Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)

ilustraciones, diagramas

Autores:
Rivera Amezquita, Marlon Zamihir
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84392
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84392
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::539 - Física moderna
Gravitational waves
Radiación gravitacional
Gravitational radiation
Ondas Gravitacionales
Tensor de Weyl
Teorías de gravedad modificada f(R)
Formalismo 1+3
Hu-Sawicki
Gravitational waves
Weyl Tensor
Modified gravity theories f(R)
1 + 3 formalism
Hu-Sawicki
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_0b5485a95834ddf5a41c68570eec70d4
oai_identifier_str oai:repositorio.unal.edu.co:unal/84392
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)
dc.title.translated.eng.fl_str_mv Cosmological gravitational radiation in the 1+3 formalism for f(R) gravity theories
title Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)
spellingShingle Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)
530 - Física::539 - Física moderna
Gravitational waves
Radiación gravitacional
Gravitational radiation
Ondas Gravitacionales
Tensor de Weyl
Teorías de gravedad modificada f(R)
Formalismo 1+3
Hu-Sawicki
Gravitational waves
Weyl Tensor
Modified gravity theories f(R)
1 + 3 formalism
Hu-Sawicki
title_short Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)
title_full Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)
title_fullStr Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)
title_full_unstemmed Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)
title_sort Radiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)
dc.creator.fl_str_mv Rivera Amezquita, Marlon Zamihir
dc.contributor.advisor.spa.fl_str_mv Castañeda Colorado, Leonardo
dc.contributor.author.spa.fl_str_mv Rivera Amezquita, Marlon Zamihir
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Astronomía Galáctica, Gravitación y Cosmología
dc.subject.ddc.spa.fl_str_mv 530 - Física::539 - Física moderna
topic 530 - Física::539 - Física moderna
Gravitational waves
Radiación gravitacional
Gravitational radiation
Ondas Gravitacionales
Tensor de Weyl
Teorías de gravedad modificada f(R)
Formalismo 1+3
Hu-Sawicki
Gravitational waves
Weyl Tensor
Modified gravity theories f(R)
1 + 3 formalism
Hu-Sawicki
dc.subject.lcc.eng.fl_str_mv Gravitational waves
dc.subject.lemb.spa.fl_str_mv Radiación gravitacional
dc.subject.lemb.eng.fl_str_mv Gravitational radiation
dc.subject.proposal.spa.fl_str_mv Ondas Gravitacionales
Tensor de Weyl
Teorías de gravedad modificada f(R)
Formalismo 1+3
Hu-Sawicki
dc.subject.proposal.eng.fl_str_mv Gravitational waves
Weyl Tensor
Modified gravity theories f(R)
1 + 3 formalism
Hu-Sawicki
description ilustraciones, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-08-01T16:49:44Z
dc.date.available.none.fl_str_mv 2023-08-01T16:49:44Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84392
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84392
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] A. Einstein, “Die Feldgleichungen der Gravitation,” Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin, pp. 844–847, Jan. 1915.
[2] Abbott.;et.al, “Observation of gravitational waves from a binary black hole merger,” Phys. Rv. Lett., vol. 116, p. 061102, Feb 2016. [Online]. Available: https://link.aps.org/doi/10. 1103/PhysRevLett.116.061102
[3] D. Bettoni, J. M. Ezquiaga, K. Hinterbichler, and M. Zumalacárregui, “Speed of gravitational waves and the fate of scalar-tensor gravity,” Phys. Rev. D, vol. 95, p. 084029, Apr 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.95.084029
[4] G. F. R. Ellis, R. Maartens, and M. A. H. MacCallum, Relativistic Cosmology. Cambridge University Press, 2012.
[5] G. F. R. Ellis, “Republication of: Relativistic cosmology,” General Relativity and Gravitation, vol. 41, no. 3, pp. 581–660, Mar. 2009.
[6] I. S. W, Hu., “Model of f(r) cosmic acceleration that evade solar system test.phys.rev.d.76,064004.2007.”
[7] A. de la Cruz-Dombriz, P. K. S. Dunsby, V. C. Busti, and S. Kandhai, “Tidal forces in f(r) theories of gravity,” Phys. Rev. D, vol. 89, p. 064029, Mar 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.89.064029
[8] S. Basilakos, S. Nesseris, and L. Perivolaropoulos, “Observational constraints on viable f(r) parametrizations with geometrical and dynamical probes,” Phys. Rev. D, vol. 87, p. 123529, Jun 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.87.123529
[9] A. G. Riess and A. V. F. .;et al, “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, vol. 116, no. 3, pp. 1009–1038, sep 1998. [Online]. Available: https://doi.org/10.1086%2F300499
[10] T. S. A, De Felipe., “f(r) theories.living rev.relativity.2010.”
[11] Y. Fujii and K.-i. Maeda, The Scalar-Tensor Theory of Gravitation, ser. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2003.
[12] M. Warkentin, “Modification of the laws of gravity in the dgp model by the presence of a second dgp brane,” Journal of High Energy Physics, vol. 2020, no. 3, Mar 2020. [Online]. Available: http://dx.doi.org/10.1007/JHEP03(2020)015
[13] S. Tsujikawa, K. Uddin, and R. Tavakol, “Density perturbations in f(r) gravity theories in metric and palatini formalisms,” Phys. Rev. D, vol. 77, p. 043007, Feb 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.77.043007
[14] T. P. Sotiriou and V. Faraoni, “f(r) theories of gravity,” Rev. Mod. Phys., vol. 82, pp. 451–497, Mar 2010. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.82.451
[15] L. Yang, C.-C. Lee, and C.-Q. Geng, “Gravitational waves in viablef(r) models,” Journal of Cosmology and Astroparticle Physics, vol. 2011, no. 08, pp. 029–029, aug 2011. [Online]. Available: https://doi.org/10.1088%2F1475-7516%2F2011%2F08%2F029
[16] C.-P. Ma and E. Bertschinger, “Cosmological perturbation theory in the synchronous and conformal newtonian gauges,” The Astrophysical Journal, vol. 455, p. 7, dec 1995. [Online]. Available: https://doi.org/10.1086%2F176550
[17] S. Carloni, P. K. S. Dunsby, and A. Troisi, “Evolution of density perturbations in f(r) gravity,” Phys. Rev. D, vol. 77, p. 024024, Jan 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.77.024024
[18] J. Ehlers, “Beiträge zur relativistischen Mechanik kontinuierlicher Medien,” Mainz Akademie Wissenschaften Mathematisch Naturwissenschaftliche Klasse, vol. 11, pp. 792–837, Jan. 1961.
[19] W. Kundt and M. Trümper, “Republication of: Contributions to the theory of gravitational radiation fields. Exact solutions of the field equations of the general theory of relativity V,” Gen. Rel. Grav., vol. 48, no. 4, p. 44, 2016.
[20] R. Maartens, G. F. R. Ellis, and S. T. C. Siklos, “Local freedom in the gravitational field,” Classical and Quantum Gravity, vol. 14, no. 7, pp. 1927–1936, jul 1997. [Online]. Available: https://doi.org/10.1088/0264-9381/14/7/025
[21] S. Carroll, Spacetime and Geometry: An Introduction to General Relativity. Benjamin Cummings, 2003. [Online]. Available: http://www.amazon.com/Spacetime-GeometryIntroduction-General-Relativity/dp/0805387323
[22] J. D. Barrow, R. Maartens, and C. G. Tsagas, “Cosmology with inhomogeneous magnetic fields,” Physics Reports, vol. 449, no. 6, pp. 131–171, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0370157307001925
[23] E. Bertschinger, “Cosmological dynamics,” 1995. [Online]. Available: https://arxiv.org/abs/ astro-ph/9503125
[24] K. N. Ananda, S. Carloni, and P. K. S. Dunsby, “Evolution of cosmological gravitational waves in f(r) gravity,” Phys. Rev. D, vol. 77, p. 024033, Jan 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.77.024033
[25] S. W. Hawking, “Gravitational radiation in an expanding universe,” Journal of Mathematical Physics, vol. 9, no. 4, pp. 598–604, 1968. [Online]. Available: https: //doi.org/10.1063/1.1664615
[26] L. Herrera, N. O. Santos, and J. Carot, “Gravitational radiation, vorticity and the electric and magnetic part of weyl tensor,” Journal of Mathematical Physics, vol. 47, no. 5, p. 052502, 2006. [Online]. Available: https://doi.org/10.1063/1.2199027
[27] R. Maartens, “Is the universe homogeneous?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1957, pp. 5115–5137, 2011. [Online]. Available: https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0289
[28] C. Clarkson and R. Maartens, “Inhomogeneity and the foundations of concordance cosmology,” Classical and Quantum Gravity, vol. 27, no. 12, p. 124008, may 2010. [Online]. Available: https://doi.org/10.1088/0264-9381/27/12/124008
[29] A. Abebe, M. Abdelwahab, A. Cruz-Dombriz, and P. Dunsby, “Covariant gauge-invariant per turbations in multifluid f(r) gravity,” Classical and Quantum Gravity - CLASS QUANTUM GRAVITY, vol. 29, 07 2012.
[30] Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., and Ashdown, M. et.al, “Planck 2015 results - xiii. cosmological parameters,” A&A, vol. 594, p. A13, 2016. [Online]. Available: https://doi.org/10.1051/0004-6361/201525830
[31] A. A. Coley, “Dynamical systems in cosmology,” 1999. [Online]. Available: https: //arxiv.org/abs/gr-qc/9910074
[32] S. Dodelson, Modern Cosmology. Academic Press, Elsevier Science, 2003.
[33] E. Lifshitz, “Republication of: On the gravitational stability of the expanding universe,” J. Phys. (USSR), vol. 10, no. 2, p. 116, 1946.
[34] K. Nakamura, “Gauge Invariant Variables in Two-Parameter Nonlinear Perturbations,” Progress of Theoretical Physics, vol. 110, no. 4, pp. 723–755, 10 2003. [Online]. Available: https://doi.org/10.1143/PTP.110.723
[35] J. M. Bardeen, “Gauge-invariant cosmological perturbations,” Phys. Rev. D, vol. 22, pp. 1882– 1905, Oct 1980. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.22.1882
[36] H. Kodama and M. Sasaki, “Cosmological Perturbation Theory,” Progress of Theoretical Physics Supplement, vol. 78, pp. 1–166, 01 1984. [Online]. Available: https: //doi.org/10.1143/PTPS.78.1
[37] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of cosmological pertur bations,” , vol. 215, no. 5-6, pp. 203–333, Jun. 1992
[38] G. F. R. Ellis and M. Bruni, “Covariant and gauge-invariant approach to cosmological density fluctuations,” Phys. Rev. D, vol. 40, pp. 1804–1818, Sep 1989. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.40.1804
[39] K. A. Malik and D. R. Matravers, “A concise introduction to perturbation theory in cosmology,” Classical and Quantum Gravity, vol. 25, no. 19, p. 193001, sep 2008. [Online]. Available: https://doi.org/10.1088/0264-9381/25/19/193001
[40] K. A. Malik and D. Wands, “Cosmological perturbations,” Physics Reports, vol. 475, no. 1-4, pp. 1–51, may 2009. [Online]. Available: https://doi.org/10.1016%2Fj.physrep.2009.03.001
[41] T. Gebbie and G. Ellis, “1+3 covariant cosmic microwave background anisotropies i: Algebraic relations for mode and multipole expansions,” Annals of Physics, vol. 282, no. 2, pp. 285–320, 2000. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0003491600960330
[42] M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments. Oxford University Press, 10 2007. [Online]. Available: https://doi.org/10.1093/acprof:oso/9780198570745.001. 0001
[43] P. K. S. Dunsby, B. A. C. C. Bassett, and G. F. R. Ellis, “Covariant analysis of gravitational waves in a cosmological context,” Classical and Quantum Gravity, vol. 14, no. 5, pp. 1215–1222, may 1997. [Online]. Available: https://doi.org/10.1088/0264-9381/14/5/023
[44] A. Challinor, “Microwave background anisotropies from gravitational waves: the 1 3 covariant approach,” Classical and Quantum Gravity, vol. 17, no. 4, pp. 871–889, jan 2000. [Online]. Available: https://doi.org/10.1088/0264-9381/17/4/309
[45] “744Bibliography,” in Gravitational Waves: Volume 2: Astrophysics and Cosmology. Oxford University Press, 03 2018.
[46] C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev., vol. 124, pp. 925–935, Nov 1961. [Online]. Available: https://link.aps.org/doi/10.1103/ PhysRev.124.925
[47] V. Faraoni, Cosmology in scalar tensor gravity, 2004.
[48] G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys., vol. 10, pp. 363–384, 1974.
[49] A. Guarnizo, L. Castaneda, and J. M. Tejeiro, “Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism,” Gen. Rel. Grav., vol. 42, pp. 2713–2728, 2010.
[50] A. M. Nzioki, R. Goswami, and P. K. S. Dunsby, “Vibrating Black Holes in f(R) gravity,” 8 2014.
[51] T. Chiba, “1/r gravity and scalar-tensor gravity,” Physics Letters B, vol. 575, no. 1, pp. 1–3, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0370269303014126
[52] S. Kandhai and P. K. S. Dunsby, “Cosmological dynamics of viable f(r) theories of gravity,” 2015. [Online]. Available: https://arxiv.org/abs/1511.00101
[53] R. Arjona, W. Cardona, and S. Nesseris, “Unraveling the effective fluid approach for f(r) models in the subhorizon approximation,” Phys. Rev. D, vol. 99, p. 043516, Feb 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.99.043516
[54] H. Bourhrous, “Cmb tensor anisotropies in f(r) gravity,” 2013. [Online]. Available: https://arxiv.org/abs/1302.1887
[55] J. Lesgourgues, “The cosmic linear anisotropy solving system (class) i: Overview,” 2011. [Online]. Available: https://arxiv.org/abs/1104.2932
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 103 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84392/4/1014253545.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84392/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84392/5/1014253545.2023.pdf.jpg
bitstream.checksum.fl_str_mv 0984e9a6876240224a3d907a3fe4a71a
eb34b1cf90b7e1103fc9dfd26be24b4a
f01dc5a16dc8d976c8622021a5213d1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090140653453312
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castañeda Colorado, Leonardo09a756690df646a0589f42b538a56da2Rivera Amezquita, Marlon Zamihir8ec30de013537c2d6d58f6af1469cf64Grupo de Astronomía Galáctica, Gravitación y Cosmología2023-08-01T16:49:44Z2023-08-01T16:49:44Z2022https://repositorio.unal.edu.co/handle/unal/84392Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLas ondas gravitacionales predichas por Albert Einstein [1], han tomado gran importancia desde su detección en el año 2015 [2]. Además de las fuentes astrofísicas, las ondas gravitacionales también pueden producirse en escenarios cosmológicos y pueden servir como pruebas para estudiar la viabilidad de las teorías de gravedad modificada [3]. En el formalismo covariante e invariante de gauge 1 + 3 [4] , la propagación de ondas gravitacionales esta descrita por la parte eléctrica y magnética del tensor de Weyl, o equivalentemente por el tensor de shear [5] . En este trabajo se realiza un calculo detallado de las diferentes ecuaciones que gobiernan las cantidades cinemáticas y dinámicas del formalismo 1 + 3, luego estudiando la teoría de perturbaciones para llegar a las ecuaciones de Onda para RG y para las teorías de gravedad modificada f(R). Se hallan soluciones para las épocas de radiación y materia en RG, y se estudian posibles soluciones de la ecuaciones de campo de onda para el modelo de Hu-Sawicki [6] , siguiendo las propuestas para la solución de las ecuaciones de campo dadas en [7, 8]. (Texto tomado de la fuente)Gravitational waves, predicted by Albert Einstein [1], have gained great importance since their detection in 2015 [2]. Besides astrophysical sources, gravitational waves can also be produced in cosmological scenarios and can serve as tests to study the viability of modified gravity theories [3]. In the covariant and gauge-invariant 1 + 3 formalism [4], the propagation of gravitational waves is described by the electric and magnetic part of the Weyl tensor, or equivalently by the shear tensor [5]. In this work, a detailed calculation of the different equations governing the kinematic and dynamic quantities of the 1+ 3 formalism is carried out, followed by the study of perturbation theory to obtain the Wave Equations for GR and for modified gravity theories f(R). Solutions are found for the radiation and matter epochs in GR, and possible solutions of the wave field equations are studied for the Hu-Sawicki model [6], following the proposals for solving the field equations given in [7, 8].MaestríaMagíster en Ciencias - FísicaGravedad Modificada103 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física modernaGravitational wavesRadiación gravitacionalGravitational radiationOndas GravitacionalesTensor de WeylTeorías de gravedad modificada f(R)Formalismo 1+3Hu-SawickiGravitational wavesWeyl TensorModified gravity theories f(R)1 + 3 formalismHu-SawickiRadiación gravitacional cosmológica en el formalismo 1+3 para las teorías de gravedad f(R)Cosmological gravitational radiation in the 1+3 formalism for f(R) gravity theoriesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] A. Einstein, “Die Feldgleichungen der Gravitation,” Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin, pp. 844–847, Jan. 1915.[2] Abbott.;et.al, “Observation of gravitational waves from a binary black hole merger,” Phys. Rv. Lett., vol. 116, p. 061102, Feb 2016. [Online]. Available: https://link.aps.org/doi/10. 1103/PhysRevLett.116.061102[3] D. Bettoni, J. M. Ezquiaga, K. Hinterbichler, and M. Zumalacárregui, “Speed of gravitational waves and the fate of scalar-tensor gravity,” Phys. Rev. D, vol. 95, p. 084029, Apr 2017. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.95.084029[4] G. F. R. Ellis, R. Maartens, and M. A. H. MacCallum, Relativistic Cosmology. Cambridge University Press, 2012.[5] G. F. R. Ellis, “Republication of: Relativistic cosmology,” General Relativity and Gravitation, vol. 41, no. 3, pp. 581–660, Mar. 2009.[6] I. S. W, Hu., “Model of f(r) cosmic acceleration that evade solar system test.phys.rev.d.76,064004.2007.”[7] A. de la Cruz-Dombriz, P. K. S. Dunsby, V. C. Busti, and S. Kandhai, “Tidal forces in f(r) theories of gravity,” Phys. Rev. D, vol. 89, p. 064029, Mar 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.89.064029[8] S. Basilakos, S. Nesseris, and L. Perivolaropoulos, “Observational constraints on viable f(r) parametrizations with geometrical and dynamical probes,” Phys. Rev. D, vol. 87, p. 123529, Jun 2013. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.87.123529[9] A. G. Riess and A. V. F. .;et al, “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, vol. 116, no. 3, pp. 1009–1038, sep 1998. [Online]. Available: https://doi.org/10.1086%2F300499[10] T. S. A, De Felipe., “f(r) theories.living rev.relativity.2010.”[11] Y. Fujii and K.-i. Maeda, The Scalar-Tensor Theory of Gravitation, ser. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2003.[12] M. Warkentin, “Modification of the laws of gravity in the dgp model by the presence of a second dgp brane,” Journal of High Energy Physics, vol. 2020, no. 3, Mar 2020. [Online]. Available: http://dx.doi.org/10.1007/JHEP03(2020)015[13] S. Tsujikawa, K. Uddin, and R. Tavakol, “Density perturbations in f(r) gravity theories in metric and palatini formalisms,” Phys. Rev. D, vol. 77, p. 043007, Feb 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.77.043007[14] T. P. Sotiriou and V. Faraoni, “f(r) theories of gravity,” Rev. Mod. Phys., vol. 82, pp. 451–497, Mar 2010. [Online]. Available: https://link.aps.org/doi/10.1103/RevModPhys.82.451[15] L. Yang, C.-C. Lee, and C.-Q. Geng, “Gravitational waves in viablef(r) models,” Journal of Cosmology and Astroparticle Physics, vol. 2011, no. 08, pp. 029–029, aug 2011. [Online]. Available: https://doi.org/10.1088%2F1475-7516%2F2011%2F08%2F029[16] C.-P. Ma and E. Bertschinger, “Cosmological perturbation theory in the synchronous and conformal newtonian gauges,” The Astrophysical Journal, vol. 455, p. 7, dec 1995. [Online]. Available: https://doi.org/10.1086%2F176550[17] S. Carloni, P. K. S. Dunsby, and A. Troisi, “Evolution of density perturbations in f(r) gravity,” Phys. Rev. D, vol. 77, p. 024024, Jan 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.77.024024[18] J. Ehlers, “Beiträge zur relativistischen Mechanik kontinuierlicher Medien,” Mainz Akademie Wissenschaften Mathematisch Naturwissenschaftliche Klasse, vol. 11, pp. 792–837, Jan. 1961.[19] W. Kundt and M. Trümper, “Republication of: Contributions to the theory of gravitational radiation fields. Exact solutions of the field equations of the general theory of relativity V,” Gen. Rel. Grav., vol. 48, no. 4, p. 44, 2016.[20] R. Maartens, G. F. R. Ellis, and S. T. C. Siklos, “Local freedom in the gravitational field,” Classical and Quantum Gravity, vol. 14, no. 7, pp. 1927–1936, jul 1997. [Online]. Available: https://doi.org/10.1088/0264-9381/14/7/025[21] S. Carroll, Spacetime and Geometry: An Introduction to General Relativity. Benjamin Cummings, 2003. [Online]. Available: http://www.amazon.com/Spacetime-GeometryIntroduction-General-Relativity/dp/0805387323[22] J. D. Barrow, R. Maartens, and C. G. Tsagas, “Cosmology with inhomogeneous magnetic fields,” Physics Reports, vol. 449, no. 6, pp. 131–171, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0370157307001925[23] E. Bertschinger, “Cosmological dynamics,” 1995. [Online]. Available: https://arxiv.org/abs/ astro-ph/9503125[24] K. N. Ananda, S. Carloni, and P. K. S. Dunsby, “Evolution of cosmological gravitational waves in f(r) gravity,” Phys. Rev. D, vol. 77, p. 024033, Jan 2008. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.77.024033[25] S. W. Hawking, “Gravitational radiation in an expanding universe,” Journal of Mathematical Physics, vol. 9, no. 4, pp. 598–604, 1968. [Online]. Available: https: //doi.org/10.1063/1.1664615[26] L. Herrera, N. O. Santos, and J. Carot, “Gravitational radiation, vorticity and the electric and magnetic part of weyl tensor,” Journal of Mathematical Physics, vol. 47, no. 5, p. 052502, 2006. [Online]. Available: https://doi.org/10.1063/1.2199027[27] R. Maartens, “Is the universe homogeneous?” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 369, no. 1957, pp. 5115–5137, 2011. [Online]. Available: https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2011.0289[28] C. Clarkson and R. Maartens, “Inhomogeneity and the foundations of concordance cosmology,” Classical and Quantum Gravity, vol. 27, no. 12, p. 124008, may 2010. [Online]. Available: https://doi.org/10.1088/0264-9381/27/12/124008[29] A. Abebe, M. Abdelwahab, A. Cruz-Dombriz, and P. Dunsby, “Covariant gauge-invariant per turbations in multifluid f(r) gravity,” Classical and Quantum Gravity - CLASS QUANTUM GRAVITY, vol. 29, 07 2012.[30] Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., and Ashdown, M. et.al, “Planck 2015 results - xiii. cosmological parameters,” A&A, vol. 594, p. A13, 2016. [Online]. Available: https://doi.org/10.1051/0004-6361/201525830[31] A. A. Coley, “Dynamical systems in cosmology,” 1999. [Online]. Available: https: //arxiv.org/abs/gr-qc/9910074[32] S. Dodelson, Modern Cosmology. Academic Press, Elsevier Science, 2003.[33] E. Lifshitz, “Republication of: On the gravitational stability of the expanding universe,” J. Phys. (USSR), vol. 10, no. 2, p. 116, 1946.[34] K. Nakamura, “Gauge Invariant Variables in Two-Parameter Nonlinear Perturbations,” Progress of Theoretical Physics, vol. 110, no. 4, pp. 723–755, 10 2003. [Online]. Available: https://doi.org/10.1143/PTP.110.723[35] J. M. Bardeen, “Gauge-invariant cosmological perturbations,” Phys. Rev. D, vol. 22, pp. 1882– 1905, Oct 1980. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.22.1882[36] H. Kodama and M. Sasaki, “Cosmological Perturbation Theory,” Progress of Theoretical Physics Supplement, vol. 78, pp. 1–166, 01 1984. [Online]. Available: https: //doi.org/10.1143/PTPS.78.1[37] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of cosmological pertur bations,” , vol. 215, no. 5-6, pp. 203–333, Jun. 1992[38] G. F. R. Ellis and M. Bruni, “Covariant and gauge-invariant approach to cosmological density fluctuations,” Phys. Rev. D, vol. 40, pp. 1804–1818, Sep 1989. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.40.1804[39] K. A. Malik and D. R. Matravers, “A concise introduction to perturbation theory in cosmology,” Classical and Quantum Gravity, vol. 25, no. 19, p. 193001, sep 2008. [Online]. Available: https://doi.org/10.1088/0264-9381/25/19/193001[40] K. A. Malik and D. Wands, “Cosmological perturbations,” Physics Reports, vol. 475, no. 1-4, pp. 1–51, may 2009. [Online]. Available: https://doi.org/10.1016%2Fj.physrep.2009.03.001[41] T. Gebbie and G. Ellis, “1+3 covariant cosmic microwave background anisotropies i: Algebraic relations for mode and multipole expansions,” Annals of Physics, vol. 282, no. 2, pp. 285–320, 2000. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0003491600960330[42] M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments. Oxford University Press, 10 2007. [Online]. Available: https://doi.org/10.1093/acprof:oso/9780198570745.001. 0001[43] P. K. S. Dunsby, B. A. C. C. Bassett, and G. F. R. Ellis, “Covariant analysis of gravitational waves in a cosmological context,” Classical and Quantum Gravity, vol. 14, no. 5, pp. 1215–1222, may 1997. [Online]. Available: https://doi.org/10.1088/0264-9381/14/5/023[44] A. Challinor, “Microwave background anisotropies from gravitational waves: the 1 3 covariant approach,” Classical and Quantum Gravity, vol. 17, no. 4, pp. 871–889, jan 2000. [Online]. Available: https://doi.org/10.1088/0264-9381/17/4/309[45] “744Bibliography,” in Gravitational Waves: Volume 2: Astrophysics and Cosmology. Oxford University Press, 03 2018.[46] C. Brans and R. H. Dicke, “Mach’s principle and a relativistic theory of gravitation,” Phys. Rev., vol. 124, pp. 925–935, Nov 1961. [Online]. Available: https://link.aps.org/doi/10.1103/ PhysRev.124.925[47] V. Faraoni, Cosmology in scalar tensor gravity, 2004.[48] G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys., vol. 10, pp. 363–384, 1974.[49] A. Guarnizo, L. Castaneda, and J. M. Tejeiro, “Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism,” Gen. Rel. Grav., vol. 42, pp. 2713–2728, 2010.[50] A. M. Nzioki, R. Goswami, and P. K. S. Dunsby, “Vibrating Black Holes in f(R) gravity,” 8 2014.[51] T. Chiba, “1/r gravity and scalar-tensor gravity,” Physics Letters B, vol. 575, no. 1, pp. 1–3, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0370269303014126[52] S. Kandhai and P. K. S. Dunsby, “Cosmological dynamics of viable f(r) theories of gravity,” 2015. [Online]. Available: https://arxiv.org/abs/1511.00101[53] R. Arjona, W. Cardona, and S. Nesseris, “Unraveling the effective fluid approach for f(r) models in the subhorizon approximation,” Phys. Rev. D, vol. 99, p. 043516, Feb 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.99.043516[54] H. Bourhrous, “Cmb tensor anisotropies in f(r) gravity,” 2013. [Online]. Available: https://arxiv.org/abs/1302.1887[55] J. Lesgourgues, “The cosmic linear anisotropy solving system (class) i: Overview,” 2011. [Online]. Available: https://arxiv.org/abs/1104.2932EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1014253545.2023.pdf1014253545.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf1092696https://repositorio.unal.edu.co/bitstream/unal/84392/4/1014253545.2023.pdf0984e9a6876240224a3d907a3fe4a71aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84392/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1014253545.2023.pdf.jpg1014253545.2023.pdf.jpgGenerated Thumbnailimage/jpeg4424https://repositorio.unal.edu.co/bitstream/unal/84392/5/1014253545.2023.pdf.jpgf01dc5a16dc8d976c8622021a5213d1dMD55unal/84392oai:repositorio.unal.edu.co:unal/843922024-08-17 00:00:07.56Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=