Micromechanical Statistical Study of the Critical State in Soil Mechanics

Abstract. This work employs the Edwards’ statistical mechanics for granular media in the volume ensemble approach to describe the limit states of isotropic compression and simple shear (also known as the critical state) for three-dimensional systems of mono-disperse spheres, by using the analysis pr...

Full description

Autores:
Oquendo Patiño, William Fernando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/21842
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/21842
http://bdigital.unal.edu.co/12841/
Palabra clave:
53 Física / Physics
Mecánica Estadística
Materiales Granulares
Estadística de Volúmenes
Compactividad.
Statistical Mechanic
Granular Materials
Volume Statistics
Compactivity
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_0acf314c3fbf9c40f84043b93b06ec1a
oai_identifier_str oai:repositorio.unal.edu.co:unal/21842
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Micromechanical Statistical Study of the Critical State in Soil Mechanics
title Micromechanical Statistical Study of the Critical State in Soil Mechanics
spellingShingle Micromechanical Statistical Study of the Critical State in Soil Mechanics
53 Física / Physics
Mecánica Estadística
Materiales Granulares
Estadística de Volúmenes
Compactividad.
Statistical Mechanic
Granular Materials
Volume Statistics
Compactivity
title_short Micromechanical Statistical Study of the Critical State in Soil Mechanics
title_full Micromechanical Statistical Study of the Critical State in Soil Mechanics
title_fullStr Micromechanical Statistical Study of the Critical State in Soil Mechanics
title_full_unstemmed Micromechanical Statistical Study of the Critical State in Soil Mechanics
title_sort Micromechanical Statistical Study of the Critical State in Soil Mechanics
dc.creator.fl_str_mv Oquendo Patiño, William Fernando
dc.contributor.author.spa.fl_str_mv Oquendo Patiño, William Fernando
dc.contributor.spa.fl_str_mv Muñoz Castaño, José Daniel
dc.subject.ddc.spa.fl_str_mv 53 Física / Physics
topic 53 Física / Physics
Mecánica Estadística
Materiales Granulares
Estadística de Volúmenes
Compactividad.
Statistical Mechanic
Granular Materials
Volume Statistics
Compactivity
dc.subject.proposal.spa.fl_str_mv Mecánica Estadística
Materiales Granulares
Estadística de Volúmenes
Compactividad.
Statistical Mechanic
Granular Materials
Volume Statistics
Compactivity
description Abstract. This work employs the Edwards’ statistical mechanics for granular media in the volume ensemble approach to describe the limit states of isotropic compression and simple shear (also known as the critical state) for three-dimensional systems of mono-disperse spheres, by using the analysis procedure proposed by Aste et. al. to compute Edward’s compactivity from the distribution of volumes of Voronoï or Delaunay tessellations. The work also investigates the objectivity and usefulness of such analysis for these dynamic limit states, which represent a special opportunity to apply statistical mechanics due to their uniqueness and independence on initial conditions. On this respect, we derive analytically that three quantities: the compactivity χ, the entropy per elementary cell S/k and the number of elementary cells per grain C/N obtained by Aste’s analysis procedure are independent of the tessellation employed, a result that was verified inside error bars by extensive and careful Molecular Dynamics simulations of the limit state of isotropic compression on broad ranges of stiffnesses and sliding and rolling friction coefficients, establishing in a robust way the objectivity of such analysis. Moreover, by approximating the total entropy ST to be completely volumetric, we were able to derive an equation of state relating the compactivity χ with the volume fraction φ, plus an expression for ST as a function of χ, both of them describing well and without any fitting our numerical results for both the limit state of isotropic compression and the critical state. The simulation data also allows to characterise the influence of microscopic parameters like the stiffness and the sliding and rolling friction coefficients on the statistical quantities for these limit states. In addition, the isotropic compression was employed to establish that samples in contact with different compactivities actually evolve to equilibrate them, but at a very low rate. Ergodicity was numerically established for the critical state, which was also the testing ground to investigate the influence of rotations on the system’s statistical variables and to explore how these variables change when Aste’s analysis is applied on groups of Voronoï cells or on poly-disperse materials. All these results support the usefulness of Edwards theory and Aste’s analysis on describing limit states in granular media and constitute a valuable contribution for the statistical mechanics modelling of such a system.
publishDate 2013
dc.date.issued.spa.fl_str_mv 2013
dc.date.accessioned.spa.fl_str_mv 2019-06-25T19:54:28Z
dc.date.available.spa.fl_str_mv 2019-06-25T19:54:28Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/21842
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/12841/
url https://repositorio.unal.edu.co/handle/unal/21842
http://bdigital.unal.edu.co/12841/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física
Departamento de Física
dc.relation.references.spa.fl_str_mv Oquendo Patiño, William Fernando (2013) Micromechanical Statistical Study of the Critical State in Soil Mechanics. Doctorado thesis, Universidad Nacional de Colombia.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/21842/1/183190.2013.pdf
https://repositorio.unal.edu.co/bitstream/unal/21842/2/183190.2013.pdf.jpg
bitstream.checksum.fl_str_mv ab9bc2a928ff18f675fcd650ad9a7e62
ee335bbe03a1ddcbbc48d95cb9a876ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089340749348864
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Castaño, José DanielOquendo Patiño, William Fernando54418f00-f984-4570-9c20-598f6c2e3f6a3002019-06-25T19:54:28Z2019-06-25T19:54:28Z2013https://repositorio.unal.edu.co/handle/unal/21842http://bdigital.unal.edu.co/12841/Abstract. This work employs the Edwards’ statistical mechanics for granular media in the volume ensemble approach to describe the limit states of isotropic compression and simple shear (also known as the critical state) for three-dimensional systems of mono-disperse spheres, by using the analysis procedure proposed by Aste et. al. to compute Edward’s compactivity from the distribution of volumes of Voronoï or Delaunay tessellations. The work also investigates the objectivity and usefulness of such analysis for these dynamic limit states, which represent a special opportunity to apply statistical mechanics due to their uniqueness and independence on initial conditions. On this respect, we derive analytically that three quantities: the compactivity χ, the entropy per elementary cell S/k and the number of elementary cells per grain C/N obtained by Aste’s analysis procedure are independent of the tessellation employed, a result that was verified inside error bars by extensive and careful Molecular Dynamics simulations of the limit state of isotropic compression on broad ranges of stiffnesses and sliding and rolling friction coefficients, establishing in a robust way the objectivity of such analysis. Moreover, by approximating the total entropy ST to be completely volumetric, we were able to derive an equation of state relating the compactivity χ with the volume fraction φ, plus an expression for ST as a function of χ, both of them describing well and without any fitting our numerical results for both the limit state of isotropic compression and the critical state. The simulation data also allows to characterise the influence of microscopic parameters like the stiffness and the sliding and rolling friction coefficients on the statistical quantities for these limit states. In addition, the isotropic compression was employed to establish that samples in contact with different compactivities actually evolve to equilibrate them, but at a very low rate. Ergodicity was numerically established for the critical state, which was also the testing ground to investigate the influence of rotations on the system’s statistical variables and to explore how these variables change when Aste’s analysis is applied on groups of Voronoï cells or on poly-disperse materials. All these results support the usefulness of Edwards theory and Aste’s analysis on describing limit states in granular media and constitute a valuable contribution for the statistical mechanics modelling of such a system.Este trabajo utiliza la mecánica estadística de Edwards para medios granulares en la aproximación del ensamble de volúmenes para describir los estados límites de compresión isotrópica y corte simple (también conocido como estado crítico) para sistemas tridimensionales de esferas monodispersas, usando el método de análisis propuesto por Aste et. al. Para calcular la compactividad de Edwards de la distribución de volúmenes para teselaciones de Voronoi o Delaunay. También se investiga la objetividad y utilidad de tal análisis for estos estados dinámicos, que representan una oportunidad única para aplicar mecánica estadística debido a unicidad e independencia de las condiciones iniciales. Al respecto, se deriva analíticamente que tres cantidades, la compactividad, la entropía por celda elemental y el número de celdas elementales por grano son independientes de la teselación, un resultado comprobado, dentro de las barras de error, por medio de extensivas simulaciones de dinámica molecular para un amplio rango de dureza, fricción al deslizamiento y a la rodadura microscópicos. Adicionalmente, al aproximar la entropía total ST como solamente volumétrica, se puede derivar una ecuación de estado relacionando la packing fraction y la entropia con la compactividad, expresiones que describen muy bien los datos para los dos estados límites sin ningún ajuste. Los datos también permiten concluir que la fricción afecta la compactividad mientras que la dureza afecta el número de celdas elementales. Adicionalmente, la compresión isotrópica se usó para demostrar que la compactividad se equilibra pero muy lentamente. La ergodicidad y la influencia de las rotaciones se verifica para el estado crítico, que también se usó para realizar un análisis multi-escala. Todos estos resultados soportan y extienden la aplicabilidad de la teoría de Edwards a sistemas granulares.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de FísicaDepartamento de FísicaOquendo Patiño, William Fernando (2013) Micromechanical Statistical Study of the Critical State in Soil Mechanics. Doctorado thesis, Universidad Nacional de Colombia.53 Física / PhysicsMecánica EstadísticaMateriales GranularesEstadística de VolúmenesCompactividad.Statistical MechanicGranular MaterialsVolume StatisticsCompactivityMicromechanical Statistical Study of the Critical State in Soil MechanicsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL183190.2013.pdfapplication/pdf11015551https://repositorio.unal.edu.co/bitstream/unal/21842/1/183190.2013.pdfab9bc2a928ff18f675fcd650ad9a7e62MD51THUMBNAIL183190.2013.pdf.jpg183190.2013.pdf.jpgGenerated Thumbnailimage/jpeg4263https://repositorio.unal.edu.co/bitstream/unal/21842/2/183190.2013.pdf.jpgee335bbe03a1ddcbbc48d95cb9a876adMD52unal/21842oai:repositorio.unal.edu.co:unal/218422022-12-06 18:25:50.119Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co