On the rate of convergence of hermite-fejér polynomials to functions of bounded variation on the zeros of certain jacobi polynomials

In this paper, we study the Hermite-Fejér interpolation, Hn(f,x), for a function f of bounded variation on [-1,1] when the inter)olation is taken over the zeros of Jacobi polynomials, Pn (∝,β ) (x) when |∝|, | β| ≤ ½.Our main result is an estimate for the rate of convergence of Hn(f,x) at points of...

Full description

Autores:
Al-Jarrah, Radwan
Rababah, Abedallah
Tipo de recurso:
Article of journal
Fecha de publicación:
1990
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43271
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43271
http://bdigital.unal.edu.co/33369/
Palabra clave:
Hermite-Fejér interpolation
function
Jacobi polynomials
rate convergence points of continuity
zeros of the Legendre polynomials
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this paper, we study the Hermite-Fejér interpolation, Hn(f,x), for a function f of bounded variation on [-1,1] when the inter)olation is taken over the zeros of Jacobi polynomials, Pn (∝,β ) (x) when |∝|, | β| ≤ ½.Our main result is an estimate for the rate of convergence of Hn(f,x) at points of continuity of f,and a special attention is given to the interpolation over the zeros of the Legendre polynomials.