Micromechanical Statistical Study of the Critical State in Soil Mechanics

Abstract. This work employs the Edwards’ statistical mechanics for granular media in the volume ensemble approach to describe the limit states of isotropic compression and simple shear (also known as the critical state) for three-dimensional systems of mono-disperse spheres, by using the analysis pr...

Full description

Autores:
Oquendo Patiño, William Fernando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/21842
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/21842
http://bdigital.unal.edu.co/12841/
Palabra clave:
53 Física / Physics
Mecánica Estadística
Materiales Granulares
Estadística de Volúmenes
Compactividad.
Statistical Mechanic
Granular Materials
Volume Statistics
Compactivity
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Abstract. This work employs the Edwards’ statistical mechanics for granular media in the volume ensemble approach to describe the limit states of isotropic compression and simple shear (also known as the critical state) for three-dimensional systems of mono-disperse spheres, by using the analysis procedure proposed by Aste et. al. to compute Edward’s compactivity from the distribution of volumes of Voronoï or Delaunay tessellations. The work also investigates the objectivity and usefulness of such analysis for these dynamic limit states, which represent a special opportunity to apply statistical mechanics due to their uniqueness and independence on initial conditions. On this respect, we derive analytically that three quantities: the compactivity χ, the entropy per elementary cell S/k and the number of elementary cells per grain C/N obtained by Aste’s analysis procedure are independent of the tessellation employed, a result that was verified inside error bars by extensive and careful Molecular Dynamics simulations of the limit state of isotropic compression on broad ranges of stiffnesses and sliding and rolling friction coefficients, establishing in a robust way the objectivity of such analysis. Moreover, by approximating the total entropy ST to be completely volumetric, we were able to derive an equation of state relating the compactivity χ with the volume fraction φ, plus an expression for ST as a function of χ, both of them describing well and without any fitting our numerical results for both the limit state of isotropic compression and the critical state. The simulation data also allows to characterise the influence of microscopic parameters like the stiffness and the sliding and rolling friction coefficients on the statistical quantities for these limit states. In addition, the isotropic compression was employed to establish that samples in contact with different compactivities actually evolve to equilibrate them, but at a very low rate. Ergodicity was numerically established for the critical state, which was also the testing ground to investigate the influence of rotations on the system’s statistical variables and to explore how these variables change when Aste’s analysis is applied on groups of Voronoï cells or on poly-disperse materials. All these results support the usefulness of Edwards theory and Aste’s analysis on describing limit states in granular media and constitute a valuable contribution for the statistical mechanics modelling of such a system.