M. Garcia-perez, TG-FTIR Method for the Characterization of Bio-oils in Chemical Families, Energy & Fuels. 30 (2017) 1689–1701. https://doi.org/10.1021/acs.energyfuels.6b03132. [29] F. Stankovikj, C.-C. Tran, S. Kaliaguine, M. V. Olarte, M. Garcia-Perez, Evolution of Functional Groups during Pyrolysis Oil Upgrading, Energy & Fuels. (2017) acs.energyfuels.7b01251. https://doi.org/10.1021/acs.energyfuels.7b01251. [30] A.R. Teixeira, R.J. Hermann, J.S. Kruger, W.J. Suszynski, L.D. Schmidt, D.P. Schmidt, P.J. Dauenhauer, Microexplosions in the upgrading of biomass-derived pyrolysis oils and the effects of simple fuel processing, ACS Sustain. Chem. Eng. 1 (2013) 341–348. https://doi.org/10.1021/sc300148b. [31] G. Lu, X. Wang, W. Yan, International Journal of Heat and Mass Transfer Nucleate boiling inside small evaporating droplets : An experimental and numerical study, Int. J. Heat Mass Transf. 108 (2017) 2253–2261. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.081. [32] D. Yepes, F. Chejne, Gasificación de biomasa residual en el sector floricultor , caso : Oriente Antioqueño Gasification of waste biomass in the flower industry , case : Eastern Antioquia, ION. 25 (2012) 49–55. [33] G. Marrugo, C.F. Valdés, F. Chejne, Biochar Gasification: An Experimental Study on Colombian Agroindustrial Biomass Residues in a Fluidized Bed, Energy & Fuels. 31 (2017) 9408–9421. https://doi.org/10.1021/acs.energyfuels.7b00665. [34] Z. Xiong, Y. Wang, S.S.A. Syed-Hassan, X. Hu, H. Han, S. Su, K. Xu, L. Jiang, J. Guo, E.E.S. Berthold, S. Hu, J. Xiang, Effects of heating rate on the evolution of bio-oil during its pyrolysis, Energy Convers. Manag. 163 (2018) 420–427. https://doi.org/10.1016/j.enconman.2018.02.078. [35] S.I. Yang, M.S. Wu, T.C. Hsu, Spray combustion characteristics of kerosene/bio-oil part I: Experimental study, Energy. 119 (2017) 26–36. https://doi.org/10.1016/j.energy.2016.12.062. [36] J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, D. Chiaramonti, Fuel oil quality and combustion of fast pyrolysis bio-oils, VTT Publ. (2013) 79. https://doi.org/10.1016/j.apenergy.2013.11.040. [37] W.L.H. Hallett, N.A. Clark, A model for the evaporation of biomass pyrolysis oil droplets, 85 (2006) 532–544. https://doi.org/10.1016/j.fuel.2005.08.006. [38] D.E. Spiel, The number and size of jet drops produced by air bubbles bursting on Understanding bio-oil droplets microexplosions in oxyfuel combustion a fresh water surface, J. Geophys. Res. 99 (1994) 10289–10296. https://doi.org/10.1029/94JC00382. [39] R.P.B. Ramachandran, G. Van Rossum, W.P.M. Van Swaaij, S.R.A. Kersten, Evaporation of biomass fast pyrolysis oil: Evaluation of char formation, Environ. Prog. Sustain. Energy. (2009). https://doi.org/10.1002/ep.10388. [40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b. [41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006. [42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd. [40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b. [41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006. [42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd. [40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b. [41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006. [42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 120 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos |
dc.publisher.department.spa.fl_str_mv |
Departamento de Procesos y Energía |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80555/4/1085280963.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80555/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/80555/5/1085280963.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
a2a612cd6c6f85e7cc841d8f273a0b66 cccfe52f796b7c63423298c2d3365fc6 54ff8ffb49aee96890c616bb44625a09 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089774298824704 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chejne Jana, Farid2a98e42794da260a3d5d39fd8f16175eAmell Arrieta, Andrés751297fd1cc4aa060d8d181fb5aeff6aOrdoñez Loza, Javier Alonsob2c40ec61afa45875b5af87aded6ba4eTermodinámica Aplicada y Energías Alternativas2021-10-14T19:33:00Z2021-10-14T19:33:00Z2021-06-21https://repositorio.unal.edu.co/handle/unal/80555Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasSugarcane bagasse bio-oil is a low calorific fuel produced by pyrolysis of cane bagasse in a nitrogen atmosphere and can be considered as a future alternative fuel. In this doctoral thesis, a detailed characterization of the bio-oil was developed, and the effect of carbon dioxide on char formation during thermal decomposition was evaluated. The kinetics was also analyzed, and decomposition stages were proposed. Likewise, bio-oil droplet evaporation experiments were carried out and allowed to identify the nature of the phenomenon of micro-explosions and its relationship with the formation of microbubbles, to complement the work, a novel model to predict micro-explosions were developed offering the possibility of understanding the phenomenon of micro-explosion formation from a collection of physicochemical events that begin with the nucleation, coalescence, and explosion of microbubbles within the drop.El bio-aceite de bagazo de caña es un combustible de bajo poder calorífico producido por la pirólisis de bagazo de caña en atmósfera de nitrógeno, y puede considerarse como un futuro combustible alternativo. En esta tesis una caracterización detallada del bio-aceite fue desarrollada, y se evaluó el efecto del dióxido de carbono en la formación de carbonizado durante la descomposición térmica. También se analizó la cinética y etapas de descomposición fueron propuestas. Así mismo experimentos de evaporación de gotas de bio-aceite fueron realizados y permitieron identificar la naturaleza del fenómeno de las micro-explosiones y su relación con la formación de microburbujas, para complementar el trabajo un novedoso modelo para predecir las micro-explosiones fue desarrollado ofreciendo la posibilidad de entender el fenómeno de formación de micro-explosiones a partir de una colección de eventos fisicoquímicos que comienzan con la nucleación, coalescencia y explosione de microburbujas dentro de la gota. (Texto tomado de la fuente)DoctoradoDoctor en IngenieríaSistemas Energéticosxix, 120 páginasapplication/pdfeng540 - Química y ciencias afinesAceite de bagazo de cañaCombustiblesTransformation of wasteTransformación de residuosPyrolysisCO2Char reactivityDroplet evaporationBio-oilCharBio-aceitePirólisisCarbónReactividad del carbónEvaporación de gotasUnderstanding bio-oil droplets microexplosions in oxyfuel combustion.Comprensiónde las micro explosiones de gotas de bio-aceite en condiciones de oxicombustión.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosDepartamento de Procesos y EnergíaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín[1] R. Calabria, F. Chiariello, P. Massoli, Combustion fundamentals of pyrolysis oil based fuels, Exp. Therm. Fluid Sci. 31 (2007) 413–420. https://doi.org/10.1016/j.expthermflusci.2006.04.010.[2] M. Garcia-Perez, P. Lappas, P. Hughes, L. Dell, A. Chaala, D. Kretschmer, C. Roy, Evaporation and combustion characteristics of biomass vacuum pyrolysis oils, IFRF Combust. J. 200601 (2006) 1–27.[3] Á. Muelas, M.S. Callén, R. Murillo, J. Ballester, Production and droplet combustion characteristics of waste tire pyrolysis oil, Fuel Process. Technol. 196 (2019). https://doi.org/10.1016/j.fuproc.2019.106149.[4] C. Branca, C. Di Blasi, Combustion kinetics of secondary biomass chars in the kinetic regime, Energy and Fuels. 24 (2010) 5741–5750. https://doi.org/10.1021/ef100952x.[5] Z. Xiong, S.S.A. Syed-hassan, X. Hu, J. Guo, J. Qiu, X. Zhao, Pyrolysis of the aromatic-poor and aromatic-rich fractions of bio-oil : Characterization of coke structure and elucidation of coke formation mechanism, Appl. Energy. 239 (2019) 981–990. https://doi.org/10.1016/j.apenergy.2019.01.253.[6] P. Eng, D. Scarpete, Diesel-water emulsion, an alternative fuel to reduce diesel engine emissions. A review, Mach. Technol. Mater. (2013) 7–10.[7] C.Y. Hsuan, S.S. Hou, Y.L. Wang, T.H. Lin, Water-In-Oil emulsion as boiler fuel for Reduced NOx emissions and improved energy saving, Energies. 12 (2019) 1–14. https://doi.org/10.3390/en12061002.[8] M.L. Botero, Y. Huang, D.L. Zhu, A. Molina, C.K. Law, Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures, Fuel. 94 (2012) 342–347. https://doi.org/10.1016/j.fuel.2011.10.049.[9] C.K. Law, C.H. Lee, N. Srinivasan, Combustion characteristics of water-in-oil emulsion droplets, Combust. Flame. 37 (1980) 125–143. https://doi.org/10.1016/0010-2180(80)90080-2.[10] R.H. C. R. Shaddix, D, Combustion Properties of Biomass Flash Pyrolysis Oils : Final Project Report, 1999. https://doi.org/10.2172/5983.[11] C.R. Shaddix, S.P. Huey, Combustion characteristics of fast pyrolysis oils derived from hybrid poplar, Dev. Thermochem. Biomass Convers. (1997) 1630.[12] M.J. Wornat, B.G. Porter, N.Y.C. Yang, Single Droplet Combustion of Biomass Pyrolysis Oils, Energy & Fuels. 8 (1994) 1131–1142. https://doi.org/10.1021/Ef00047a018.[13] C. Branca, C. Di Blasi, Multistep mechanism for the devolatilization of biomass fast pyrolysis oils, Ind. Eng. Chem. Res. 45 (2006) 5891–5899. https://doi.org/10.1021/ie060161x.[14] F. Stankovikj, A.G. McDonald, G.L. Helms, M. Garcia-Perez, Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins, Energy and Fuels. 30 (2016) 6505–6524. https://doi.org/10.1021/acs.energyfuels.6b01242.[15] D.C.K. Rao, S. Syam, S. Karmakar, R. Joarder, Experimental investigations on nucleation , bubble growth , and micro- explosion characteristics during the combustion of ethanol / Jet A-1 fuel droplets, Exp. Therm. Fluid Sci. 89 (2017) 284–294. https://doi.org/10.1016/j.expthermflusci.2017.08.025.[16] A.R. Teixeira, K.G. Mooney, J.S. Kruger, C.L. Williams, W.J. Suszynski, L.D. Schmidt, D.P. Schmidt, P.J. Dauenhauer, Aerosol generation by reactive boiling ejection of molten cellulose, Energy Environ. Sci. 4 (2011) 4306–4321. https://doi.org/10.1039/c1ee01876k.[17] J.H. Han, C.D.A.E. Han, Bubble Nucleation in Polymeric Liquids . 11 . Theoretical Considerations, J. Polym. Sci. B Polym. Phys. 28 (1990) 743–761. https://doi.org/10.1002/polb.1990.090280510.[18] J.L. Katz, Bubble Nucleation in Liquids, AIChE J. 21 (1975) 833–848. https://doi.org/10.1002/aic.690210502.[19] D.C. Venerus, N. Yala, B. Bernstein, Analysis of diffusion-induced bubble growth in viscoelastic liquids, J. Non-Newtonian Fluid Mech. 75 (1998) 55–75. https://doi.org/10.1016/S0377-0257(97)00076-1.[20] H. Schulz, Short history and present trends of Fischer – Tropsch synthesis, 186 (1999) 3–12. [21] B.H. Davis, Overview of reactors for liquid phase Fischer – Tropsch synthesis, 71 (2002) 249–300.[21] B.H. Davis, Overview of reactors for liquid phase Fischer – Tropsch synthesis, 71 (2002) 249–300.[22] Y. Cheng, Y. Shen, D. Liu, J. Xu, Y. Sui, Numerical analysis of bubble bursting at the liquid surface by wave propagation, Int. J. Therm. Sci. 152 (2020) 106341. https://doi.org/10.1016/j.ijthermalsci.2020.106341.[23] B.Y. Ni, A.M. Zhang, G.X. Wu, Simulation of a fully submerged bubble bursting through a free surface, Eur. J. Mech. B/Fluids. 55 (2016) 1–14. https://doi.org/10.1016/j.euromechflu.2015.08.001.[24] K.M. Butler, A Numerical Model for Combustion of Bubbling Thermoplastic Materials in Microgravity, 2002. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861181.[25] H.-Y. Kwak, Y.W. Kim, Homogeneous nucleation and macroscopic growth of gas bubble in organic solutions, Int. J. Heat Mass Transf. 41 (1998) 757–767. https://doi.org/10.1016/S0017-9310(97)00182-8.[26] L. Hao, Analysis of bubble growth and motion dynamics in superheated liquid during flash evaporation, Int. J. Heat Mass Transf. 151 (2020) 119356. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119356.[27] S. Hoon, C. Park, J. Lee, B. Lee, A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool, Nucl. Eng. Technol. 49 (2017) 692–699. https://doi.org/10.1016/j.net.2016.12.006.[28] F. Stankovikj, M. Garcia-perez, TG-FTIR Method for the Characterization of Bio-oils in Chemical Families, Energy & Fuels. 30 (2017) 1689–1701. https://doi.org/10.1021/acs.energyfuels.6b03132.[29] F. Stankovikj, C.-C. Tran, S. Kaliaguine, M. V. Olarte, M. Garcia-Perez, Evolution of Functional Groups during Pyrolysis Oil Upgrading, Energy & Fuels. (2017) acs.energyfuels.7b01251. https://doi.org/10.1021/acs.energyfuels.7b01251.[30] A.R. Teixeira, R.J. Hermann, J.S. Kruger, W.J. Suszynski, L.D. Schmidt, D.P. Schmidt, P.J. Dauenhauer, Microexplosions in the upgrading of biomass-derived pyrolysis oils and the effects of simple fuel processing, ACS Sustain. Chem. Eng. 1 (2013) 341–348. https://doi.org/10.1021/sc300148b.[31] G. Lu, X. Wang, W. Yan, International Journal of Heat and Mass Transfer Nucleate boiling inside small evaporating droplets : An experimental and numerical study, Int. J. Heat Mass Transf. 108 (2017) 2253–2261. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.081.[32] D. Yepes, F. Chejne, Gasificación de biomasa residual en el sector floricultor , caso : Oriente Antioqueño Gasification of waste biomass in the flower industry , case : Eastern Antioquia, ION. 25 (2012) 49–55.[33] G. Marrugo, C.F. Valdés, F. Chejne, Biochar Gasification: An Experimental Study on Colombian Agroindustrial Biomass Residues in a Fluidized Bed, Energy & Fuels. 31 (2017) 9408–9421. https://doi.org/10.1021/acs.energyfuels.7b00665.[34] Z. Xiong, Y. Wang, S.S.A. Syed-Hassan, X. Hu, H. Han, S. Su, K. Xu, L. Jiang, J. Guo, E.E.S. Berthold, S. Hu, J. Xiang, Effects of heating rate on the evolution of bio-oil during its pyrolysis, Energy Convers. Manag. 163 (2018) 420–427. https://doi.org/10.1016/j.enconman.2018.02.078.[35] S.I. Yang, M.S. Wu, T.C. Hsu, Spray combustion characteristics of kerosene/bio-oil part I: Experimental study, Energy. 119 (2017) 26–36. https://doi.org/10.1016/j.energy.2016.12.062.[36] J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, D. Chiaramonti, Fuel oil quality and combustion of fast pyrolysis bio-oils, VTT Publ. (2013) 79. https://doi.org/10.1016/j.apenergy.2013.11.040.[37] W.L.H. Hallett, N.A. Clark, A model for the evaporation of biomass pyrolysis oil droplets, 85 (2006) 532–544. https://doi.org/10.1016/j.fuel.2005.08.006.[38] D.E. Spiel, The number and size of jet drops produced by air bubbles bursting on Understanding bio-oil droplets microexplosions in oxyfuel combustion a fresh water surface, J. Geophys. Res. 99 (1994) 10289–10296. https://doi.org/10.1029/94JC00382.[39] R.P.B. Ramachandran, G. Van Rossum, W.P.M. Van Swaaij, S.R.A. Kersten, Evaporation of biomass fast pyrolysis oil: Evaluation of char formation, Environ. Prog. Sustain. Energy. (2009). https://doi.org/10.1002/ep.10388.[40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b. [41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006. [42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd.[40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b. [41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006. [42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd.[40] W. Chaiwat, I. Hasegawa, T. Tani, K. Sunagawa, K. Mae, Analysis of cross-linking behavior during pyrolysis of cellulose for elucidating reaction pathway, Energy and Fuels. 23 (2009) 5765–5772. https://doi.org/10.1021/ef900674b.[41] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in chemical families, Biomass and Bioenergy. 31 (2007) 222–242. https://doi.org/10.1016/j.biombioe.2006.02.006.[42] A.G.M.T. Siriwardhana, Aging and Stabilization of Pyrolitic Bio-Oils and Model Compounds, The University of Western Ontario, 2013. http://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=3005&context=etd.MincienciasInvestigadoresORIGINAL1085280963.2021.pdf1085280963.2021.pdfTesis de Maestría en Ingeniería - Sistemas Energéticosapplication/pdf3619835https://repositorio.unal.edu.co/bitstream/unal/80555/4/1085280963.2021.pdfa2a612cd6c6f85e7cc841d8f273a0b66MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80555/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAIL1085280963.2021.pdf.jpg1085280963.2021.pdf.jpgGenerated Thumbnailimage/jpeg4347https://repositorio.unal.edu.co/bitstream/unal/80555/5/1085280963.2021.pdf.jpg54ff8ffb49aee96890c616bb44625a09MD55unal/80555oai:repositorio.unal.edu.co:unal/805552024-07-23 23:33:37.937Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |