Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system
ilustraciones, diagramas, fotografías, mapas
- Autores:
-
Romero-Ortiz, Ingrid Catalina
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85259
- Palabra clave:
- 590 - Animales::595 - Artrópodos
570 - Biología::576 - Genética y evolución
590 - Animales::591 - Temas específicos en historia natural de los animales
Taxonomía
Clasificación
Insectos
Classification
Insecta
Phylogeny
Sexual selection
Male genitalia
Selective pressures
Homology
New taxa
Filogenia
Selección sexual
Genitales masculinos
Presiones selectivas
Homología
Nuevos taxones
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_0b566d1ae08f7368f90b9887ac12dc10 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85259 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system |
dc.title.translated.spa.fl_str_mv |
Filogenia de la familia Withiidae (Arachnida: Pseudoscorpiones) y evolución del sistema reproductor masculino |
title |
Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system |
spellingShingle |
Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system 590 - Animales::595 - Artrópodos 570 - Biología::576 - Genética y evolución 590 - Animales::591 - Temas específicos en historia natural de los animales Taxonomía Clasificación Insectos Classification Insecta Phylogeny Sexual selection Male genitalia Selective pressures Homology New taxa Filogenia Selección sexual Genitales masculinos Presiones selectivas Homología Nuevos taxones |
title_short |
Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system |
title_full |
Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system |
title_fullStr |
Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system |
title_full_unstemmed |
Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system |
title_sort |
Phylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive system |
dc.creator.fl_str_mv |
Romero-Ortiz, Ingrid Catalina |
dc.contributor.advisor.none.fl_str_mv |
Sarmiento Monroy, Carlos Eduardo Benavides Silva, Ligia Rosario |
dc.contributor.author.none.fl_str_mv |
Romero-Ortiz, Ingrid Catalina |
dc.contributor.researchgroup.spa.fl_str_mv |
Insectos de Colombia |
dc.contributor.orcid.spa.fl_str_mv |
0000-0001-8939-7814 |
dc.contributor.cvlac.spa.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001390318 |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Catalina-Romero-Ortiz |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com/citations?user=fUoW8CAAAAAJ&hl=es&oi=ao |
dc.subject.ddc.spa.fl_str_mv |
590 - Animales::595 - Artrópodos 570 - Biología::576 - Genética y evolución 590 - Animales::591 - Temas específicos en historia natural de los animales |
topic |
590 - Animales::595 - Artrópodos 570 - Biología::576 - Genética y evolución 590 - Animales::591 - Temas específicos en historia natural de los animales Taxonomía Clasificación Insectos Classification Insecta Phylogeny Sexual selection Male genitalia Selective pressures Homology New taxa Filogenia Selección sexual Genitales masculinos Presiones selectivas Homología Nuevos taxones |
dc.subject.decs.spa.fl_str_mv |
Taxonomía Clasificación Insectos |
dc.subject.decs.eng.fl_str_mv |
Classification Insecta |
dc.subject.proposal.eng.fl_str_mv |
Phylogeny Sexual selection Male genitalia Selective pressures Homology New taxa |
dc.subject.proposal.spa.fl_str_mv |
Filogenia Selección sexual Genitales masculinos Presiones selectivas Homología Nuevos taxones |
description |
ilustraciones, diagramas, fotografías, mapas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-09-25 |
dc.date.accessioned.none.fl_str_mv |
2024-01-12T20:14:46Z |
dc.date.available.none.fl_str_mv |
2024-01-12T20:14:46Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85259 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85259 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Arnqvist, G. (1998). Comparative evidence for the evolution of genitalia by sexual selection. Nature, 393(6687), 784-786. Benavides, L.R., Cosgrove, J.G., Harvey, M.S. & Giribet, G. (2019). Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones Tree of Life. Molecular Phylogenetics and Evolution 139(106509): 1–14. https://doi.org/10.1016/j.ympev.2019.05.023 Cabra-García, J. and Hormiga, G. (2020). Exploring the impact of morphology, multiple sequence alignment and choice of optimality criteria in phylogenetic inference: a case study with the Neotropical orb-weaving spider genus Wagneriana (Araneae: Araneidae). Zoological Journal of the Linnean Society, 188(4), pp.976–1151. doi:10.1093/zoolinnean/zlz088. https://doi.org/10.1093/zoolinnean/zlz088 Chamberlin, J.C. (1931). A synoptic revision of the generic classification of the chelonethid family Cheliferidae Simon (Arachnida). Canadian Entomologist 63(12): 289-294.Chamberlin, J.C. (1931). A synoptic revision of the generic classification of the chelonethid family Cheliferidae Simon (Arachnida). Canadian Entomologist 63(12): 289-294. Darwin, C. (1871). In C. Darwin. The descent of man, and selection in relation to sex. de Aranzamendi, M. C., Martínez, J. J., Held, C., & Sahade, R. (2022). Parallel shape divergence between ecotypes of the limpet Nacella concinna along the Antarctic Peninsula: a new model species for parallel evolution?. Zoology, 150, 125983. De-Lima, A. K. S., Paschoaletto, I. P., Pinho, L. D. O., Benmamman, P., & Klaczko, J. (2019). Are hemipenial traits under sexual selection in Tropidurus lizards? Hemipenial development, male and female genital morphology, allometry and coevolution in Tropidurus torquatus (Squamata: Tropiduridae). PLoS One, 14(7), e0219053. De Pinna, M.C.C. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394 Donoghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A.G. & T. Rowe. (1989). The importance of fossils in phylogenetic reconstruction. Annual Review of Ecology, Evolution and Systematics 20:431–460. Dufour, L. (1844). Anatomie générale des Dipteres. In Annales des Sciences naturelles (Vol. 1, pp. 244-264). Paris: Masson. Eberhard, W. (1996). Female control: sexual selection by cryptic female choice (Vol. 17). Princeton University Press. Eberhard, W. G. (2010). Evolution of genitalia: theories, evidence, and new directions. Genetica, 138(1), 5-18. Eberhard, W. G. (2011). Are smaller animals behaviourally limited? Lack of clear constraints in miniature spiders. Animal Behaviour, 81(4), 813-823. Genevcius, B. C., Greve, C., Koehler, S., Simmons, R. B., Rider, D. A., Grazia, J., & Schwertner, C. F. (2021). Phylogeny of the stink bug tribe Chlorocorini (Heteroptera, Pentatomidae) based on DNA and morphological data: the evolution of key phenotypic traits. Systematic Entomology, 46(2), 327-338. Göpel, T., & Richter, S. (2023). Homologues and homology and their related terms in phylogenetic systematics. Cladistics. Harvey, M.S. (2015). Revised diagnoses for the pseudoscorpion genera Metawithius and Microwithius, with the description of a new Australian genus, and notes on Withius (Pseudoscorpiones, Withiidae). Journal of Arachnology 43 (3): 353-370. https://doi.org/10.1636/0161-8202-43.3.353 Harvey, M.S., Huey, J., Hillyer, M.J., McIntyre, E. & Giribet, G. (2016). The first troglobitic species of Gymnobisiidae (Pseudoscorpiones: Neobisioidea), from Table Mountain (Western Cape Province, South Africa) and its phylogenetic position. Invertebrate Systematics 30: 75-85. https://doi.org/10.1071/IS15044 Heurtault, J. (1994). Un cas indirect de phorésie: les pseudoscorpions Withiidae des termitières mortes de Macrotermes en Afrique tropicale. Bollettino dell'Accademia Gioenia di Scienze Naturali 26: 189–208. Hosken, D. & Stockley, P. (2004). Sexual selection and genital evolution. TRENDS in Ecology and Evolution 19(2): 87-93. Johnson, J., Romero-Ortiz, C., Mathew, A. V., Sebastian, P. A., Joseph, M. M., & Harvey, M. S. (2019). A review of the pseudoscorpion genus Metawithius (Pseudoscorpiones: Withiidae) from the Indian subcontinent. The Journal of Arachnology, 47(1), 84-94. Kew, H. W. (1911). A synopsis of the false-scorpions of Britain and Ireland. In Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science (Vol. 29, pp. 38-64). Royal Irish Academy. Klaczko, J., Ingram, T. and Losos, J., (2015). Genitals evolve faster than other traits in Anolis lizards. Journal of Zoology, 295(1), pp.44-48. https://doi.org/10.1111/jzo.12178 Lai, J., Maddison, W. P., Ma, H., & Zhang, J. (2021). Intra‐specific variation of non‐genitalic and genitalic traits in two euophryine jumping spider species. Journal of Zoology, 313(4), 263-275. Langerhans, R. B., Anderson, C. M., & Heinen-Kay, J. L. (2016). Causes and consequences of genital evolution. Integrative and comparative biology, 56(4), 741-751. Lloyd, J. E. (1979). Mating behavior and natural selection. The Florida Entomologist, 62(1), 17-34. Mayr, E. (1963). Animal species and evolution. Harvard University Press. Murienne, J., Harvey, M. S. & Giribet, G. (2008). First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Molecular Phylogenetics and Evolution 49: 170-184. https://doi.org/10.1016/j.ympev.2008.06.002 Nelson, G. (1994). Homology and systematics. Homology: the hierarchical basis of comparative biology, 101-149. Neumann, J.S., Desalle, R., Narechania, A., Schierwater, B. and Tessler, M., (2021). Morphological characters can strongly influence early animal relationships inferred from phylogenomic data sets. Systematic biology, 70(2), pp.360-375. https://doi.org/10.1093/sysbio/syaa038 Nixon, K.C. & J.M. Carpenter. (2012). On homology. Cladistics 28(2):160–169. Ochoterena, H., Vrijdaghs, A., Smets, E., & Claßen-Bockhoff, R. (2019). The search for common origin: homology revisited. Systematic Biology, 68(5), 767-780. Patterson, C. (1982). Morphological characters and homology. Pp 21–74. In Problems of Phylogenetic Reconstruction. (K.A. Joysey & A.E. Friday, eds). Academic Press, New York. Pyron, R.A. (2015). Post-molecular systematics and the future of phylogenetics. Trends in Ecology and Evolution 30:384–389. Reuland, C., Simmons, L. W., Lüpold, S., & Fitzpatrick, J. L. (2021). Weapons evolve faster than sperm in bovids and cervids. Cells, 10(5), 1062. Richter, S. (2017). Homology and synapomorphy‐symplesiomorphy—neither synonymous nor equivalent but different perspectives on the same phenomenon. Cladistics, 33(5), 540-544. Romero-Ortiz, C. and Harvey, M.S., (2019). The pseudoscorpion genus Verrucachernes (Pseudoscorpiones: Chernetidae) in the Indian region. Zootaxa, 4568(2). https://doi.org/10.11646/zootaxa.4568.2.8 Romero-Ortiz, C. and Sarmiento, C.E., (2021). A comparative study of the male genitalia of the Cacodemoniini (Pseudoscorpiones: Withiidae). The Journal of Arachnology, 49(1), pp.108-121. https://doi.org/10.1636/JoA-S-19-068 Schultz, N.G., Lough-Stevens, M., Abreu, E., Orr, T. and Dean, M.D., (2016). The baculum was gained and lost multiple times during mammalian evolution. Integrative and Comparative Biology, 56(4), pp.644-656. https://doi.org/10.1093/icb/icw034 Simmons, L.W. (2014). Sexual selection and genital evolution. Austral Entomology 53: 1-17. Simmons, L. W., & Garcia-Gonzalez, F. (2011). Experimental coevolution of male and female genital morphology. Nature communications, 2(1), 374. Soto, I. M., Carreira, V. P., Fanara, J. J., & Hasson, E. (2007). Evolution of male genitalia: environmental and genetic factors affect genital morphology in two Drosophila sibling species and their hybrids. BMC Evolutionary Biology, 7(1), 1-11. Weygoldt, P. (1969). The biology of pseudoscorpions. Harvard University Press: Cambridge, Massachusetts. 145 pp. Wheeler, W. C. (2012). Systematics: a course of lectures. John Wiley & Sons. Wiens, J.J., Kuczynski, C.A., Townsend, T., Reeder, T.W., Mulcahy, D.G. & J.W.Jr. Sites, (2010). Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology 59:674–688. Wipfler, B., Pohl, H., Yavorskaya, M.I. & R.G. Beutel. (2016). A review of methods for analyzing insect structures — the role of morphology in the age of phylogenomics. Current Opinion in Insect Science 18:60–68. Wright, A.M. and Hillis, D.M., (2014). Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS One, 9(10), p.e109210. https://doi.org/10.1371/journal.pone.0109210 Yuan, M. L., Wake, M. H., & Wang, I. J. (2019). Phenotypic integration between claw and toepad traits promotes microhabitat specialization in the Anolis adaptive radiation. Evolution, 73(2), 231-244. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 162 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85259/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85259/2/Tesis%20Romero-Ortiz_JUL23.pdf https://repositorio.unal.edu.co/bitstream/unal/85259/3/Tesis%20Romero-Ortiz_JUL23.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a aa22f00c08df911356a721b34eead98c 4a86f3f5832f4a3a45cf96231b14bff1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089296457498624 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarmiento Monroy, Carlos Eduardoe870f4b28290a160e9942b829c66a511Benavides Silva, Ligia Rosario7a7bf7d3fd6e1f7bf3682b88cf81bcedRomero-Ortiz, Ingrid Catalina94bf8b18d3f2293e9385fccb098eff68Insectos de Colombia0000-0001-8939-7814https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001390318https://www.researchgate.net/profile/Catalina-Romero-Ortizhttps://scholar.google.com/citations?user=fUoW8CAAAAAJ&hl=es&oi=ao2024-01-12T20:14:46Z2024-01-12T20:14:46Z2023-09-25https://repositorio.unal.edu.co/handle/unal/85259Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, mapasThe evolution of animal genitalia has been an intriguing topic of research since Darwin proposed that sexual selection is acting upon morphological traits. In this context, taking Pseudoscorpions of the family Withiidae as a model for studying the influence of selective pressures in male genitalia variation we, 1) characterized the morphology of male genitalia proposing homology statements between genera after detailed examination and dissection of male specimens; 2) we explored the internal phylogenetic relationships for the family using morphological and molecular data; 3) we dated the divergence times of clades of the family using three fossils as calibration points; and 4) we explored the rates of change of male genitalia characters. We found a strong support for the monophyly of Withidae as well as for the two internal clades, the neotropical and the non-neotropical clades; as for the sister group of Withiidae, there is no conclusive evidence since molecular data suggest Atemnidae, supporting previous molecular studies, but the combined morphological and molecular data pointed to Cheliferidae. Results suggest that Withiidae arose in the Cretaceous. We also found that sensorial traits i. e. position of the trichobothria isb and ist, and not the genital ones, changed faster, challenging the prediction of higher change rates as consequence of the role of sexual selection as the main shaping force. Finally, we found several taxonomic novelties: first, we redescribed Metawithius nepalensis as part of the revision of the genus; second, we transferred a species originally described as a withiid to the genus Verrucachernes; third, we raised to genus the subgenus Oligowithius, and fourth, we described five new species. We think that with the development of genomics in phylogenetics, new results could give us more hints about the influence of different selective pressures over each set of morphological characters in this family of pseudoscorpions.(Texto tomado de la fuente)La evolución de los genitales animales ha sido un tema de investigación interesante desde que Darwin propuso que la selección sexual actúa sobre los rasgos morfológicos. En este contexto, tomando los pseudoescorpiones de la familia Withiidae como modelo para estudiar la influencia de las presiones selectivas en la variación de los genitales masculinos, 1) caracterizamos la morfología de los genitales masculinos proponiendo declaraciones de homología entre géneros después de un examen detallado de especímenes, 2) exploramos las relaciones filogenéticas internas de la familia Withiidae utilizando datos morfológicos y moleculares, 3) datamos la divergencia de los clados utilizando tres fósiles como puntos de calibración, y 4) exploramos las tasas de cambio de los caracteres de los genitales masculinos. Encontramos un fuerte apoyo para la monofilia de Withidae así como para dos clados internos, el grupo neotropical y el no neotropical; en cuanto al grupo hermano, no hay evidencia conclusiva pues los datos moleculares sugieren a Atemnidae, apoyando estudios moleculares previos, pero los datos combinados, moleculares más morfológicos, apuntan a Cheliferidae. Los resultados sugieren que Withiidae surgió en el Cretácico. También encontramos que los rasgos sensoriales i.e. posición de las tricobotrias isb e ist, y no los rasgos genitales, son los que cambian más rápido, desafiando la predicción de mayor velocidad de cambio en ellos como resultado de la selección sexual como la principal fuerza moldeadora. Finalmente, encontramos varias novedades taxonómicas: primero, redescribimos Metawithius nepalensis dentro de la revisión del género; segundo, transferimos una especie originalmente descrita como un withido al género Verrucachernes; tercero, elevamos a género el subgénero Oligowithius y cuarto, describimos cinco nuevas especies. Creemos que, con el desarrollo de la genómica, nuevos resultados podrían darnos más pistas acerca de la influencia de diferentes presiones selectivas sobre cada grupo de caracteres morfológicos en esta familia de pseudoescorpiones.Ministerio de Ciencia, Tecnología e Innovación - Convocatoria de Doctorados Nacionales 727/2015DoctoradoDoctora en Ciencias-BiologíaSistemática y Evoluciónxvii, 162 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá590 - Animales::595 - Artrópodos570 - Biología::576 - Genética y evolución590 - Animales::591 - Temas específicos en historia natural de los animalesTaxonomíaClasificaciónInsectosClassificationInsectaPhylogenySexual selectionMale genitaliaSelective pressuresHomologyNew taxaFilogeniaSelección sexualGenitales masculinosPresiones selectivasHomologíaNuevos taxonesPhylogeny of the family Withiidae (Arachnida: Pseudoscorpiones) and evolution of the male reproductive systemFilogenia de la familia Withiidae (Arachnida: Pseudoscorpiones) y evolución del sistema reproductor masculinoTrabajo de grado - Doctoradoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMArnqvist, G. (1998). Comparative evidence for the evolution of genitalia by sexual selection. Nature, 393(6687), 784-786.Benavides, L.R., Cosgrove, J.G., Harvey, M.S. & Giribet, G. (2019). Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones Tree of Life. Molecular Phylogenetics and Evolution 139(106509): 1–14. https://doi.org/10.1016/j.ympev.2019.05.023Cabra-García, J. and Hormiga, G. (2020). Exploring the impact of morphology, multiple sequence alignment and choice of optimality criteria in phylogenetic inference: a case study with the Neotropical orb-weaving spider genus Wagneriana (Araneae: Araneidae). Zoological Journal of the Linnean Society, 188(4), pp.976–1151. doi:10.1093/zoolinnean/zlz088. https://doi.org/10.1093/zoolinnean/zlz088Chamberlin, J.C. (1931). A synoptic revision of the generic classification of the chelonethid family Cheliferidae Simon (Arachnida). Canadian Entomologist 63(12): 289-294.Chamberlin, J.C. (1931). A synoptic revision of the generic classification of the chelonethid family Cheliferidae Simon (Arachnida). Canadian Entomologist 63(12): 289-294.Darwin, C. (1871). In C. Darwin. The descent of man, and selection in relation to sex.de Aranzamendi, M. C., Martínez, J. J., Held, C., & Sahade, R. (2022). Parallel shape divergence between ecotypes of the limpet Nacella concinna along the Antarctic Peninsula: a new model species for parallel evolution?. Zoology, 150, 125983.De-Lima, A. K. S., Paschoaletto, I. P., Pinho, L. D. O., Benmamman, P., & Klaczko, J. (2019). Are hemipenial traits under sexual selection in Tropidurus lizards? Hemipenial development, male and female genital morphology, allometry and coevolution in Tropidurus torquatus (Squamata: Tropiduridae). PLoS One, 14(7), e0219053.De Pinna, M.C.C. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394Donoghue, M.J., Doyle, J.A., Gauthier, J., Kluge, A.G. & T. Rowe. (1989). The importance of fossils in phylogenetic reconstruction. Annual Review of Ecology, Evolution and Systematics 20:431–460.Dufour, L. (1844). Anatomie générale des Dipteres. In Annales des Sciences naturelles (Vol. 1, pp. 244-264). Paris: Masson.Eberhard, W. (1996). Female control: sexual selection by cryptic female choice (Vol. 17). Princeton University Press.Eberhard, W. G. (2010). Evolution of genitalia: theories, evidence, and new directions. Genetica, 138(1), 5-18.Eberhard, W. G. (2011). Are smaller animals behaviourally limited? Lack of clear constraints in miniature spiders. Animal Behaviour, 81(4), 813-823.Genevcius, B. C., Greve, C., Koehler, S., Simmons, R. B., Rider, D. A., Grazia, J., & Schwertner, C. F. (2021). Phylogeny of the stink bug tribe Chlorocorini (Heteroptera, Pentatomidae) based on DNA and morphological data: the evolution of key phenotypic traits. Systematic Entomology, 46(2), 327-338.Göpel, T., & Richter, S. (2023). Homologues and homology and their related terms in phylogenetic systematics. Cladistics.Harvey, M.S. (2015). Revised diagnoses for the pseudoscorpion genera Metawithius and Microwithius, with the description of a new Australian genus, and notes on Withius (Pseudoscorpiones, Withiidae). Journal of Arachnology 43 (3): 353-370. https://doi.org/10.1636/0161-8202-43.3.353Harvey, M.S., Huey, J., Hillyer, M.J., McIntyre, E. & Giribet, G. (2016). The first troglobitic species of Gymnobisiidae (Pseudoscorpiones: Neobisioidea), from Table Mountain (Western Cape Province, South Africa) and its phylogenetic position. Invertebrate Systematics 30: 75-85. https://doi.org/10.1071/IS15044Heurtault, J. (1994). Un cas indirect de phorésie: les pseudoscorpions Withiidae des termitières mortes de Macrotermes en Afrique tropicale. Bollettino dell'Accademia Gioenia di Scienze Naturali 26: 189–208.Hosken, D. & Stockley, P. (2004). Sexual selection and genital evolution. TRENDS in Ecology and Evolution 19(2): 87-93.Johnson, J., Romero-Ortiz, C., Mathew, A. V., Sebastian, P. A., Joseph, M. M., & Harvey, M. S. (2019). A review of the pseudoscorpion genus Metawithius (Pseudoscorpiones: Withiidae) from the Indian subcontinent. The Journal of Arachnology, 47(1), 84-94.Kew, H. W. (1911). A synopsis of the false-scorpions of Britain and Ireland. In Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science (Vol. 29, pp. 38-64). Royal Irish Academy.Klaczko, J., Ingram, T. and Losos, J., (2015). Genitals evolve faster than other traits in Anolis lizards. Journal of Zoology, 295(1), pp.44-48. https://doi.org/10.1111/jzo.12178Lai, J., Maddison, W. P., Ma, H., & Zhang, J. (2021). Intra‐specific variation of non‐genitalic and genitalic traits in two euophryine jumping spider species. Journal of Zoology, 313(4), 263-275.Langerhans, R. B., Anderson, C. M., & Heinen-Kay, J. L. (2016). Causes and consequences of genital evolution. Integrative and comparative biology, 56(4), 741-751.Lloyd, J. E. (1979). Mating behavior and natural selection. The Florida Entomologist, 62(1), 17-34.Mayr, E. (1963). Animal species and evolution. Harvard University Press.Murienne, J., Harvey, M. S. & Giribet, G. (2008). First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Molecular Phylogenetics and Evolution 49: 170-184. https://doi.org/10.1016/j.ympev.2008.06.002Nelson, G. (1994). Homology and systematics. Homology: the hierarchical basis of comparative biology, 101-149.Neumann, J.S., Desalle, R., Narechania, A., Schierwater, B. and Tessler, M., (2021). Morphological characters can strongly influence early animal relationships inferred from phylogenomic data sets. Systematic biology, 70(2), pp.360-375. https://doi.org/10.1093/sysbio/syaa038Nixon, K.C. & J.M. Carpenter. (2012). On homology. Cladistics 28(2):160–169.Ochoterena, H., Vrijdaghs, A., Smets, E., & Claßen-Bockhoff, R. (2019). The search for common origin: homology revisited. Systematic Biology, 68(5), 767-780.Patterson, C. (1982). Morphological characters and homology. Pp 21–74. In Problems of Phylogenetic Reconstruction. (K.A. Joysey & A.E. Friday, eds). Academic Press, New York.Pyron, R.A. (2015). Post-molecular systematics and the future of phylogenetics. Trends in Ecology and Evolution 30:384–389.Reuland, C., Simmons, L. W., Lüpold, S., & Fitzpatrick, J. L. (2021). Weapons evolve faster than sperm in bovids and cervids. Cells, 10(5), 1062.Richter, S. (2017). Homology and synapomorphy‐symplesiomorphy—neither synonymous nor equivalent but different perspectives on the same phenomenon. Cladistics, 33(5), 540-544.Romero-Ortiz, C. and Harvey, M.S., (2019). The pseudoscorpion genus Verrucachernes (Pseudoscorpiones: Chernetidae) in the Indian region. Zootaxa, 4568(2). https://doi.org/10.11646/zootaxa.4568.2.8Romero-Ortiz, C. and Sarmiento, C.E., (2021). A comparative study of the male genitalia of the Cacodemoniini (Pseudoscorpiones: Withiidae). The Journal of Arachnology, 49(1), pp.108-121. https://doi.org/10.1636/JoA-S-19-068Schultz, N.G., Lough-Stevens, M., Abreu, E., Orr, T. and Dean, M.D., (2016). The baculum was gained and lost multiple times during mammalian evolution. Integrative and Comparative Biology, 56(4), pp.644-656. https://doi.org/10.1093/icb/icw034Simmons, L.W. (2014). Sexual selection and genital evolution. Austral Entomology 53: 1-17.Simmons, L. W., & Garcia-Gonzalez, F. (2011). Experimental coevolution of male and female genital morphology. Nature communications, 2(1), 374.Soto, I. M., Carreira, V. P., Fanara, J. J., & Hasson, E. (2007). Evolution of male genitalia: environmental and genetic factors affect genital morphology in two Drosophila sibling species and their hybrids. BMC Evolutionary Biology, 7(1), 1-11.Weygoldt, P. (1969). The biology of pseudoscorpions. Harvard University Press: Cambridge, Massachusetts. 145 pp.Wheeler, W. C. (2012). Systematics: a course of lectures. John Wiley & Sons.Wiens, J.J., Kuczynski, C.A., Townsend, T., Reeder, T.W., Mulcahy, D.G. & J.W.Jr. Sites, (2010). Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology 59:674–688.Wipfler, B., Pohl, H., Yavorskaya, M.I. & R.G. Beutel. (2016). A review of methods for analyzing insect structures — the role of morphology in the age of phylogenomics. Current Opinion in Insect Science 18:60–68.Wright, A.M. and Hillis, D.M., (2014). Bayesian analysis using a simple likelihood model outperforms parsimony for estimation of phylogeny from discrete morphological data. PLoS One, 9(10), p.e109210. https://doi.org/10.1371/journal.pone.0109210Yuan, M. L., Wake, M. H., & Wang, I. J. (2019). Phenotypic integration between claw and toepad traits promotes microhabitat specialization in the Anolis adaptive radiation. Evolution, 73(2), 231-244.MINCIENCIASEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85259/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis Romero-Ortiz_JUL23.pdfTesis Romero-Ortiz_JUL23.pdfTesis de Doctorado en Ciencias - Biologíaapplication/pdf7297666https://repositorio.unal.edu.co/bitstream/unal/85259/2/Tesis%20Romero-Ortiz_JUL23.pdfaa22f00c08df911356a721b34eead98cMD52THUMBNAILTesis Romero-Ortiz_JUL23.pdf.jpgTesis Romero-Ortiz_JUL23.pdf.jpgGenerated Thumbnailimage/jpeg4873https://repositorio.unal.edu.co/bitstream/unal/85259/3/Tesis%20Romero-Ortiz_JUL23.pdf.jpg4a86f3f5832f4a3a45cf96231b14bff1MD53unal/85259oai:repositorio.unal.edu.co:unal/852592024-08-20 23:11:01.058Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |