Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosa
This research aims to contribute to the knowledge of product diversification and thermal treatments in the transformation of materials, seeking to generate alternatives to add value to agroindustrial waste. The production of activated carbon from oil palm kernel is studied. The activated carbon prod...
- Autores:
-
Álvarez Villanueva, Daniel Mateo
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/75586
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/75586
- Palabra clave:
- Biomasa y Optimización Térmica de Procesos
Activated carbon
Physical activation
Adsorption
Paraquat
Carbón activado
Activación física
Adsorción
Paraquat
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_0afe4512b62ebf93b981a4e1e54c60f8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/75586 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosa |
title |
Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosa |
spellingShingle |
Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosa Biomasa y Optimización Térmica de Procesos Activated carbon Physical activation Adsorption Paraquat Carbón activado Activación física Adsorción Paraquat |
title_short |
Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosa |
title_full |
Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosa |
title_fullStr |
Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosa |
title_full_unstemmed |
Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosa |
title_sort |
Producción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosa |
dc.creator.fl_str_mv |
Álvarez Villanueva, Daniel Mateo |
dc.contributor.advisor.spa.fl_str_mv |
Sonia Lucía, Rincón Prat |
dc.contributor.author.spa.fl_str_mv |
Álvarez Villanueva, Daniel Mateo |
dc.contributor.researchgroup.spa.fl_str_mv |
Biomasa y Optimización Térmica de Procesos -BIOT |
dc.subject.ddc.spa.fl_str_mv |
Biomasa y Optimización Térmica de Procesos |
topic |
Biomasa y Optimización Térmica de Procesos Activated carbon Physical activation Adsorption Paraquat Carbón activado Activación física Adsorción Paraquat |
dc.subject.proposal.eng.fl_str_mv |
Activated carbon Physical activation Adsorption Paraquat |
dc.subject.proposal.spa.fl_str_mv |
Carbón activado Activación física Adsorción Paraquat |
description |
This research aims to contribute to the knowledge of product diversification and thermal treatments in the transformation of materials, seeking to generate alternatives to add value to agroindustrial waste. The production of activated carbon from oil palm kernel is studied. The activated carbon produced is evaluated by its capacity to adsorb the paraquat herbicide in aqueous solution. The thesis document is divided into three parts: First, a description of the raw material used is made, taking into account the information on the residual biomass generated in the country, its characteristics and the studies carried out by other researchers. The characteristics of activated carbon, the history of use of this material, the processes of obtaining and its applications are studied, with emphasis on liquid phase adsorption. Completing this section of context, the use of pesticide chemicals in national crops is reviewed, as well as methods to protect crops or eradicate plantations, the participation of paraquat, the risk of contamination of nearby watercourses and existing regulations. The second part presents the preparation, assembly and production of activated carbon in a fixed bed furnace, using water vapor as a reaction agent. It includes the definition of parameters and the design of the experimental plan to obtain activated carbon at temperatures of 750, 800, 850 and 900 ° C with different degrees of conversion from 22 % to 64 %. The objective of the different treatments is to evaluate the effect of the variation of parameters in the activation process and create porous structures with diverse surface characteristics to identify the properties of activated carbon that contribute to the adsorption of contaminant molecules. In order to determine the appropriate parameters for activation, characterization tests are carried out in the following part. This final phase contains the results of the characterization tests performed on samples of oil palm kernel shells, carbonized kernel shells and activated carbon from kernel shells. The comparison of results with samples of commercial activated carbon is made. Here the characteristics of the obtained surfaces, physical properties of the samples and results of adsorption tests are described. The surface area values of the activated carbon produced are between 750 and 1200 m2 / g approximately. Activated carbon with a higher degree of activation has the highest paraquat adsorption value per unit mass equal to 90 mg / g. With the results we found the parameters of the treatment that generated the activated carbon with the highest performance in the adsorption. From this the conclusions are established. |
publishDate |
2019 |
dc.date.issued.spa.fl_str_mv |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2020-02-13T12:39:05Z |
dc.date.available.spa.fl_str_mv |
2020-02-13T12:39:05Z |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/75586 |
url |
https://repositorio.unal.edu.co/handle/unal/75586 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1.(PNUMA), P.d.l.N.U.p.e.M.A., GEO America Latina y el Caribe: Perspectivas del medio ambiente 2003. 2003.2.Carvalho, F., Agriculture, Pesticides, Food Security and Food Safety.Environmental Science & Policy, 2006. 9: p. 685-692.3.UNODC, O.d.l.N.U.c.l.D.y.e.D., Problemática ambiental y la utilización de agroquímicos en la producción de coca, in Informe Analítico. 2010.4.UNODC, O.d.l.N.U.c.l.D.y.e.D., Report of the Special Rapporteur on the right to food, in Human Rights Council. 2017.5.Ritter, L., etal., Sources, Pathways, and Relative Risks of Contaminants in Surface Water and Groundwater: A Perspective Prepared for the Walkerton Inquiry.Journal of Toxicology and Environmental Health, Part A, 2002. 65: p. 1-142.6.Tsai, W.T., C.W. Lai, and K.J. Hsien, Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution.Journal of Colloid and Interface Science, 2003. 263: p. 29–34.7.Tsai, W.T., C.W. Lai, and K.J. Hsien, Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth.Chemosphere, 2004. 55: p. 829–837.8.Alza, W.R., J.M. García, and S.P. Chaparro, Determinación voltamétrica de paraquat y glifosato en aguas superficiales.Corpoica Ciencia y Tecnología Agropecuaria, 2016. 17 (3): p. 331 -345.9.Tsai, W.-T., A review on environmental exposure and health risks of herbicide paraquat.Toxicological & Environmental Chemistry, 2013. 95 (2): p. 197-206.10.Rodríguez, J., et al., Tecnología solar aplicada a la purificación de agua.Revista Científica TECNIA, 2010. 20 (1): p. 55 -64.11.González-García, P., Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications.Renewable and Sustainable Energy Reviews, 2018. 82: p. 1393–1414.12.GREENPEACE. Agua. 2010; Available from: https://www.greenpeace.org/colombia/es/campanas/contaminacion/agua/.13.Karnib, M., et al., Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite.Energy Procedia, 2014. 50: p. 113-120.14.FAO, Afrontar la escasez de agua -Un marco de acción para la agricultura y la seguridad alimentaria, in FAO Informe sobre temas hídricos,38. 2013: Roma.15.Foo, K.Y. and B. Hameed, Detoxification of pesticide waste via activated carbon adsorption process.Journal of Hazardous Materials, 2010. 175: p. 1-11.16.Ioannidou, O.A., et al., Preparation of activated carbons from agricultural residues for pesticide adsorption.Chemosphere, 2010. 80: p. 1328 -1336.17.ANTINARCÓTICOS, P.N.D.D., COCA: Deforestación, contaminación y pobreza, in ACERCAMIENTO A LA ACTIVIDAD AGRONÓMICA Y LA PROBLEMÁTICA AMBIENTAL DE LOS CULTIVOS DE COCA EN COLOMBIA. 2014.18.Comercio, S.d.I.y., Estudio sobre Plaguicidas en Colombia, in Estudios Económicos Sectoriales. 2013.19.Monsalve, A.S. and O.L.M. Trujillo, Evaluación del uso de plaguicidas en la actividad agrícola del departamento de Putumayo.Revista Ciencias de la Salud, 2005. 3 (2): p. 168-185.20.Bernal, F., Paraquat Herbicida de la muerte?Agricultura de las Américas. 151: p. 73-75.21.Gagneten, A.M., EFECTOS DEL HERBICIDA PARAQUAT SOBRE EL ZOOPLANCTON.Iheringia Série Zoologia, 2002. 92(3): p. 47-56.22.NO AL PARAQUAT, in Semana. 1984. 10423.Idrovo, A.J., Plaguicidas usados en la Fumigación de Cultivos Ilícitos y Salud Humana: ¿una Cuestión de Ciencia o Política?Revista de salud pública, 2004. 6 (2) p. 199 -211.24.Sostenible, M.d.A.y.D., Resolución No. 0631 del 17 de Marzo de 2015. 2015.25.Zhou, Y., L. Zhang, and Z. Cheng, Removal of organic pollutants from aqueous solution using agricultural wastes: A review.Journal of Molecular Liquids, 2015. 212: p. 739 -762.26.Danish, M. and T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application.Renewable and Sustainable Energy Reviews, 2018. 87: p. 1-21.27.Rashidi, N.A. and S. Yusup, A review on recent technological advancement in the activated carbon production from oil palm wastes.Chemical Engineering Journal, 2017. 314: p. 277-290.28.Pamidimukkala, P.S. and H. Soni, Efficient removal of organic pollutants with activated carbon derived from palm shell:Spectroscopic characterisation and experimental optimisation.Journal of Environmental Chemical Engineering, 2018. 6: p. 3135–3149.29.Sieliechi, J.M. and P.S. Thue, Removal of paraquat from drinking water by activated carbon prepared from waste wood.Desalination and Water Treatment, 2014: p. 1-13.30.Hamadi, N.K., S. Swaminathan, and X.D. Chen, Adsorption of Paraquat dichloride from aqueous solution by activated carbon derived from used tires.Journal of Hazardous Materials, 2004. B112: p. 133 -141.31.Hsu, S.-T. and T.-C. Pan, Adsorption of paraquat using methacrylic acid-modified rice husk.Bioresource Technology, 2007. 98: p. 3617–3621.32.Hsu, S.-T., et al., Preparation of methacrylic acid-modified rice husk improved by an experimental design andapplication for paraquat adsorption.Journal of Hazardous Materials, 2009. 171: p. 465–470.33.Tsai, W.-T. and C.-W. Lai, Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth.Journal of Hazardous Materials, 2006. B134:p. 144–148.34.Vinhal, J.O., C.F. Lima, and R.J. Cassella, Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.Ecotoxicology and Environmental Safety, 2016. 131: p. 72–78.35.Gómez, A., W. Klose, and S. Rincón, Carbón activado de cuesco de palma: Estudio de termogravimetría y estructura. 2010: Kassel University Press.36.UIS, UPME, and Ideam, Atlas del potencial energético de la biomasa residual en Colombia.2011.37.Ramos, D.F.F., Obtención de gas de síntesis a partir de la gasificación de cuesco de palma de aceite peletizado. 2016, Universidad Nacional de Colombia.38.Suhas, P.J.M.C. and M.M.L.R. Carrott, Lignin –from natural adsorbent to activated carbon: A review.Bioresource Technology, 2007. 98: p. 2301–2312.39.Ninduangdee, P., et al., Thermogravimetric Studies of Oil Palm Empty Fruit Bunch and Palm Kernel Shell: TG/DTG Analysis and Modeling.Energy Procedia, 2015. 79: p. 453 –458.40.Talero, G., S. Rincón, and A. Gómez, Torrefaction of oil palm residual biomass: Thermogravimetric characterization.Fuel, 2019. 242: p. 496-506.41.Fernandes, E.R.K., et al., Thermochemical characterization of banana leaves as a potential energy source.Energy Conversion and Management, 2013. 75: p. 603-608.42.Mei, Y., et al., Torrefaction of different parts from a corn stalk and its effect on thecharacterization of products.Industrial Crops and Products, 2016. 92: p. 26–33.43.Buratti, C., et al., Optimization oftorrefaction conditions of coffee industry residues using desirability function approach.Waste Management, 2018. 73: p. 523–534.44.Prauchner, M.J. and F. Rodríguez-Reinoso, Chemical versus physical activation of coconut shell: A comparative study.Microporous and Mesoporous Materials, 2012. 152: p. 163–171.45.Kanwal, S., et al., Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse).Waste Management, 2019.88: p. 280–290. 10546.G., A.V., B.S. L., and J.P.M. Y., ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FISICOQUÍMICAS DE LA CASCARILLA DE ARROZ.Scientia et Technica 2007. 37: p. 255-260.47.Akhtar, J. and N.S. Amin, A review on operating parameters for optimum liquid oil yield in biomass pyrolysis.Renewable and Sustainable Energy Reviews, 2012. 16: p. 5101–5109.48.Rashidi, N.A. and S. Yusup, Revisión sobre avances tecnológicos recientes en la producción de carbón activado a partir de residuos de la palma de aceite.Revista Palmas, 2017. 38: p. 86-118.49.Sabil, K.M., et al., Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell.Biomass and Bioenergy, 2013. 56: p. 351 -360.50.Rocha, P., et al., Caracterización bioquímica parcial de la colección de Elaeis oleifera de Cenipalma proveniente de la Amazonía colombiana PALMAS, 2006. 27 (3): p. 35 -44.51.Rojas, G.F.T., Evaluación del proceso de torrefacción de tusa y fibra de palma africana (Elaeis guineensis). 2018, Universidad Nacional de Colombia.52.Gómez, A., W. Klose, and S. Rincón, Pirólisis de Biomasa: Cuesco de palma de aceite. 2008: Kassel University Press.53.Producción de palma de aceite no cumplirá objetivos del Gobierno. Economía &Organizaciones 2015; Available from: http://agenciadenoticias.unal.edu.co/detalle/article/produccion-de-palma-de-aceite-no-cumplira-objetivos-del-gobierno.html.54.Fedepalma, Anuario estadístico. 2001.55.Fedepalma, Anuario Estadístico. 2018.56.Martínez, P.E.P., BIOMASA RESIDUAL VEGETAL: TECNOLOGÍAS DE TRANSFORMACIÓN Y ESTADO ACTUAL.Innovaciencia, 2014. 2 (1): p. 45 -52.57.Mendoza, D.S.G., Residuos de palma africana purifican agua y aire, in UN Periódico. 2014.58.Yuliusman, et al., Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent, in International Conference on Green and Renewable Energy Resources (ICGRER 2016). 2017. p. 1-6.59.Van Dam, J., Subproductos de la palma de aceite como materias primas de biomasa.PALMAS, 2016. 37 (Especial Tomo II): p. 149 -156.60.L., B.B.E., CARACTERIZACIÓN DEL DESECHO AGROINDUSTRIAL DE LA PALMA DE ACEITE ―CUESCO‖ PARA EL MEJORAMIENTOS DE LAS CAPAS GRANULARES DE LA ESTRUCTURA DE PAVIMENTO. 2017, UNIVERSIDAD MILITAR NUEVA GRANADA.61.Sierra-Márquez, J., L. Sierra-Márquez, and J. Olivero-Verbel, Potencial económico de la palma aceitera (Elaeis guineensis Jacq).Agronomía Mesoamericana, 2017. 28 (2): p. 523 -534.62.N., J.A.G., M.M.C. M., and E.E.Y. A., Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia.PALMAS, 2010. 31 (2): p. 41-48.63.Nor, N.M., et al., Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control —a review.Journal of Environmental Chemical Engineering, 2013 1 p.658–666.64.Bansal, R.C. and M. Goyal, Activated Carbon Adsorption. 2005.65.Marsh, H. and F. Rodríguez-Reinoso, Activated Carbon. 2006: Elsevier Science & Technology Books.66.Selvaraju, G. and N.K.A. Bakar, Process conditions for the manufacture of highly micro-mesoporous eco-friendly activated carbon from artocarpus integer bio-waste by steam activation.Journal of the Taiwan Institute of Chemical Engineers, 2018: p. 1-13.67.Ramya, V., et al., Activated carbon (prepared from secondary sludge biomass) supported semiconductor zinc oxide nanocomposite photocatalyst for reduction of Cr(VI) under visible light irradiation.Journal of Environmental Chemical Engineering, 2018. 6: p. 7327-7337.68.Luis, R.-M.J., Obtención y caracterización de carbón activado obtenido de lodos de plantas de tratamiento de agua residual de una industria avícola.Ingeniería Investigación y Tecnología, 2016. XVII (4): p. 453-462.69.Ghouma, I., et al., Activated carbon prepared by physical activation of olive stones for the removal of NO2at ambient temperature.Comptes Rendus Chimie, 2015. 18: p. 63–74. 10670.Ahmed, M.J., Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for waste water treatments: Review.Process Safety and Environmental Protection, 2016. I02: p. 168 -182.71.Castrillón, M.C., L. Giraldo, and J.C. Moreno, PREPARACIÓN DE CARBONES ACTIVADOS A PARTIR DE RESIDUOS DE LLANTAS. ACTIVACIÓN FÍSICA Y QUÍMICA.REVISTA COLOMBIANA DE QUÍMICA, 2011. 40 (2): p. 269-282.72.Ospina, L.M.F., Síntesis de carbón activado peletizado a partir de carbón mineral del Cerrejón. 2014, Universidad Nacional de Colombia.73.Papari, S. and K. Hawboldt, A review on condensing system for biomass pyrolysis process.Fuel Processing Technology, 2018. 180: p. 1–13.74.Tan, X.-f., et al., Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage.Bioresource Technology, 2017. 227: p. 359–372.75.Nowicki, P., J. Kazmierczak, and R. Pietrzak, Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones.Powder Technology, 2015. 269: p. 312–319.76.Ould-Idriss, A., et al., Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air.Fuel Processing Technology, 2011. 92: p. 266–270.77.Matos, J., et al., Synthesis and characterization of activated carbon from sawdust of Algarroba wood. 1.Physical activation and pyrolysis.Journal of Hazardous Materials 2011. 196: p. 360–369.78.Gómez, A., W. Klose, and S. Rincón, Gasificación de biomasa residual de procesamiento agroindustrial: Gasificación de carbonizados. 2011: Kassel University Press.79.Kilpimaa, S., et al., Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution.Journal of Industrial and Engineering Chemistry, 2015. 21: p. 1354 -1364.80.Osman, N.B., N. Shamsuddin, and Y. Uemura, Activated Carbon of Oil Palm Empty Fruit Bunch (EFB); Core and Shaggy.Procedia Engineering, 2016. 148: p. 758 -764.81.Kilpimaa, S., et al., Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution.Journal of Industrial and Engineering Chemistry, 2015. 21: p. 1354–1364.82.Wu, F.-C., R.-L. Tseng, and C.-C. Hu, Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons.Microporous and Mesoporous Materials, 2005. 80: p. 95-106.83.Faramarzi, A.H., et al., Experimental investigation and mathematical modeling of physical activated carbon preparation from pistachio shell.Journal of Analytical and Applied Pyrolysis, 2015. 114: p. 143–154.84.Köseoglu, E. and C. Akmil-Basar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass.Advanced Powder Technology, 2015. 26: p. 811-818.85.Ould-Idriss, A., et al., Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4.Fuel Processing Technology 2011. 92: p. 261–265.86.Arami-Niya, A., W.M.A.W. Daud, and F.S. Mjalli, Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption.Chemical Engineering Research and Design, 2011. 89: p. 657–664.87.Aguayo-Villarreal, I.A., A. Bonilla-Petriciolet, and R. Muñiz-Valencia, Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions.Journal of Molecular Liquids, 2017. 230: p. 686–695.88.Kan, Y., et al., Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal.Journal of the Taiwan Institute of Chemical Engineers, 2017. 71: p. 494–500. 10789.Bhatia, S.K. and D.D. Perlmutter, A Random Pore Model for Fluid-Solid Reactions: I. Isothermal, Kinetic Control.The American Institute of Chemical Engineers, 1980. 26, No. 3: p. 379-386.90.Bhatia, S.K. and D.D. Perlmutter, A Random Pore Model for Fluid-Solid Reactions: II. Diffusion and Transport Effects.The American Institute of Chemical Engineers, 1981. 27, No. 3: p. 247-254.91.Valencia, J.P.L., Desarrollo de un carbón activado granular mediante activación física en un horno rotatorio. 2014, Universidad Nacional de Colombia.92.Mcdougall, G.J., The physical nature and manufacture of activated carbon.Journal of the Southern African Institute of Mining and Metallurgy, 1991. 91 (4): p. 109-120.93.Tai, Z., et al., Activated carbon from the graphite with increased rate capability for the potassium ion battery.Carbon, 2017. 123: p. 54-61.94.Garche, J., Encyclopedia of Electrochemical Power Sources. Part I. Vol. 1. 2009.95.Zdravkov, B.D., et al., Pore classification in the characterization of porous materials: A perspective.Central European Journal of Chemistry, 2007. 5 (2): p. 385–395.96., D.o.A. Carbon, Editor.97.Figueiredo, J.L., et al., Modification of the surface chemistry of activated carbons.Carbon, 1999. 37: p. 1379–1389.98.Menéndez-Díaz, J.A. and I. Martín-Gullón, Types of carbon adsorbents and their production.Activated Carbon Surfaces in Environmental Remediation, 2006. 7 (4): p. 1-47.99.Boehm, H.P., Surface oxides on carbon and their analysis: a critical assessment.Carbon, 2002. 40: p. 145–149.100.Cecen, F. and O. Aktas, Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment. 2011: WILEY-VCH Verlag GmbH & Co. KGaA.101.Rodriguez-Reinoso, F. and J. Silvestre-Albero Activated Carbon and Adsorption. 2016. 1-14.102.F., K.J., ACTIVATED CARBON: CLASSIFICATIONS, PROPERTIES AND APPLICATIONS. CHEMICAL ENGINEERING METHODS AND TECHNOLOGY. 2012, New York: Nova Science Publishers, Inc.103.Gregg, S.J. and K.S.W. Sing, Adsorption, Surface Area and Porosity. 1982: Academic Press.104.Ruthven, D.M., Principles of Adsorption & Adsorption Processes. 1984.105.ALOthman, Z.A., A Review: Fundamental Aspects of Silicate Mesoporous Materials.Materials, 2012. 5: p. 2874-2902.106.(IUPAC), I.U.O.P.A.A.C., REGULATORY LIMITS FOR PESTICIDE RESIDUES IN WATER.Pure and applied chemistry, 2003. 75 (8): p. 1123–1155.107.WHO, The WHO recommended classification of pesticides by hazard and guidelines to classification: 2009.2009, World Health Organization.108.ICA, I.C.A., Listado de Registros nacionales de plaguicidas químicos de uso agrícola. 2017.109.Salman, J.M., Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution.Arabian Journal of Chemistry, 2014. 7: p. 101 -108.110.Foo, K.Y. and B. Hameed, Utilization of biodiesel waste as a renewable resource for activated carbon: Application to environmental problems.Renewable and Sustainable Energy Reviews, 2009. 13: p. 2495-2504.111.FAO, FAO SPECIFICATIONS AND EVALUATIONS FOR PARAQUAT DICHLORIDE. Organización de las Naciones Unidas para la Alimentación y la Agricultura.112.M., R., E.W. W., and S.P. G., The Arrangement of Paraquat Bound by Vermiculite and Montmorillonite.Journal of Colloid and Interface Science, 1979. 69 (3) p. 398-408.113.W., A., et al., Paraquat Adsorption, Degradation, and Remobilization in Tropical Soils of Thailand.Journal of Environmental Science and Health Part B, 2006. 41: p. 485-507 114.Fernández, M., et al., Spatial and Temporal Trends of Paraquat, Diquat, and Difenzoquat Contamination in Water from Marsh Areas of the Valencian Community (Spain).Archives of Environmental Contamination and Toxicology, 1998. 35: p. 377–384.115.Guerrero, M.N.M., S.M.D. Criollo, and M.E.M. Duran, Perfil epidemiológico de las intoxicaciones por sustancias químicas en Colombia, 2008-2015, in INFORME QUINCENAL EPIDEMIOLÓGICO NACIONAL (IQEN). 2017, Ministerio de Salud y Protección Social, Instituto Nacional de Salud.116.Okonek, S., et al., Successful Treatment of Paraquat Poisoning: Activated Charcoal per os and ―Continuous Hemoperfusion‖.Journal of Toxicology: Clinical Toxicology, 1982. 19 (8): p. 807 -819.117.Okonek, S., A. Hofmann, and B. Henningsen, Efficacy of Gut Lavage, Hemodialysis, and Hemoperfusion in the Therapy of Paraquat or Diquat Intoxication.Archives of Toxicology, 1976. 36: p. 43 -51.118.M., L.L.A., et al., Envenenamiento por Paraquat y hemoperfusión con carbón activado.Anales De Medicina Interna, 2002. 9 (6): p. 310-312.119.Cáceres Martínez, L.E., et al., Technical Characterization of Colombian Agroindustry Residues for Termochemical Conversion in Fluidized Bed Reactors, in 25th European Biomass Conference and Exhibition. 2017. p. 817 -827.120.Souza, D.D., S.A.S. Machado, and R.C. Pires, Multiple square wave voltammetry for analytical determination of paraquat in natural water, food, and beverages using microelectrodes.Talanta 2006. 69: p. 1200–1207.121.Sandoval, A.E.L., J.M.G. Colmenares, and S.P.C. Acuña, Validación del método voltamétrico para la determinación de residuos de paraquat aplicado en cultivos de papa.Acta Agronómica, 2015. 64 (4) p. 336 -341.122.Rai, M.K., J.V. Das, and V.K. Gupta, A sensitive determination of paraquat by spectrophotometry.Talanta 1997. 45: p. 343-348.123.Welington, P. and D.R. L., Quality of seed potato tubers treated with paraquat and the development of a simplified methodology for paraquat residue detection.Planta Daninha, 1995. 13 (1): p. 32-38.124.Shivhare, P. and V.K. Gupta, Spectrophotometric Method for the Determination of Paraquat in Water, Grain and Plant Materials.ANALYST, 1991. 116: p. 391-393.125.Luna, J.R., et al., Determinación de paraquat en orina utilizando un sistema de inyección en flujo continuo.Acta Bioquímica Clínica Latinoamericana, 2008. 42 (2): p. 251-259.126.Bechara, A., et al., Modulo Reductor de Alquitranes, in Proyecto Aplicado de Ingeniería. 2013.127.Varma, A.K., et al., Pyrolysisof wood sawdust: Effects of process parameters on products yield and characterization of products.Waste Management, 2019. 89: p. 224–235 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
108 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/75586/1/1088264379.2019.pdf https://repositorio.unal.edu.co/bitstream/unal/75586/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/75586/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/75586/4/1088264379.2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
534e7140ef112bbe8d56882aa27cc8f2 6f3f13b02594d02ad110b3ad534cd5df 4460e5956bc1d1639be9ae6146a50347 1647edb36beb94579a85ca535123adbf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089887667716096 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sonia Lucía, Rincón Prat14540fb2-a513-4212-b4af-b5cb9d629ed8-1Álvarez Villanueva, Daniel Mateo41a02607-a36a-4e2f-8add-fcbd00166366Biomasa y Optimización Térmica de Procesos -BIOT2020-02-13T12:39:05Z2020-02-13T12:39:05Z2019https://repositorio.unal.edu.co/handle/unal/75586This research aims to contribute to the knowledge of product diversification and thermal treatments in the transformation of materials, seeking to generate alternatives to add value to agroindustrial waste. The production of activated carbon from oil palm kernel is studied. The activated carbon produced is evaluated by its capacity to adsorb the paraquat herbicide in aqueous solution. The thesis document is divided into three parts: First, a description of the raw material used is made, taking into account the information on the residual biomass generated in the country, its characteristics and the studies carried out by other researchers. The characteristics of activated carbon, the history of use of this material, the processes of obtaining and its applications are studied, with emphasis on liquid phase adsorption. Completing this section of context, the use of pesticide chemicals in national crops is reviewed, as well as methods to protect crops or eradicate plantations, the participation of paraquat, the risk of contamination of nearby watercourses and existing regulations. The second part presents the preparation, assembly and production of activated carbon in a fixed bed furnace, using water vapor as a reaction agent. It includes the definition of parameters and the design of the experimental plan to obtain activated carbon at temperatures of 750, 800, 850 and 900 ° C with different degrees of conversion from 22 % to 64 %. The objective of the different treatments is to evaluate the effect of the variation of parameters in the activation process and create porous structures with diverse surface characteristics to identify the properties of activated carbon that contribute to the adsorption of contaminant molecules. In order to determine the appropriate parameters for activation, characterization tests are carried out in the following part. This final phase contains the results of the characterization tests performed on samples of oil palm kernel shells, carbonized kernel shells and activated carbon from kernel shells. The comparison of results with samples of commercial activated carbon is made. Here the characteristics of the obtained surfaces, physical properties of the samples and results of adsorption tests are described. The surface area values of the activated carbon produced are between 750 and 1200 m2 / g approximately. Activated carbon with a higher degree of activation has the highest paraquat adsorption value per unit mass equal to 90 mg / g. With the results we found the parameters of the treatment that generated the activated carbon with the highest performance in the adsorption. From this the conclusions are established.Esta investigación pretende aportar al conocimiento de diversificación de productos y de tratamientos térmicos en la transformación de materiales, buscando generar alternativas para dar valor agregado a residuos agroindustriales. Se estudia la producción de carbón activado de cuesco de palma de aceite. El carbón activado producido se evalúa mediante su capacidad de adsorción del herbicida paraquat en solución acuosa. El documento de tesis se divide en tres partes: En primer lugar se hace una descripción de la materia prima utilizada, teniendo en cuenta la información de la biomasa residual generada en el país, sus características y los estudios realizados por otros investigadores. Se estudian las características del carbón activado, los antecedentes de uso de este material, los procesos de obtención y sus aplicaciones, haciendo énfasis en la adsorción en fase líquida. Completando esta sección de contexto se revisa la utilización de productos químicos pesticidas en los cultivos nacionales como métodos para proteger las cosechas o para erradicar plantaciones, la participación del paraquat, el riesgo de contaminación de corrientes de agua cercanas y la normatividad existente. En la segunda parte se presenta la preparación, montaje y producción del carbón activado en un horno de lecho fijo, usando vapor de agua como agente de reacción. Se incluye la definición de parámetros y el diseño del plan experimental para obtener carbón activado a temperaturas de 750, 800, 850 y 900 °C con diferentes grados de conversión desde 22 % hasta 64 %. El objetivo de los diferentes tratamientos es, evaluar el efecto de la variación de parámetros en el proceso de activación y crear estructuras porosas con características superficiales diversas, para identificar las propiedades del carbón activado que contribuyen en la adsorción de moléculas del contaminante. Con el propósito de determinar los parámetros adecuados para la activación, se realizan pruebas de caracterización abordadas en la siguiente parte. Esta fase final contiene los resultados de las pruebas de caracterización realizadas a las muestras de cuesco de palma de aceite, cuesco carbonizado y carbón activado de cuesco. Se hace la comparación de resultados con muestras de carbón activado comercial. Aquí se describen las características de las superficies obtenidas, propiedades físicas de las muestras y resultados de pruebas de adsorción. Los valores de área superficial del carbón activado producido se encuentran entre 750 y 1200 m2/g aproximadamente. El carbón activado de mayor grado de activación presenta el valor más alto de adsorción de paraquat por unidad de masa igual a 90 mg/g. Con los resultados se encuentran los parámetros del tratamiento que generó el carbón activado de mejor desempeño en la adsorción, a partir de esto se establecen las conclusiones.Magíster en Ingeniería - Materiales y Procesos. Línea de Investigación: Sólidos Porosos.Maestría108application/pdfspaBiomasa y Optimización Térmica de ProcesosActivated carbonPhysical activationAdsorptionParaquatCarbón activadoActivación físicaAdsorciónParaquatProducción de carbón activado a partir de cuesco de palma de aceite para la remoción de paraquat en solución acuosaDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPUniversidad Nacional de Colombia - Sede Bogotá1.(PNUMA), P.d.l.N.U.p.e.M.A., GEO America Latina y el Caribe: Perspectivas del medio ambiente 2003. 2003.2.Carvalho, F., Agriculture, Pesticides, Food Security and Food Safety.Environmental Science & Policy, 2006. 9: p. 685-692.3.UNODC, O.d.l.N.U.c.l.D.y.e.D., Problemática ambiental y la utilización de agroquímicos en la producción de coca, in Informe Analítico. 2010.4.UNODC, O.d.l.N.U.c.l.D.y.e.D., Report of the Special Rapporteur on the right to food, in Human Rights Council. 2017.5.Ritter, L., etal., Sources, Pathways, and Relative Risks of Contaminants in Surface Water and Groundwater: A Perspective Prepared for the Walkerton Inquiry.Journal of Toxicology and Environmental Health, Part A, 2002. 65: p. 1-142.6.Tsai, W.T., C.W. Lai, and K.J. Hsien, Effect of particle size of activated clay on the adsorption of paraquat from aqueous solution.Journal of Colloid and Interface Science, 2003. 263: p. 29–34.7.Tsai, W.T., C.W. Lai, and K.J. Hsien, Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth.Chemosphere, 2004. 55: p. 829–837.8.Alza, W.R., J.M. García, and S.P. Chaparro, Determinación voltamétrica de paraquat y glifosato en aguas superficiales.Corpoica Ciencia y Tecnología Agropecuaria, 2016. 17 (3): p. 331 -345.9.Tsai, W.-T., A review on environmental exposure and health risks of herbicide paraquat.Toxicological & Environmental Chemistry, 2013. 95 (2): p. 197-206.10.Rodríguez, J., et al., Tecnología solar aplicada a la purificación de agua.Revista Científica TECNIA, 2010. 20 (1): p. 55 -64.11.González-García, P., Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications.Renewable and Sustainable Energy Reviews, 2018. 82: p. 1393–1414.12.GREENPEACE. Agua. 2010; Available from: https://www.greenpeace.org/colombia/es/campanas/contaminacion/agua/.13.Karnib, M., et al., Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite.Energy Procedia, 2014. 50: p. 113-120.14.FAO, Afrontar la escasez de agua -Un marco de acción para la agricultura y la seguridad alimentaria, in FAO Informe sobre temas hídricos,38. 2013: Roma.15.Foo, K.Y. and B. Hameed, Detoxification of pesticide waste via activated carbon adsorption process.Journal of Hazardous Materials, 2010. 175: p. 1-11.16.Ioannidou, O.A., et al., Preparation of activated carbons from agricultural residues for pesticide adsorption.Chemosphere, 2010. 80: p. 1328 -1336.17.ANTINARCÓTICOS, P.N.D.D., COCA: Deforestación, contaminación y pobreza, in ACERCAMIENTO A LA ACTIVIDAD AGRONÓMICA Y LA PROBLEMÁTICA AMBIENTAL DE LOS CULTIVOS DE COCA EN COLOMBIA. 2014.18.Comercio, S.d.I.y., Estudio sobre Plaguicidas en Colombia, in Estudios Económicos Sectoriales. 2013.19.Monsalve, A.S. and O.L.M. Trujillo, Evaluación del uso de plaguicidas en la actividad agrícola del departamento de Putumayo.Revista Ciencias de la Salud, 2005. 3 (2): p. 168-185.20.Bernal, F., Paraquat Herbicida de la muerte?Agricultura de las Américas. 151: p. 73-75.21.Gagneten, A.M., EFECTOS DEL HERBICIDA PARAQUAT SOBRE EL ZOOPLANCTON.Iheringia Série Zoologia, 2002. 92(3): p. 47-56.22.NO AL PARAQUAT, in Semana. 1984. 10423.Idrovo, A.J., Plaguicidas usados en la Fumigación de Cultivos Ilícitos y Salud Humana: ¿una Cuestión de Ciencia o Política?Revista de salud pública, 2004. 6 (2) p. 199 -211.24.Sostenible, M.d.A.y.D., Resolución No. 0631 del 17 de Marzo de 2015. 2015.25.Zhou, Y., L. Zhang, and Z. Cheng, Removal of organic pollutants from aqueous solution using agricultural wastes: A review.Journal of Molecular Liquids, 2015. 212: p. 739 -762.26.Danish, M. and T. Ahmad, A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application.Renewable and Sustainable Energy Reviews, 2018. 87: p. 1-21.27.Rashidi, N.A. and S. Yusup, A review on recent technological advancement in the activated carbon production from oil palm wastes.Chemical Engineering Journal, 2017. 314: p. 277-290.28.Pamidimukkala, P.S. and H. Soni, Efficient removal of organic pollutants with activated carbon derived from palm shell:Spectroscopic characterisation and experimental optimisation.Journal of Environmental Chemical Engineering, 2018. 6: p. 3135–3149.29.Sieliechi, J.M. and P.S. Thue, Removal of paraquat from drinking water by activated carbon prepared from waste wood.Desalination and Water Treatment, 2014: p. 1-13.30.Hamadi, N.K., S. Swaminathan, and X.D. Chen, Adsorption of Paraquat dichloride from aqueous solution by activated carbon derived from used tires.Journal of Hazardous Materials, 2004. B112: p. 133 -141.31.Hsu, S.-T. and T.-C. Pan, Adsorption of paraquat using methacrylic acid-modified rice husk.Bioresource Technology, 2007. 98: p. 3617–3621.32.Hsu, S.-T., et al., Preparation of methacrylic acid-modified rice husk improved by an experimental design andapplication for paraquat adsorption.Journal of Hazardous Materials, 2009. 171: p. 465–470.33.Tsai, W.-T. and C.-W. Lai, Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth.Journal of Hazardous Materials, 2006. B134:p. 144–148.34.Vinhal, J.O., C.F. Lima, and R.J. Cassella, Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.Ecotoxicology and Environmental Safety, 2016. 131: p. 72–78.35.Gómez, A., W. Klose, and S. Rincón, Carbón activado de cuesco de palma: Estudio de termogravimetría y estructura. 2010: Kassel University Press.36.UIS, UPME, and Ideam, Atlas del potencial energético de la biomasa residual en Colombia.2011.37.Ramos, D.F.F., Obtención de gas de síntesis a partir de la gasificación de cuesco de palma de aceite peletizado. 2016, Universidad Nacional de Colombia.38.Suhas, P.J.M.C. and M.M.L.R. Carrott, Lignin –from natural adsorbent to activated carbon: A review.Bioresource Technology, 2007. 98: p. 2301–2312.39.Ninduangdee, P., et al., Thermogravimetric Studies of Oil Palm Empty Fruit Bunch and Palm Kernel Shell: TG/DTG Analysis and Modeling.Energy Procedia, 2015. 79: p. 453 –458.40.Talero, G., S. Rincón, and A. Gómez, Torrefaction of oil palm residual biomass: Thermogravimetric characterization.Fuel, 2019. 242: p. 496-506.41.Fernandes, E.R.K., et al., Thermochemical characterization of banana leaves as a potential energy source.Energy Conversion and Management, 2013. 75: p. 603-608.42.Mei, Y., et al., Torrefaction of different parts from a corn stalk and its effect on thecharacterization of products.Industrial Crops and Products, 2016. 92: p. 26–33.43.Buratti, C., et al., Optimization oftorrefaction conditions of coffee industry residues using desirability function approach.Waste Management, 2018. 73: p. 523–534.44.Prauchner, M.J. and F. Rodríguez-Reinoso, Chemical versus physical activation of coconut shell: A comparative study.Microporous and Mesoporous Materials, 2012. 152: p. 163–171.45.Kanwal, S., et al., Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse).Waste Management, 2019.88: p. 280–290. 10546.G., A.V., B.S. L., and J.P.M. Y., ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FISICOQUÍMICAS DE LA CASCARILLA DE ARROZ.Scientia et Technica 2007. 37: p. 255-260.47.Akhtar, J. and N.S. Amin, A review on operating parameters for optimum liquid oil yield in biomass pyrolysis.Renewable and Sustainable Energy Reviews, 2012. 16: p. 5101–5109.48.Rashidi, N.A. and S. Yusup, Revisión sobre avances tecnológicos recientes en la producción de carbón activado a partir de residuos de la palma de aceite.Revista Palmas, 2017. 38: p. 86-118.49.Sabil, K.M., et al., Effects of torrefaction on the physiochemical properties of oil palm empty fruit bunches, mesocarp fiber and kernel shell.Biomass and Bioenergy, 2013. 56: p. 351 -360.50.Rocha, P., et al., Caracterización bioquímica parcial de la colección de Elaeis oleifera de Cenipalma proveniente de la Amazonía colombiana PALMAS, 2006. 27 (3): p. 35 -44.51.Rojas, G.F.T., Evaluación del proceso de torrefacción de tusa y fibra de palma africana (Elaeis guineensis). 2018, Universidad Nacional de Colombia.52.Gómez, A., W. Klose, and S. Rincón, Pirólisis de Biomasa: Cuesco de palma de aceite. 2008: Kassel University Press.53.Producción de palma de aceite no cumplirá objetivos del Gobierno. Economía &Organizaciones 2015; Available from: http://agenciadenoticias.unal.edu.co/detalle/article/produccion-de-palma-de-aceite-no-cumplira-objetivos-del-gobierno.html.54.Fedepalma, Anuario estadístico. 2001.55.Fedepalma, Anuario Estadístico. 2018.56.Martínez, P.E.P., BIOMASA RESIDUAL VEGETAL: TECNOLOGÍAS DE TRANSFORMACIÓN Y ESTADO ACTUAL.Innovaciencia, 2014. 2 (1): p. 45 -52.57.Mendoza, D.S.G., Residuos de palma africana purifican agua y aire, in UN Periódico. 2014.58.Yuliusman, et al., Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent, in International Conference on Green and Renewable Energy Resources (ICGRER 2016). 2017. p. 1-6.59.Van Dam, J., Subproductos de la palma de aceite como materias primas de biomasa.PALMAS, 2016. 37 (Especial Tomo II): p. 149 -156.60.L., B.B.E., CARACTERIZACIÓN DEL DESECHO AGROINDUSTRIAL DE LA PALMA DE ACEITE ―CUESCO‖ PARA EL MEJORAMIENTOS DE LAS CAPAS GRANULARES DE LA ESTRUCTURA DE PAVIMENTO. 2017, UNIVERSIDAD MILITAR NUEVA GRANADA.61.Sierra-Márquez, J., L. Sierra-Márquez, and J. Olivero-Verbel, Potencial económico de la palma aceitera (Elaeis guineensis Jacq).Agronomía Mesoamericana, 2017. 28 (2): p. 523 -534.62.N., J.A.G., M.M.C. M., and E.E.Y. A., Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia.PALMAS, 2010. 31 (2): p. 41-48.63.Nor, N.M., et al., Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control —a review.Journal of Environmental Chemical Engineering, 2013 1 p.658–666.64.Bansal, R.C. and M. Goyal, Activated Carbon Adsorption. 2005.65.Marsh, H. and F. Rodríguez-Reinoso, Activated Carbon. 2006: Elsevier Science & Technology Books.66.Selvaraju, G. and N.K.A. Bakar, Process conditions for the manufacture of highly micro-mesoporous eco-friendly activated carbon from artocarpus integer bio-waste by steam activation.Journal of the Taiwan Institute of Chemical Engineers, 2018: p. 1-13.67.Ramya, V., et al., Activated carbon (prepared from secondary sludge biomass) supported semiconductor zinc oxide nanocomposite photocatalyst for reduction of Cr(VI) under visible light irradiation.Journal of Environmental Chemical Engineering, 2018. 6: p. 7327-7337.68.Luis, R.-M.J., Obtención y caracterización de carbón activado obtenido de lodos de plantas de tratamiento de agua residual de una industria avícola.Ingeniería Investigación y Tecnología, 2016. XVII (4): p. 453-462.69.Ghouma, I., et al., Activated carbon prepared by physical activation of olive stones for the removal of NO2at ambient temperature.Comptes Rendus Chimie, 2015. 18: p. 63–74. 10670.Ahmed, M.J., Preparation of activated carbons from date (Phoenix dactylifera L.) palm stones and application for waste water treatments: Review.Process Safety and Environmental Protection, 2016. I02: p. 168 -182.71.Castrillón, M.C., L. Giraldo, and J.C. Moreno, PREPARACIÓN DE CARBONES ACTIVADOS A PARTIR DE RESIDUOS DE LLANTAS. ACTIVACIÓN FÍSICA Y QUÍMICA.REVISTA COLOMBIANA DE QUÍMICA, 2011. 40 (2): p. 269-282.72.Ospina, L.M.F., Síntesis de carbón activado peletizado a partir de carbón mineral del Cerrejón. 2014, Universidad Nacional de Colombia.73.Papari, S. and K. Hawboldt, A review on condensing system for biomass pyrolysis process.Fuel Processing Technology, 2018. 180: p. 1–13.74.Tan, X.-f., et al., Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage.Bioresource Technology, 2017. 227: p. 359–372.75.Nowicki, P., J. Kazmierczak, and R. Pietrzak, Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones.Powder Technology, 2015. 269: p. 312–319.76.Ould-Idriss, A., et al., Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air.Fuel Processing Technology, 2011. 92: p. 266–270.77.Matos, J., et al., Synthesis and characterization of activated carbon from sawdust of Algarroba wood. 1.Physical activation and pyrolysis.Journal of Hazardous Materials 2011. 196: p. 360–369.78.Gómez, A., W. Klose, and S. Rincón, Gasificación de biomasa residual de procesamiento agroindustrial: Gasificación de carbonizados. 2011: Kassel University Press.79.Kilpimaa, S., et al., Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution.Journal of Industrial and Engineering Chemistry, 2015. 21: p. 1354 -1364.80.Osman, N.B., N. Shamsuddin, and Y. Uemura, Activated Carbon of Oil Palm Empty Fruit Bunch (EFB); Core and Shaggy.Procedia Engineering, 2016. 148: p. 758 -764.81.Kilpimaa, S., et al., Physical activation of carbon residue from biomass gasification: Novel sorbent for the removal of phosphates and nitrates from aqueous solution.Journal of Industrial and Engineering Chemistry, 2015. 21: p. 1354–1364.82.Wu, F.-C., R.-L. Tseng, and C.-C. Hu, Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons.Microporous and Mesoporous Materials, 2005. 80: p. 95-106.83.Faramarzi, A.H., et al., Experimental investigation and mathematical modeling of physical activated carbon preparation from pistachio shell.Journal of Analytical and Applied Pyrolysis, 2015. 114: p. 143–154.84.Köseoglu, E. and C. Akmil-Basar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass.Advanced Powder Technology, 2015. 26: p. 811-818.85.Ould-Idriss, A., et al., Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4.Fuel Processing Technology 2011. 92: p. 261–265.86.Arami-Niya, A., W.M.A.W. Daud, and F.S. Mjalli, Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption.Chemical Engineering Research and Design, 2011. 89: p. 657–664.87.Aguayo-Villarreal, I.A., A. Bonilla-Petriciolet, and R. Muñiz-Valencia, Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions.Journal of Molecular Liquids, 2017. 230: p. 686–695.88.Kan, Y., et al., Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal.Journal of the Taiwan Institute of Chemical Engineers, 2017. 71: p. 494–500. 10789.Bhatia, S.K. and D.D. Perlmutter, A Random Pore Model for Fluid-Solid Reactions: I. Isothermal, Kinetic Control.The American Institute of Chemical Engineers, 1980. 26, No. 3: p. 379-386.90.Bhatia, S.K. and D.D. Perlmutter, A Random Pore Model for Fluid-Solid Reactions: II. Diffusion and Transport Effects.The American Institute of Chemical Engineers, 1981. 27, No. 3: p. 247-254.91.Valencia, J.P.L., Desarrollo de un carbón activado granular mediante activación física en un horno rotatorio. 2014, Universidad Nacional de Colombia.92.Mcdougall, G.J., The physical nature and manufacture of activated carbon.Journal of the Southern African Institute of Mining and Metallurgy, 1991. 91 (4): p. 109-120.93.Tai, Z., et al., Activated carbon from the graphite with increased rate capability for the potassium ion battery.Carbon, 2017. 123: p. 54-61.94.Garche, J., Encyclopedia of Electrochemical Power Sources. Part I. Vol. 1. 2009.95.Zdravkov, B.D., et al., Pore classification in the characterization of porous materials: A perspective.Central European Journal of Chemistry, 2007. 5 (2): p. 385–395.96., D.o.A. Carbon, Editor.97.Figueiredo, J.L., et al., Modification of the surface chemistry of activated carbons.Carbon, 1999. 37: p. 1379–1389.98.Menéndez-Díaz, J.A. and I. Martín-Gullón, Types of carbon adsorbents and their production.Activated Carbon Surfaces in Environmental Remediation, 2006. 7 (4): p. 1-47.99.Boehm, H.P., Surface oxides on carbon and their analysis: a critical assessment.Carbon, 2002. 40: p. 145–149.100.Cecen, F. and O. Aktas, Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment. 2011: WILEY-VCH Verlag GmbH & Co. KGaA.101.Rodriguez-Reinoso, F. and J. Silvestre-Albero Activated Carbon and Adsorption. 2016. 1-14.102.F., K.J., ACTIVATED CARBON: CLASSIFICATIONS, PROPERTIES AND APPLICATIONS. CHEMICAL ENGINEERING METHODS AND TECHNOLOGY. 2012, New York: Nova Science Publishers, Inc.103.Gregg, S.J. and K.S.W. Sing, Adsorption, Surface Area and Porosity. 1982: Academic Press.104.Ruthven, D.M., Principles of Adsorption & Adsorption Processes. 1984.105.ALOthman, Z.A., A Review: Fundamental Aspects of Silicate Mesoporous Materials.Materials, 2012. 5: p. 2874-2902.106.(IUPAC), I.U.O.P.A.A.C., REGULATORY LIMITS FOR PESTICIDE RESIDUES IN WATER.Pure and applied chemistry, 2003. 75 (8): p. 1123–1155.107.WHO, The WHO recommended classification of pesticides by hazard and guidelines to classification: 2009.2009, World Health Organization.108.ICA, I.C.A., Listado de Registros nacionales de plaguicidas químicos de uso agrícola. 2017.109.Salman, J.M., Optimization of preparation conditions for activated carbon from palm oil fronds using response surface methodology on removal of pesticides from aqueous solution.Arabian Journal of Chemistry, 2014. 7: p. 101 -108.110.Foo, K.Y. and B. Hameed, Utilization of biodiesel waste as a renewable resource for activated carbon: Application to environmental problems.Renewable and Sustainable Energy Reviews, 2009. 13: p. 2495-2504.111.FAO, FAO SPECIFICATIONS AND EVALUATIONS FOR PARAQUAT DICHLORIDE. Organización de las Naciones Unidas para la Alimentación y la Agricultura.112.M., R., E.W. W., and S.P. G., The Arrangement of Paraquat Bound by Vermiculite and Montmorillonite.Journal of Colloid and Interface Science, 1979. 69 (3) p. 398-408.113.W., A., et al., Paraquat Adsorption, Degradation, and Remobilization in Tropical Soils of Thailand.Journal of Environmental Science and Health Part B, 2006. 41: p. 485-507 114.Fernández, M., et al., Spatial and Temporal Trends of Paraquat, Diquat, and Difenzoquat Contamination in Water from Marsh Areas of the Valencian Community (Spain).Archives of Environmental Contamination and Toxicology, 1998. 35: p. 377–384.115.Guerrero, M.N.M., S.M.D. Criollo, and M.E.M. Duran, Perfil epidemiológico de las intoxicaciones por sustancias químicas en Colombia, 2008-2015, in INFORME QUINCENAL EPIDEMIOLÓGICO NACIONAL (IQEN). 2017, Ministerio de Salud y Protección Social, Instituto Nacional de Salud.116.Okonek, S., et al., Successful Treatment of Paraquat Poisoning: Activated Charcoal per os and ―Continuous Hemoperfusion‖.Journal of Toxicology: Clinical Toxicology, 1982. 19 (8): p. 807 -819.117.Okonek, S., A. Hofmann, and B. Henningsen, Efficacy of Gut Lavage, Hemodialysis, and Hemoperfusion in the Therapy of Paraquat or Diquat Intoxication.Archives of Toxicology, 1976. 36: p. 43 -51.118.M., L.L.A., et al., Envenenamiento por Paraquat y hemoperfusión con carbón activado.Anales De Medicina Interna, 2002. 9 (6): p. 310-312.119.Cáceres Martínez, L.E., et al., Technical Characterization of Colombian Agroindustry Residues for Termochemical Conversion in Fluidized Bed Reactors, in 25th European Biomass Conference and Exhibition. 2017. p. 817 -827.120.Souza, D.D., S.A.S. Machado, and R.C. Pires, Multiple square wave voltammetry for analytical determination of paraquat in natural water, food, and beverages using microelectrodes.Talanta 2006. 69: p. 1200–1207.121.Sandoval, A.E.L., J.M.G. Colmenares, and S.P.C. Acuña, Validación del método voltamétrico para la determinación de residuos de paraquat aplicado en cultivos de papa.Acta Agronómica, 2015. 64 (4) p. 336 -341.122.Rai, M.K., J.V. Das, and V.K. Gupta, A sensitive determination of paraquat by spectrophotometry.Talanta 1997. 45: p. 343-348.123.Welington, P. and D.R. L., Quality of seed potato tubers treated with paraquat and the development of a simplified methodology for paraquat residue detection.Planta Daninha, 1995. 13 (1): p. 32-38.124.Shivhare, P. and V.K. Gupta, Spectrophotometric Method for the Determination of Paraquat in Water, Grain and Plant Materials.ANALYST, 1991. 116: p. 391-393.125.Luna, J.R., et al., Determinación de paraquat en orina utilizando un sistema de inyección en flujo continuo.Acta Bioquímica Clínica Latinoamericana, 2008. 42 (2): p. 251-259.126.Bechara, A., et al., Modulo Reductor de Alquitranes, in Proyecto Aplicado de Ingeniería. 2013.127.Varma, A.K., et al., Pyrolysisof wood sawdust: Effects of process parameters on products yield and characterization of products.Waste Management, 2019. 89: p. 224–235ORIGINAL1088264379.2019.pdf1088264379.2019.pdfapplication/pdf3210714https://repositorio.unal.edu.co/bitstream/unal/75586/1/1088264379.2019.pdf534e7140ef112bbe8d56882aa27cc8f2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75586/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/75586/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1088264379.2019.pdf.jpg1088264379.2019.pdf.jpgGenerated Thumbnailimage/jpeg4681https://repositorio.unal.edu.co/bitstream/unal/75586/4/1088264379.2019.pdf.jpg1647edb36beb94579a85ca535123adbfMD54unal/75586oai:repositorio.unal.edu.co:unal/755862024-06-20 23:28:29.834Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |