Micromechanical Statistical Study of the Critical State in Soil Mechanics
Abstract. This work employs the Edwards’ statistical mechanics for granular media in the volume ensemble approach to describe the limit states of isotropic compression and simple shear (also known as the critical state) for three-dimensional systems of mono-disperse spheres, by using the analysis pr...
- Autores:
-
Oquendo Patiño, William Fernando
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/21842
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/21842
http://bdigital.unal.edu.co/12841/
- Palabra clave:
- 53 Física / Physics
Mecánica Estadística
Materiales Granulares
Estadística de Volúmenes
Compactividad.
Statistical Mechanic
Granular Materials
Volume Statistics
Compactivity
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_0acf314c3fbf9c40f84043b93b06ec1a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/21842 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Micromechanical Statistical Study of the Critical State in Soil Mechanics |
title |
Micromechanical Statistical Study of the Critical State in Soil Mechanics |
spellingShingle |
Micromechanical Statistical Study of the Critical State in Soil Mechanics 53 Física / Physics Mecánica Estadística Materiales Granulares Estadística de Volúmenes Compactividad. Statistical Mechanic Granular Materials Volume Statistics Compactivity |
title_short |
Micromechanical Statistical Study of the Critical State in Soil Mechanics |
title_full |
Micromechanical Statistical Study of the Critical State in Soil Mechanics |
title_fullStr |
Micromechanical Statistical Study of the Critical State in Soil Mechanics |
title_full_unstemmed |
Micromechanical Statistical Study of the Critical State in Soil Mechanics |
title_sort |
Micromechanical Statistical Study of the Critical State in Soil Mechanics |
dc.creator.fl_str_mv |
Oquendo Patiño, William Fernando |
dc.contributor.author.spa.fl_str_mv |
Oquendo Patiño, William Fernando |
dc.contributor.spa.fl_str_mv |
Muñoz Castaño, José Daniel |
dc.subject.ddc.spa.fl_str_mv |
53 Física / Physics |
topic |
53 Física / Physics Mecánica Estadística Materiales Granulares Estadística de Volúmenes Compactividad. Statistical Mechanic Granular Materials Volume Statistics Compactivity |
dc.subject.proposal.spa.fl_str_mv |
Mecánica Estadística Materiales Granulares Estadística de Volúmenes Compactividad. Statistical Mechanic Granular Materials Volume Statistics Compactivity |
description |
Abstract. This work employs the Edwards’ statistical mechanics for granular media in the volume ensemble approach to describe the limit states of isotropic compression and simple shear (also known as the critical state) for three-dimensional systems of mono-disperse spheres, by using the analysis procedure proposed by Aste et. al. to compute Edward’s compactivity from the distribution of volumes of Voronoï or Delaunay tessellations. The work also investigates the objectivity and usefulness of such analysis for these dynamic limit states, which represent a special opportunity to apply statistical mechanics due to their uniqueness and independence on initial conditions. On this respect, we derive analytically that three quantities: the compactivity χ, the entropy per elementary cell S/k and the number of elementary cells per grain C/N obtained by Aste’s analysis procedure are independent of the tessellation employed, a result that was verified inside error bars by extensive and careful Molecular Dynamics simulations of the limit state of isotropic compression on broad ranges of stiffnesses and sliding and rolling friction coefficients, establishing in a robust way the objectivity of such analysis. Moreover, by approximating the total entropy ST to be completely volumetric, we were able to derive an equation of state relating the compactivity χ with the volume fraction φ, plus an expression for ST as a function of χ, both of them describing well and without any fitting our numerical results for both the limit state of isotropic compression and the critical state. The simulation data also allows to characterise the influence of microscopic parameters like the stiffness and the sliding and rolling friction coefficients on the statistical quantities for these limit states. In addition, the isotropic compression was employed to establish that samples in contact with different compactivities actually evolve to equilibrate them, but at a very low rate. Ergodicity was numerically established for the critical state, which was also the testing ground to investigate the influence of rotations on the system’s statistical variables and to explore how these variables change when Aste’s analysis is applied on groups of Voronoï cells or on poly-disperse materials. All these results support the usefulness of Edwards theory and Aste’s analysis on describing limit states in granular media and constitute a valuable contribution for the statistical mechanics modelling of such a system. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-25T19:54:28Z |
dc.date.available.spa.fl_str_mv |
2019-06-25T19:54:28Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/21842 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/12841/ |
url |
https://repositorio.unal.edu.co/handle/unal/21842 http://bdigital.unal.edu.co/12841/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física Departamento de Física |
dc.relation.references.spa.fl_str_mv |
Oquendo Patiño, William Fernando (2013) Micromechanical Statistical Study of the Critical State in Soil Mechanics. Doctorado thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/21842/1/183190.2013.pdf https://repositorio.unal.edu.co/bitstream/unal/21842/2/183190.2013.pdf.jpg |
bitstream.checksum.fl_str_mv |
ab9bc2a928ff18f675fcd650ad9a7e62 ee335bbe03a1ddcbbc48d95cb9a876ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089340749348864 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Castaño, José DanielOquendo Patiño, William Fernando54418f00-f984-4570-9c20-598f6c2e3f6a3002019-06-25T19:54:28Z2019-06-25T19:54:28Z2013https://repositorio.unal.edu.co/handle/unal/21842http://bdigital.unal.edu.co/12841/Abstract. This work employs the Edwards’ statistical mechanics for granular media in the volume ensemble approach to describe the limit states of isotropic compression and simple shear (also known as the critical state) for three-dimensional systems of mono-disperse spheres, by using the analysis procedure proposed by Aste et. al. to compute Edward’s compactivity from the distribution of volumes of Voronoï or Delaunay tessellations. The work also investigates the objectivity and usefulness of such analysis for these dynamic limit states, which represent a special opportunity to apply statistical mechanics due to their uniqueness and independence on initial conditions. On this respect, we derive analytically that three quantities: the compactivity χ, the entropy per elementary cell S/k and the number of elementary cells per grain C/N obtained by Aste’s analysis procedure are independent of the tessellation employed, a result that was verified inside error bars by extensive and careful Molecular Dynamics simulations of the limit state of isotropic compression on broad ranges of stiffnesses and sliding and rolling friction coefficients, establishing in a robust way the objectivity of such analysis. Moreover, by approximating the total entropy ST to be completely volumetric, we were able to derive an equation of state relating the compactivity χ with the volume fraction φ, plus an expression for ST as a function of χ, both of them describing well and without any fitting our numerical results for both the limit state of isotropic compression and the critical state. The simulation data also allows to characterise the influence of microscopic parameters like the stiffness and the sliding and rolling friction coefficients on the statistical quantities for these limit states. In addition, the isotropic compression was employed to establish that samples in contact with different compactivities actually evolve to equilibrate them, but at a very low rate. Ergodicity was numerically established for the critical state, which was also the testing ground to investigate the influence of rotations on the system’s statistical variables and to explore how these variables change when Aste’s analysis is applied on groups of Voronoï cells or on poly-disperse materials. All these results support the usefulness of Edwards theory and Aste’s analysis on describing limit states in granular media and constitute a valuable contribution for the statistical mechanics modelling of such a system.Este trabajo utiliza la mecánica estadística de Edwards para medios granulares en la aproximación del ensamble de volúmenes para describir los estados límites de compresión isotrópica y corte simple (también conocido como estado crítico) para sistemas tridimensionales de esferas monodispersas, usando el método de análisis propuesto por Aste et. al. Para calcular la compactividad de Edwards de la distribución de volúmenes para teselaciones de Voronoi o Delaunay. También se investiga la objetividad y utilidad de tal análisis for estos estados dinámicos, que representan una oportunidad única para aplicar mecánica estadística debido a unicidad e independencia de las condiciones iniciales. Al respecto, se deriva analíticamente que tres cantidades, la compactividad, la entropía por celda elemental y el número de celdas elementales por grano son independientes de la teselación, un resultado comprobado, dentro de las barras de error, por medio de extensivas simulaciones de dinámica molecular para un amplio rango de dureza, fricción al deslizamiento y a la rodadura microscópicos. Adicionalmente, al aproximar la entropía total ST como solamente volumétrica, se puede derivar una ecuación de estado relacionando la packing fraction y la entropia con la compactividad, expresiones que describen muy bien los datos para los dos estados límites sin ningún ajuste. Los datos también permiten concluir que la fricción afecta la compactividad mientras que la dureza afecta el número de celdas elementales. Adicionalmente, la compresión isotrópica se usó para demostrar que la compactividad se equilibra pero muy lentamente. La ergodicidad y la influencia de las rotaciones se verifica para el estado crítico, que también se usó para realizar un análisis multi-escala. Todos estos resultados soportan y extienden la aplicabilidad de la teoría de Edwards a sistemas granulares.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de FísicaDepartamento de FísicaOquendo Patiño, William Fernando (2013) Micromechanical Statistical Study of the Critical State in Soil Mechanics. Doctorado thesis, Universidad Nacional de Colombia.53 Física / PhysicsMecánica EstadísticaMateriales GranularesEstadística de VolúmenesCompactividad.Statistical MechanicGranular MaterialsVolume StatisticsCompactivityMicromechanical Statistical Study of the Critical State in Soil MechanicsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL183190.2013.pdfapplication/pdf11015551https://repositorio.unal.edu.co/bitstream/unal/21842/1/183190.2013.pdfab9bc2a928ff18f675fcd650ad9a7e62MD51THUMBNAIL183190.2013.pdf.jpg183190.2013.pdf.jpgGenerated Thumbnailimage/jpeg4263https://repositorio.unal.edu.co/bitstream/unal/21842/2/183190.2013.pdf.jpgee335bbe03a1ddcbbc48d95cb9a876adMD52unal/21842oai:repositorio.unal.edu.co:unal/218422022-12-06 18:25:50.119Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |