Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído

ilustraciones, diagramas

Autores:
Gonzalez Oñate, Andres Felipe
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84967
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84967
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::547 - Química orgánica
Chemistry, organic
Química orgánica
Hidrobenzamida
4-hidroxibencilamina
Azaciclofano
Puentes de hidrógeno
Formaldehído
Hydrobenzamide
4-hydroxybenzylamine
Azacyclophane
Hydrogen bonds
Formaldehyde
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_0a938744e26edee468498ad69e85daad
oai_identifier_str oai:repositorio.unal.edu.co:unal/84967
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído
dc.title.translated.eng.fl_str_mv Study of the reactivity of 4-hydroxybenzylamines with formaldehyde
title Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído
spellingShingle Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído
540 - Química y ciencias afines::547 - Química orgánica
Chemistry, organic
Química orgánica
Hidrobenzamida
4-hidroxibencilamina
Azaciclofano
Puentes de hidrógeno
Formaldehído
Hydrobenzamide
4-hydroxybenzylamine
Azacyclophane
Hydrogen bonds
Formaldehyde
title_short Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído
title_full Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído
title_fullStr Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído
title_full_unstemmed Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído
title_sort Estudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído
dc.creator.fl_str_mv Gonzalez Oñate, Andres Felipe
dc.contributor.advisor.none.fl_str_mv Quevedo, Rodolfo
dc.contributor.author.none.fl_str_mv Gonzalez Oñate, Andres Felipe
dc.contributor.researchgroup.spa.fl_str_mv Quimica macrociclica
dc.contributor.orcid.spa.fl_str_mv Quevedo, Rodolfo [0000-0003-3023-9576]
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::547 - Química orgánica
topic 540 - Química y ciencias afines::547 - Química orgánica
Chemistry, organic
Química orgánica
Hidrobenzamida
4-hidroxibencilamina
Azaciclofano
Puentes de hidrógeno
Formaldehído
Hydrobenzamide
4-hydroxybenzylamine
Azacyclophane
Hydrogen bonds
Formaldehyde
dc.subject.lemb.eng.fl_str_mv Chemistry, organic
dc.subject.lemb.spa.fl_str_mv Química orgánica
dc.subject.proposal.spa.fl_str_mv Hidrobenzamida
4-hidroxibencilamina
Azaciclofano
Puentes de hidrógeno
Formaldehído
dc.subject.proposal.eng.fl_str_mv Hydrobenzamide
4-hydroxybenzylamine
Azacyclophane
Hydrogen bonds
Formaldehyde
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-27T14:48:40Z
dc.date.available.none.fl_str_mv 2023-11-27T14:48:40Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84967
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84967
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Quevedo, R.; A. Sierra, C. Intrinsic Fluorescence of 1,3-Benzoxazinephanes. Heterocycles 2011, 83 (12), 2769.
Maldonado, M.; Martinez-Manjarres, A.; Quevedo, R. 1H-NMR Spectroscopic and Thermogravimetric Research Regarding Alcohol Interaction with Tyrosine-Derived Azacyclophanes. Res. chem. intermed. 2018, 44 (7), 4073–4082.
Quevedo, R.; Pabón, L.; Quevedo-Acosta, Y. 1H NMR Study on the Intermolecular Interactions of Macrocyclic and Single α-Amino Acids. J. Mol. Struct. 2013, 1041, 68–72.
Quevedo, R. 1H- and 13C-NMR Spectroscopic Study of Intermolecular Interactions between Tyrosine-Derived Azacyclophanes and Aromatic Rings. J. Mol. Struct. 2020, 1207 (127777), 127777.
Nuñez-Dallos, N.; Reyes, A.; Quevedo, R. Hydrogen Bond Assisted Synthesis of Azacyclophanes from L-Tyrosine Derivatives. Tetrahedron Lett. 2012, 53 (5), 530–534.
Alabugin, I. Hydrogen Bonding in Organic Synthesis Hydrogen Bonding in Organic Synthesis. Edited by Petri M. Pihko (University of Jyväskylä, Finland). WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim. 2009. Xii + 384 Pp. $215. ISBN 978-3-527-31895-7. J. Am. Chem. Soc. 2010, 132 (19), 6863–6864.
Park, Y.; Chang, S. Asymmetric Formation of γ-Lactams via C–H Amidation Enabled by Chiral Hydrogen-Bond-Donor Catalysts. Nat. Catal. 2019, 2 (3), 219–227.
Seo, M.-S.; Jang, S.; Jung, H.; Kim, H. Hydrogen-Bonding-Assisted Ketimine Formation of Benzophenone Derivatives. J. Org. Chem. 2018, 83 (23), 14300–14306.
Tuckerman, M. M.; Mayer, J. R.; Nachod, F. C. Anomalous PKa Values of Some Substituted Phenylethylamines1. J. Am. Chem. Soc. 1959, 81 (1), 92–94.
Gross, K. C.; Seybold, P. G. Substituent Effects on the Physical Properties and PKa of Aniline. Int. J. Quantum Chem. 2000, 80 (4–5), 1107–1115.
Huang, N.-K.; Chern, Y.; Fang, J.-M.; Lin, C.-I.; Chen, W.-P.; Lin, Y.-L. Neuroprotective Principles from Gastrodia Elata. J. Nat. Prod. 2007, 70 (4), 571–574.
Ongena, M.; Jourdan, E.; Schäfer, M.; Kech, C.; Budzikiewicz, H.; Luxen, A.; Thonart, P. Isolation of an N-Alkylated Benzylamine Derivative from Pseudomonas Putida BTP1 as Elicitor of Induced Systemic Resistance in Bean. Mol. Plant. Microbe. Interact. 2005, 18 (6), 562–569.
Koyama, M.; Obata, Y.; Sakamura, S. Identification of Hydroxybenzylamines in Buckwheat Seeds (Fagopyrum EsculentumMoench). Agric. Biol. Chem. 1971, 35 (12), 1870–1879.
Frandsen, H. B.; Sørensen, J. C.; Petersen, I. L.; Sørensen, H. Glutamine as an Ammonia Donor in Catabolism of the Glucosinolate, Sinalbin, in Biosynthesis of 4-Hydroxybenzylamine. J. Nat. Prod. 2020, 83 (2), 179–184.
Maeda T.; Takase M.; Ishibashi A.; Yamamoto T.; Sasaki K.; Arika T.; Yokoo M.; Amemiya K. Synthesis and antifungal activity of butenafine hydrochloride (KP-363), a new benzylamine antifungal agent. Yakugaku Zasshi 1991, 111 (2), 126–137.
Ignacimuthu, S.; Shanmugam, N. Antimycobacterial Activity of Two Natural Alkaloids, Vasicine Acetate and 2-Acetyl Benzylamine, Isolated from Indian Shrub Adhatoda Vasica Ness. Leaves. J. Biosci. 2010, 35 (4), 565–570.
Akıncıoğlu, A.; Göksu, S.; Naderi, A.; Akıncıoğlu, H.; Kılınç, N.; Gülçin, İ. Cholinesterases, Carbonic Anhydrase Inhibitory Properties and in Silico Studies of Novel Substituted Benzylamines Derived from Dihydrochalcones. Comput. Biol. Chem. 2021, 94 (107565), 107565.
Vicker, N.; Bailey, H. V.; Day, J. M.; Mahon, M. F.; Smith, A.; Tutill, H. J.; Purohit, A.; Potter, B. V. L. Substituted Aryl Benzylamines as Potent and Selective Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 3. Molecules 2021, 26 (23), 7166.
Durgun, M.; Turkmen, H.; Ceruso, M.; Supuran, C. T. Synthesis of 4-Sulfamoylphenyl-Benzylamine Derivatives with Inhibitory Activity against Human Carbonic Anhydrase Isoforms I, II, IX and XII. Bioorg. Med. Chem. 2016, 24 (5), 982–988.
Sağlık, B. N.; Osmaniye, D.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Atlı Eklioğlu, Ö.; Özkay, Y.; Koparal, A. S.; Kaplancıklı, Z. A. Synthesis, in Vitro Enzyme Activity and Molecular Docking Studies of New Benzylamine-Sulfonamide Derivatives as Selective MAO-B Inhibitors. J. Enzyme Inhib. Med. Chem. 2020, 35 (1), 1422–1432.
Moret, V.; Laras, Y.; Cresteil, T.; Aubert, G.; Ping, D. Q.; Di, C.; Barthélémy-Requin, M.; Béclin, C.; Peyrot, V.; Allegro, D.; Rolland, A.; De Angelis, F.; Gatti, E.; Pierre, P.; Pasquini, L.; Petrucci, E.; Testa, U.; Kraus, J.-L. Discovery of a New Family of Bis-8-Hydroxyquinoline Substituted Benzylamines with pro-Apoptotic Activity in Cancer Cells: Synthesis, Structure-Activity Relationship, and Action Mechanism Studies. Eur. J. Med. Chem. 2009, 44 (2), 558–567.
Tao, H.; Huang, J.; Yancey, P. G.; Yermalitsky, V.; Blakemore, J. L.; Zhang, Y.; Ding, L.; Zagol-Ikapitte, I.; Ye, F.; Amarnath, V.; Boutaud, O.; Oates, J. A.; Roberts, L. J.; Davies, S. S.; Linton, M. F. Scavenging of Reactive Dicarbonyls with 2-Hydroxybenzylamine Reduces Atherosclerosis in Hypercholesterolemic Ldlr-/- Mice. Nat. Commun. 2020, 11 (1), 4084.
Varela, M. T.; Dias, R. Z.; Martins, L. F.; Ferreira, D. D.; Tempone, A. G.; Ueno, A. K.; Lago, J. H. G.; Fernandes, J. P. S. Gibbilimbol Analogues as Antiparasitic Agents--Synthesis and Biological Activity against Trypanosoma Cruzi and Leishmania (L.) Infantum. Bioorg. Med. Chem. Lett. 2016, 26 (4), 1180–1183.
de Macedo-Silva, S. T.; Visbal, G.; Souza, G. F.; Dos Santos, M. R.; Cämmerer, S. B.; de Souza, W.; Rodrigues, J. C. F. Benzylamines as Highly Potent Inhibitors of the Sterol Biosynthesis Pathway in Leishmania Amazonensis Leading to Oxidative Stress and Ultrastructural Alterations. Sci. Rep. 2022, 12 (1), 11313.
Hou, S.-F.; Chen, J.-Y.; Xue, M.; Jia, M.; Zhai, X.; Liao, R.-Z.; Tung, C.-H.; Wang, W. Cooperative Molybdenum-Thiolate Reactivity for Transfer Hydrogenation of Nitriles. ACS Catal. 2020, 10 (1), 380–390.
Yan, T.; Feringa, B. L.; Barta, K. Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols. ACS Catal. 2016, 6 (1), 381–388.
Heuer, L. Benzylamine. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006.
Yan, G.; Zhang, Y.; Wang, J. Recent Advances in the Synthesis of Aryl Nitrile Compounds. Adv. Synth. Catal. 2017, 359 (23), 4068–4105.
Winans, C. F. Hydrogenation of Aldehydes in the Presence of Ammonia. J. Am. Chem. Soc. 1939, 61 (12), 3566–3567.
Senthamarai, T.; Murugesan, K.; Schneidewind, J.; Kalevaru, N. V.; Baumann, W.; Neumann, H.; Kamer, P. C. J.; Beller, M.; Jagadeesh, R. V. Simple Ruthenium-Catalyzed Reductive Amination Enables the Synthesis of a Broad Range of Primary Amines. Nat. Commun. 2018, 9 (1).
Murugesan, K.; Beller, M.; Jagadeesh, R. V. Reusable Nickel Nanoparticles‐catalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angew. Chem. Int. Ed Engl. 2019, 58 (15), 5064–5068.
Irrgang, T.; Kempe, R. Transition-Metal-Catalyzed Reductive Amination Employing Hydrogen. Chem. Rev. 2020, 120 (17), 9583–9674.
Nakamura, Y.; Kon, K.; Touchy, A. S.; Shimizu, K.-I.; Ueda, W. Selective Synthesis of Primary Amines by Reductive Amination of Ketones with Ammonia over Supported Pt Catalysts. ChemCatChem 2015, 7 (6), 921–924.
Gross, T.; Seayad, A. M.; Ahmad, M.; Beller, M. Synthesis of Primary Amines: First Homogeneously Catalyzed Reductive Amination with Ammonia. Org. Lett. 2002, 4 (12), 2055–2058.
Crossley, F. S.; Moore, M. L. Studies on the Leuckart Reaction. J. Org. Chem. 1944, 09 (6), 529–536.
Pollard, C. B.; Young, D. C. The Mechanism of the Leuckart Reaction. J. Org. Chem. 1951, 16 (5), 661–672.
Alexander, E. R.; Wildman, R. B. Studies on the Mechanism of the Leuckart Reaction. J. Am. Chem. Soc. 1948, 70 (3), 1187–1189.
Adams, R.; Bachmann, W. E.; Frieser, L. F.; Blatt, A. H.; Jhonson, J. R.; Snyder, H. R. The Leuckart Reaction. En Organic Reactions. Moore, M. L. John Wiley & Sons: Hoboken, 1960; Vol 5, pp 301- 330.
Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures1. J. Org. Chem. 1996, 61 (11), 3849–3862.
Cho, B. T.; Kang, S. K. Direct and Indirect Reductive Amination of Aldehydes and Ketones with Solid Acid-Activated Sodium Borohydride under Solvent-Free Conditions. Tetrahedron. 2005, 61 (24), 5725–5734.
Sprung, M. A. A Summary of the Reactions of Aldehydes with Amines. Chem. Rev. 1940, 26 (3), 297–338.
Sani, U.; Na’ibi, H. U.; Dailami, S. A. In Vitro Antimicrobial and Antioxidant Studies on N-(2- Hydroxylbenzylidene) Pyridine -2-Amine and Its M(II) Complexes. Nig J Bas App Sci 2018, 25 (1), 81.
Mason, A. T.; Winder, G. R. XXI.—Condensation Products from Benzylamine and Several Benzenoïd Aldehydes. J. Chem. Soc. 1894, 65 (0), 191–193.
Bujnowski, K.; Adamczyk, A.; Synoradzki, L. O-AMINOMETHYL DERIVATIVES OF PHENOLS. PART 1. BENZYLAMINES: PROPERTIES, STRUCTURE, SYNTHESIS AND PURIFICATION. Org. Prep. Proced. Int. 2007, 39 (2), 153–184.
Nielsen, A. T.; Nissan, R. A.; Chafin, A. P.; Gilardi, R. D.; George, C. F. Polyazapolycyclics by Condensation of Aldehydes with Amines. 3. Formation of 2,4,6,8-Tetrabenzyl-2,4,6,8-Tetraazabicyclo[3.3.0]Octanes from Formaldehyde, Glyoxal, and Benzylamines. J. Org. Chem. 1992, 57 (25), 6756–6759.
Pine, S. H.; Sanchez, B. L. Formic Acid-Formaldehyde Methylation of Amines. J. Org. Chem. 1971, 36 (6), 829–832.
Adams, R.; Bachmann, W. E.; Frieser, L. F.; Blatt, A. H.; Jhonson, J. R.; Snyder, H. R. The Mannich Reaction. En Organic Reactions. Blicke, F.F. John Wiley & Sons: Hoboken, 1942; Vol 1, pp 303- 341.
Mannich, C.; Krösche, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. (Weinheim) 1912, 250 (1), 647–667.
Hof, F.; Schär, M.; Scofield, D. M.; Fischer, F.; Diederich, F.; Sergeyev, S. Preparation OfTröger Base Derivatives by Cross-Coupling Methodologies. Helv. Chim. Acta 2005, 88 (8), 2333–2344.
Satishkumar, S.; Periasamy, M. A Convenient Method for the Synthesis and Resolution of Tröger Base. Tetrahedron Asymmetry 2006, 17 (7), 1116–1119.
Tramontini, N.; Angiolini, L. MANNICH BASES: Chemistry and uses. CRC Press: Boca Raton, 1994.
Fields, D. L.; Miller, J. B.; Reynolds, D. D. Mannich-Type Condensation of Hydroquinone, Formaldehyde, and Primary Amines. J. Org. Chem. 1962, 27 (8), 2749–2753.
Burke, W. J.; Glennie, E. L. M.; Weatherbee, C. Condensation of Halophenols with Formaldehyde and Primary Amines1. J. Org. Chem. 1964, 29 (4), 909–912.
Burke, W. J.; Nasutavicus, W. A.; Weatherbee, C. Synthesis and Study of Mannich Bases from 2-Naphthol and Primary Amines1. J. Org. Chem. 1964, 29 (2), 407–410.
Matta, C. F.; Hernández-Trujillo, J.; Tang, T.-H.; Bader, R. F. W. Hydrogen-Hydrogen Bonding: A Stabilizing Interaction in Molecules and Crystals. Chemistry 2003, 9 (9), 1940–1951.
Hibbert, F.; Emsley, J. Hydrogen Bonding and Chemical Reactivity. In Advances in Physical Organic Chemistry; Elsevier, 1990; pp 255–379.
Kollman, P. A.; Allen, L. C. Theory of the Hydrogen Bond. Chem. Rev. 1972, 72 (3), 283–303.
Alkota, I.; Rozas, I.; Elguero, J. Non-convencional hydrogen bonds Chem. Soc. Rev. 1998, 27, 163-170.
Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed Engl. 2002, 41 (1), 49–76.
Vögtle, F.; Pawlitzki, G.; Hetera (Cyclo-)phanes. En Modern Cyclophane Chemisty. Gleiter, R.; Hopf, H. Wiley-VCH: Weinheim, 2004; Vol. 1, pp 41-80.
Gulder, T.; Baran, P. S. Strained Cyclophane Natural Products: Macrocyclization at Its Limits. Nat. Prod. Rep. 2012, 29 (8), 899–934.
Steed, J. W.; Atwood, J. L. Supramolecular Chemistry. John Wiley & Sons: Hoboken, 2022.
Quevedo, R.; Moreno-Murillo, B. One-Step Synthesis of a New Heterocyclophane Family. Tetrahedron Lett. 2009, 50 (8), 936–938.
Quevedo, R.; Díaz-Oviedo, C.; Quevedo-Acosta, Y. Role of Hydroxyl Groups on the Aromatic Ring in the Reactivity and Selectivity of the Reaction of β-Phenylethylamines with Non-Enolizable Aldehydes. Res. chem. intermed. 2015, 41 (12), 9835–9843.
Nuñez-Dallos, N.; Reyes, A.; Quevedo, R. Hydrogen Bond Assisted Synthesis of Azacyclophanes from L-Tyrosine Derivatives. Tetrahedron Lett. 2012, 53 (5), 530–534.
Quevedo, R.; Nuñez-Dallos, N.; Wurst, K.; Duarte-Ruiz, Á. A Structural Study of the Intermolecular Interactions of Tyramine in the Solid State and in Solution. J. Mol. Struct. 2012, 1029, 175–179.
Díaz-Oviedo, C.; Quevedo, R. N-Benzylazacyclophane synthesis via aromatic Mannich reaction. Tetrahedron Lett. 2014, 55 (48), 6571–6574.
Nuñez-Dallos, N.; Díaz-Oviedo, C.; Quevedo, R. Hydroxy- and aminomethylation reactions in the formation of oligomers from l-tyrosine and formaldehyde in basic medium. Tetrahedron Lett. 2014, 55 (30), 4216–4221.
Leal, L. F.; Chaves, S.; Quevedo, R. Synthesis and Structural Analysis of an Asymmetric Azacyclophane via Mannich Cross Macrocyclisation of -Tyrosine Derivatives. Results Chem. 2023, 5 (100684), 100684.
Quevedo, R.; González, M.; Díaz-Oviedo, C. Synthesis of Macrocyclic α-Amino Esters through the Chemoselective Hydrolysis of Benzoxazinephanes. Tetrahedron Lett. 2012, 53 (13), 1595–1597.
Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
Allouche, A.-R. Gabedit--a Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32 (1), 174–182.
Hirayama, K. Nomenclature of Cyclophanes. Tetrahedron Lett. 1972, 13 (21), 2109–2112.
Francis, F. Notiz Über Die Einwirkung von Ammoniak Auf Benzaldehyd Und Die Darstellung Von »Benzaldehyd‐Ammoniak«. Ber. Dtsch. Chem. Ges. 1909, 42 (2), 2216–2218.
Crowell, T. I.; McLeod, R. K. Kinetics of Hydrobenzamide Formation from P-Dimethylaminobenzaldehyde and Ammonia. Role of the Imine. J. Org. Chem. 1967, 32 (12), 4030–4033.
Strain, H. H. Hydrobenzamide and Benzylidene Imine as Ammono Aldehydes. J. Am. Chem. Soc. 1927, 49 (6), 1558–1571
Denat, F.; Tripier, R.; Boschetti, F.; Espinosa, E.; Guilard, R. Reaction of Polyamines with Diethyloxalate: A Convenient Route for the Synthesis of Tetraazacycloalkanes. ARKIVOC 2006, 2006 (4), 212–233.
Boyd, E.; Coumbarides, G. S.; Eames, J.; Jones, R. V. H.; Stenson, R. A.; Suggate, M. J. Synthesis and Derivatisation of N,N′-Trisubstituted 1,2-Diamines Derived from (1R,2R)-1,2-Diaminocyclohexane. Tetrahedron Lett. 2005, 46 (20), 3479–3484.
Salerno, A.; Figueroa, M. A.; Perillo, I. A. A Convenient “One-Pot” Reaction for Selective Monoalkylation ofN,N′-Disubstituted Ethylenediamines. Synth. Commun. 2003, 33 (18), 3193–3204.
Salerno, A.; Ceriani, V.; Perillo, I. A. Reduction of Substituted 1H-4,5-Dihydroimidazolium Salts. J. Heterocycl. Chem. 1992, 29 (7), 1725–1733.
Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465.
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396.
Moser, A.; Range, K.; York, D. M. Accurate Proton Affinity and Gas-Phase Basicity Values for Molecules Important in Biocatalysis. J. Phys. Chem. B 2010, 114 (43), 13911–13921.
Lias, S. G.; Liebman, J. F.; Levin, R. D. Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules. J. Phys. Chem. Ref. Data 1984, 13 (3), 695–808.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 138 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84967/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84967/2/Estudio%20de%20la%20reactividad%20de%204-hidroxibencilaminas%20frente%20a%20formaldeh%c3%addo.pdf
https://repositorio.unal.edu.co/bitstream/unal/84967/3/Estudio%20de%20la%20reactividad%20de%204-hidroxibencilaminas%20frente%20a%20formaldeh%c3%addo.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
1fe0512c3787b24ba4036b1162265c22
d76215fe5b7bf9e69ef9d405c8adf649
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089340667559936
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quevedo, Rodolfo6c73999de6bb7341698c0f685f7b6eadGonzalez Oñate, Andres Felipee8be85852509799227f4178fb88b7aa8Quimica macrociclicaQuevedo, Rodolfo [0000-0003-3023-9576]2023-11-27T14:48:40Z2023-11-27T14:48:40Z2023https://repositorio.unal.edu.co/handle/unal/84967Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn esta tesis se estudió la reacción de 4-hidroxibencilaminas con formaldehído. Primero se estableció que la aminación reductiva indirecta es útil para la obtención de 4-hidroxibencilaminas-N-bencilsustituidas a partir de 4-hidroxibencilamina y aldehídos aromáticos. Cuando la aminación reductiva se realizó a partir de aldehídos aromáticos e hidróxido de amonio, se obtienen mezclas equimolares de las respectivas bencilaminas primarias y secundarias. Esto debido a que la reacción entre aldehídos aromáticos e hidróxido de amonio no forma la imina correspondiente si no las respectivas hidrobenzamidas, compuestos producidos por la condensación de tres moléculas de aldehído con dos de amoniaco. Por medio de cálculos computacionales se demostró que la 4-hidroxibencilamina y las 4-hidroxibencilaminas-N-bencilsustituidas forman arreglos cíclicos. Estos están estabilizados por puentes de hidrogeno e interacciones dispersivas tanto en fase gaseosa como en solución. El análisis espectroscópico del producto de reacción de 4-hidroxibencilamina y 4-hidroxibencilaminas-N-bencilsustituidas con formaldehído permitió concluir que: El producto de la reacción de 4-hidroxibencilamina con formaldehido es mayoritariamente el azaciclofano respectivo. Para el caso de las 4-hidroxibencilaminas-N-bencilsustituidas, el producto es una mezcla entre el dímero lineal y el azaciclofano respectivo. (Texto tomado de la fuente)In this thesis, the reaction of 4-hydroxybenzylamines with formaldehyde was studied. At first, it was established that indirect reductive amination is useful for obtaining N-benzyl-substituted 4-hydroxybenzylamines from 4-hydroxybenzylamine and aromatic aldehydes. When the reductive amination is carried out using aromatic aldehydes and ammonium hydroxide, equimolar mixtures of the respective primary and secondary benzylamines are obtained. This is because the reaction between aromatic aldehydes and ammonium hydroxide does not form the corresponding imine, but rather the respective hydrobenzamides, compounds produced by the condensation of three molecules of aldehyde with two molecules of ammonia. Through computational calculations, it was demonstrated that 4-hydroxybenzylamine and N-benzyl-substituted 4-hydroxybenzylamines form cyclic arrangements. These arrangements are stabilized by hydrogen bonds and dispersive interactions, both in the gas phase and in solution. The spectroscopic analysis of the reaction product of 4-hydroxybenzylamine and N-benzyl-substituted 4-hydroxybenzylamines with formaldehyde allowed to conclude that: The product of the reaction of 4-hydroxybenzylamine with formaldehyde is predominantly the respective azacyclophane. In the case of N-benzyl-substituted 4-hydroxybenzylamines, the product is a mixture between the linear dimer and the respective azacyclophane.MaestríaMagister en Ciencias - QuímicaSintesis organicaxxii, 138 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánicaChemistry, organicQuímica orgánicaHidrobenzamida4-hidroxibencilaminaAzaciclofanoPuentes de hidrógenoFormaldehídoHydrobenzamide4-hydroxybenzylamineAzacyclophaneHydrogen bondsFormaldehydeEstudio de la reactividad de 4-hidroxibencilaminas frente a formaldehídoStudy of the reactivity of 4-hydroxybenzylamines with formaldehydeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaQuevedo, R.; A. Sierra, C. Intrinsic Fluorescence of 1,3-Benzoxazinephanes. Heterocycles 2011, 83 (12), 2769.Maldonado, M.; Martinez-Manjarres, A.; Quevedo, R. 1H-NMR Spectroscopic and Thermogravimetric Research Regarding Alcohol Interaction with Tyrosine-Derived Azacyclophanes. Res. chem. intermed. 2018, 44 (7), 4073–4082.Quevedo, R.; Pabón, L.; Quevedo-Acosta, Y. 1H NMR Study on the Intermolecular Interactions of Macrocyclic and Single α-Amino Acids. J. Mol. Struct. 2013, 1041, 68–72.Quevedo, R. 1H- and 13C-NMR Spectroscopic Study of Intermolecular Interactions between Tyrosine-Derived Azacyclophanes and Aromatic Rings. J. Mol. Struct. 2020, 1207 (127777), 127777.Nuñez-Dallos, N.; Reyes, A.; Quevedo, R. Hydrogen Bond Assisted Synthesis of Azacyclophanes from L-Tyrosine Derivatives. Tetrahedron Lett. 2012, 53 (5), 530–534.Alabugin, I. Hydrogen Bonding in Organic Synthesis Hydrogen Bonding in Organic Synthesis. Edited by Petri M. Pihko (University of Jyväskylä, Finland). WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim. 2009. Xii + 384 Pp. $215. ISBN 978-3-527-31895-7. J. Am. Chem. Soc. 2010, 132 (19), 6863–6864.Park, Y.; Chang, S. Asymmetric Formation of γ-Lactams via C–H Amidation Enabled by Chiral Hydrogen-Bond-Donor Catalysts. Nat. Catal. 2019, 2 (3), 219–227.Seo, M.-S.; Jang, S.; Jung, H.; Kim, H. Hydrogen-Bonding-Assisted Ketimine Formation of Benzophenone Derivatives. J. Org. Chem. 2018, 83 (23), 14300–14306.Tuckerman, M. M.; Mayer, J. R.; Nachod, F. C. Anomalous PKa Values of Some Substituted Phenylethylamines1. J. Am. Chem. Soc. 1959, 81 (1), 92–94.Gross, K. C.; Seybold, P. G. Substituent Effects on the Physical Properties and PKa of Aniline. Int. J. Quantum Chem. 2000, 80 (4–5), 1107–1115.Huang, N.-K.; Chern, Y.; Fang, J.-M.; Lin, C.-I.; Chen, W.-P.; Lin, Y.-L. Neuroprotective Principles from Gastrodia Elata. J. Nat. Prod. 2007, 70 (4), 571–574.Ongena, M.; Jourdan, E.; Schäfer, M.; Kech, C.; Budzikiewicz, H.; Luxen, A.; Thonart, P. Isolation of an N-Alkylated Benzylamine Derivative from Pseudomonas Putida BTP1 as Elicitor of Induced Systemic Resistance in Bean. Mol. Plant. Microbe. Interact. 2005, 18 (6), 562–569.Koyama, M.; Obata, Y.; Sakamura, S. Identification of Hydroxybenzylamines in Buckwheat Seeds (Fagopyrum EsculentumMoench). Agric. Biol. Chem. 1971, 35 (12), 1870–1879.Frandsen, H. B.; Sørensen, J. C.; Petersen, I. L.; Sørensen, H. Glutamine as an Ammonia Donor in Catabolism of the Glucosinolate, Sinalbin, in Biosynthesis of 4-Hydroxybenzylamine. J. Nat. Prod. 2020, 83 (2), 179–184.Maeda T.; Takase M.; Ishibashi A.; Yamamoto T.; Sasaki K.; Arika T.; Yokoo M.; Amemiya K. Synthesis and antifungal activity of butenafine hydrochloride (KP-363), a new benzylamine antifungal agent. Yakugaku Zasshi 1991, 111 (2), 126–137.Ignacimuthu, S.; Shanmugam, N. Antimycobacterial Activity of Two Natural Alkaloids, Vasicine Acetate and 2-Acetyl Benzylamine, Isolated from Indian Shrub Adhatoda Vasica Ness. Leaves. J. Biosci. 2010, 35 (4), 565–570.Akıncıoğlu, A.; Göksu, S.; Naderi, A.; Akıncıoğlu, H.; Kılınç, N.; Gülçin, İ. Cholinesterases, Carbonic Anhydrase Inhibitory Properties and in Silico Studies of Novel Substituted Benzylamines Derived from Dihydrochalcones. Comput. Biol. Chem. 2021, 94 (107565), 107565.Vicker, N.; Bailey, H. V.; Day, J. M.; Mahon, M. F.; Smith, A.; Tutill, H. J.; Purohit, A.; Potter, B. V. L. Substituted Aryl Benzylamines as Potent and Selective Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 3. Molecules 2021, 26 (23), 7166.Durgun, M.; Turkmen, H.; Ceruso, M.; Supuran, C. T. Synthesis of 4-Sulfamoylphenyl-Benzylamine Derivatives with Inhibitory Activity against Human Carbonic Anhydrase Isoforms I, II, IX and XII. Bioorg. Med. Chem. 2016, 24 (5), 982–988.Sağlık, B. N.; Osmaniye, D.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Atlı Eklioğlu, Ö.; Özkay, Y.; Koparal, A. S.; Kaplancıklı, Z. A. Synthesis, in Vitro Enzyme Activity and Molecular Docking Studies of New Benzylamine-Sulfonamide Derivatives as Selective MAO-B Inhibitors. J. Enzyme Inhib. Med. Chem. 2020, 35 (1), 1422–1432.Moret, V.; Laras, Y.; Cresteil, T.; Aubert, G.; Ping, D. Q.; Di, C.; Barthélémy-Requin, M.; Béclin, C.; Peyrot, V.; Allegro, D.; Rolland, A.; De Angelis, F.; Gatti, E.; Pierre, P.; Pasquini, L.; Petrucci, E.; Testa, U.; Kraus, J.-L. Discovery of a New Family of Bis-8-Hydroxyquinoline Substituted Benzylamines with pro-Apoptotic Activity in Cancer Cells: Synthesis, Structure-Activity Relationship, and Action Mechanism Studies. Eur. J. Med. Chem. 2009, 44 (2), 558–567.Tao, H.; Huang, J.; Yancey, P. G.; Yermalitsky, V.; Blakemore, J. L.; Zhang, Y.; Ding, L.; Zagol-Ikapitte, I.; Ye, F.; Amarnath, V.; Boutaud, O.; Oates, J. A.; Roberts, L. J.; Davies, S. S.; Linton, M. F. Scavenging of Reactive Dicarbonyls with 2-Hydroxybenzylamine Reduces Atherosclerosis in Hypercholesterolemic Ldlr-/- Mice. Nat. Commun. 2020, 11 (1), 4084.Varela, M. T.; Dias, R. Z.; Martins, L. F.; Ferreira, D. D.; Tempone, A. G.; Ueno, A. K.; Lago, J. H. G.; Fernandes, J. P. S. Gibbilimbol Analogues as Antiparasitic Agents--Synthesis and Biological Activity against Trypanosoma Cruzi and Leishmania (L.) Infantum. Bioorg. Med. Chem. Lett. 2016, 26 (4), 1180–1183.de Macedo-Silva, S. T.; Visbal, G.; Souza, G. F.; Dos Santos, M. R.; Cämmerer, S. B.; de Souza, W.; Rodrigues, J. C. F. Benzylamines as Highly Potent Inhibitors of the Sterol Biosynthesis Pathway in Leishmania Amazonensis Leading to Oxidative Stress and Ultrastructural Alterations. Sci. Rep. 2022, 12 (1), 11313.Hou, S.-F.; Chen, J.-Y.; Xue, M.; Jia, M.; Zhai, X.; Liao, R.-Z.; Tung, C.-H.; Wang, W. Cooperative Molybdenum-Thiolate Reactivity for Transfer Hydrogenation of Nitriles. ACS Catal. 2020, 10 (1), 380–390.Yan, T.; Feringa, B. L.; Barta, K. Benzylamines via Iron-Catalyzed Direct Amination of Benzyl Alcohols. ACS Catal. 2016, 6 (1), 381–388.Heuer, L. Benzylamine. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006.Yan, G.; Zhang, Y.; Wang, J. Recent Advances in the Synthesis of Aryl Nitrile Compounds. Adv. Synth. Catal. 2017, 359 (23), 4068–4105.Winans, C. F. Hydrogenation of Aldehydes in the Presence of Ammonia. J. Am. Chem. Soc. 1939, 61 (12), 3566–3567.Senthamarai, T.; Murugesan, K.; Schneidewind, J.; Kalevaru, N. V.; Baumann, W.; Neumann, H.; Kamer, P. C. J.; Beller, M.; Jagadeesh, R. V. Simple Ruthenium-Catalyzed Reductive Amination Enables the Synthesis of a Broad Range of Primary Amines. Nat. Commun. 2018, 9 (1).Murugesan, K.; Beller, M.; Jagadeesh, R. V. Reusable Nickel Nanoparticles‐catalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angew. Chem. Int. Ed Engl. 2019, 58 (15), 5064–5068.Irrgang, T.; Kempe, R. Transition-Metal-Catalyzed Reductive Amination Employing Hydrogen. Chem. Rev. 2020, 120 (17), 9583–9674.Nakamura, Y.; Kon, K.; Touchy, A. S.; Shimizu, K.-I.; Ueda, W. Selective Synthesis of Primary Amines by Reductive Amination of Ketones with Ammonia over Supported Pt Catalysts. ChemCatChem 2015, 7 (6), 921–924.Gross, T.; Seayad, A. M.; Ahmad, M.; Beller, M. Synthesis of Primary Amines: First Homogeneously Catalyzed Reductive Amination with Ammonia. Org. Lett. 2002, 4 (12), 2055–2058.Crossley, F. S.; Moore, M. L. Studies on the Leuckart Reaction. J. Org. Chem. 1944, 09 (6), 529–536.Pollard, C. B.; Young, D. C. The Mechanism of the Leuckart Reaction. J. Org. Chem. 1951, 16 (5), 661–672.Alexander, E. R.; Wildman, R. B. Studies on the Mechanism of the Leuckart Reaction. J. Am. Chem. Soc. 1948, 70 (3), 1187–1189.Adams, R.; Bachmann, W. E.; Frieser, L. F.; Blatt, A. H.; Jhonson, J. R.; Snyder, H. R. The Leuckart Reaction. En Organic Reactions. Moore, M. L. John Wiley & Sons: Hoboken, 1960; Vol 5, pp 301- 330.Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures1. J. Org. Chem. 1996, 61 (11), 3849–3862.Cho, B. T.; Kang, S. K. Direct and Indirect Reductive Amination of Aldehydes and Ketones with Solid Acid-Activated Sodium Borohydride under Solvent-Free Conditions. Tetrahedron. 2005, 61 (24), 5725–5734.Sprung, M. A. A Summary of the Reactions of Aldehydes with Amines. Chem. Rev. 1940, 26 (3), 297–338.Sani, U.; Na’ibi, H. U.; Dailami, S. A. In Vitro Antimicrobial and Antioxidant Studies on N-(2- Hydroxylbenzylidene) Pyridine -2-Amine and Its M(II) Complexes. Nig J Bas App Sci 2018, 25 (1), 81.Mason, A. T.; Winder, G. R. XXI.—Condensation Products from Benzylamine and Several Benzenoïd Aldehydes. J. Chem. Soc. 1894, 65 (0), 191–193.Bujnowski, K.; Adamczyk, A.; Synoradzki, L. O-AMINOMETHYL DERIVATIVES OF PHENOLS. PART 1. BENZYLAMINES: PROPERTIES, STRUCTURE, SYNTHESIS AND PURIFICATION. Org. Prep. Proced. Int. 2007, 39 (2), 153–184.Nielsen, A. T.; Nissan, R. A.; Chafin, A. P.; Gilardi, R. D.; George, C. F. Polyazapolycyclics by Condensation of Aldehydes with Amines. 3. Formation of 2,4,6,8-Tetrabenzyl-2,4,6,8-Tetraazabicyclo[3.3.0]Octanes from Formaldehyde, Glyoxal, and Benzylamines. J. Org. Chem. 1992, 57 (25), 6756–6759.Pine, S. H.; Sanchez, B. L. Formic Acid-Formaldehyde Methylation of Amines. J. Org. Chem. 1971, 36 (6), 829–832.Adams, R.; Bachmann, W. E.; Frieser, L. F.; Blatt, A. H.; Jhonson, J. R.; Snyder, H. R. The Mannich Reaction. En Organic Reactions. Blicke, F.F. John Wiley & Sons: Hoboken, 1942; Vol 1, pp 303- 341.Mannich, C.; Krösche, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch. Pharm. (Weinheim) 1912, 250 (1), 647–667.Hof, F.; Schär, M.; Scofield, D. M.; Fischer, F.; Diederich, F.; Sergeyev, S. Preparation OfTröger Base Derivatives by Cross-Coupling Methodologies. Helv. Chim. Acta 2005, 88 (8), 2333–2344.Satishkumar, S.; Periasamy, M. A Convenient Method for the Synthesis and Resolution of Tröger Base. Tetrahedron Asymmetry 2006, 17 (7), 1116–1119.Tramontini, N.; Angiolini, L. MANNICH BASES: Chemistry and uses. CRC Press: Boca Raton, 1994.Fields, D. L.; Miller, J. B.; Reynolds, D. D. Mannich-Type Condensation of Hydroquinone, Formaldehyde, and Primary Amines. J. Org. Chem. 1962, 27 (8), 2749–2753.Burke, W. J.; Glennie, E. L. M.; Weatherbee, C. Condensation of Halophenols with Formaldehyde and Primary Amines1. J. Org. Chem. 1964, 29 (4), 909–912.Burke, W. J.; Nasutavicus, W. A.; Weatherbee, C. Synthesis and Study of Mannich Bases from 2-Naphthol and Primary Amines1. J. Org. Chem. 1964, 29 (2), 407–410.Matta, C. F.; Hernández-Trujillo, J.; Tang, T.-H.; Bader, R. F. W. Hydrogen-Hydrogen Bonding: A Stabilizing Interaction in Molecules and Crystals. Chemistry 2003, 9 (9), 1940–1951.Hibbert, F.; Emsley, J. Hydrogen Bonding and Chemical Reactivity. In Advances in Physical Organic Chemistry; Elsevier, 1990; pp 255–379.Kollman, P. A.; Allen, L. C. Theory of the Hydrogen Bond. Chem. Rev. 1972, 72 (3), 283–303.Alkota, I.; Rozas, I.; Elguero, J. Non-convencional hydrogen bonds Chem. Soc. Rev. 1998, 27, 163-170.Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed Engl. 2002, 41 (1), 49–76.Vögtle, F.; Pawlitzki, G.; Hetera (Cyclo-)phanes. En Modern Cyclophane Chemisty. Gleiter, R.; Hopf, H. Wiley-VCH: Weinheim, 2004; Vol. 1, pp 41-80.Gulder, T.; Baran, P. S. Strained Cyclophane Natural Products: Macrocyclization at Its Limits. Nat. Prod. Rep. 2012, 29 (8), 899–934.Steed, J. W.; Atwood, J. L. Supramolecular Chemistry. John Wiley & Sons: Hoboken, 2022.Quevedo, R.; Moreno-Murillo, B. One-Step Synthesis of a New Heterocyclophane Family. Tetrahedron Lett. 2009, 50 (8), 936–938.Quevedo, R.; Díaz-Oviedo, C.; Quevedo-Acosta, Y. Role of Hydroxyl Groups on the Aromatic Ring in the Reactivity and Selectivity of the Reaction of β-Phenylethylamines with Non-Enolizable Aldehydes. Res. chem. intermed. 2015, 41 (12), 9835–9843.Nuñez-Dallos, N.; Reyes, A.; Quevedo, R. Hydrogen Bond Assisted Synthesis of Azacyclophanes from L-Tyrosine Derivatives. Tetrahedron Lett. 2012, 53 (5), 530–534.Quevedo, R.; Nuñez-Dallos, N.; Wurst, K.; Duarte-Ruiz, Á. A Structural Study of the Intermolecular Interactions of Tyramine in the Solid State and in Solution. J. Mol. Struct. 2012, 1029, 175–179.Díaz-Oviedo, C.; Quevedo, R. N-Benzylazacyclophane synthesis via aromatic Mannich reaction. Tetrahedron Lett. 2014, 55 (48), 6571–6574.Nuñez-Dallos, N.; Díaz-Oviedo, C.; Quevedo, R. Hydroxy- and aminomethylation reactions in the formation of oligomers from l-tyrosine and formaldehyde in basic medium. Tetrahedron Lett. 2014, 55 (30), 4216–4221.Leal, L. F.; Chaves, S.; Quevedo, R. Synthesis and Structural Analysis of an Asymmetric Azacyclophane via Mannich Cross Macrocyclisation of -Tyrosine Derivatives. Results Chem. 2023, 5 (100684), 100684.Quevedo, R.; González, M.; Díaz-Oviedo, C. Synthesis of Macrocyclic α-Amino Esters through the Chemoselective Hydrolysis of Benzoxazinephanes. Tetrahedron Lett. 2012, 53 (13), 1595–1597.Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.Allouche, A.-R. Gabedit--a Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32 (1), 174–182.Hirayama, K. Nomenclature of Cyclophanes. Tetrahedron Lett. 1972, 13 (21), 2109–2112.Francis, F. Notiz Über Die Einwirkung von Ammoniak Auf Benzaldehyd Und Die Darstellung Von »Benzaldehyd‐Ammoniak«. Ber. Dtsch. Chem. Ges. 1909, 42 (2), 2216–2218.Crowell, T. I.; McLeod, R. K. Kinetics of Hydrobenzamide Formation from P-Dimethylaminobenzaldehyde and Ammonia. Role of the Imine. J. Org. Chem. 1967, 32 (12), 4030–4033.Strain, H. H. Hydrobenzamide and Benzylidene Imine as Ammono Aldehydes. J. Am. Chem. Soc. 1927, 49 (6), 1558–1571Denat, F.; Tripier, R.; Boschetti, F.; Espinosa, E.; Guilard, R. Reaction of Polyamines with Diethyloxalate: A Convenient Route for the Synthesis of Tetraazacycloalkanes. ARKIVOC 2006, 2006 (4), 212–233.Boyd, E.; Coumbarides, G. S.; Eames, J.; Jones, R. V. H.; Stenson, R. A.; Suggate, M. J. Synthesis and Derivatisation of N,N′-Trisubstituted 1,2-Diamines Derived from (1R,2R)-1,2-Diaminocyclohexane. Tetrahedron Lett. 2005, 46 (20), 3479–3484.Salerno, A.; Figueroa, M. A.; Perillo, I. A. A Convenient “One-Pot” Reaction for Selective Monoalkylation ofN,N′-Disubstituted Ethylenediamines. Synth. Commun. 2003, 33 (18), 3193–3204.Salerno, A.; Ceriani, V.; Perillo, I. A. Reduction of Substituted 1H-4,5-Dihydroimidazolium Salts. J. Heterocycl. Chem. 1992, 29 (7), 1725–1733.Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32 (7), 1456–1465.Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396.Moser, A.; Range, K.; York, D. M. Accurate Proton Affinity and Gas-Phase Basicity Values for Molecules Important in Biocatalysis. J. Phys. Chem. B 2010, 114 (43), 13911–13921.Lias, S. G.; Liebman, J. F.; Levin, R. D. Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules. J. Phys. Chem. Ref. Data 1984, 13 (3), 695–808.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84967/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALEstudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído.pdfEstudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf5552773https://repositorio.unal.edu.co/bitstream/unal/84967/2/Estudio%20de%20la%20reactividad%20de%204-hidroxibencilaminas%20frente%20a%20formaldeh%c3%addo.pdf1fe0512c3787b24ba4036b1162265c22MD52THUMBNAILEstudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído.pdf.jpgEstudio de la reactividad de 4-hidroxibencilaminas frente a formaldehído.pdf.jpgGenerated Thumbnailimage/jpeg4614https://repositorio.unal.edu.co/bitstream/unal/84967/3/Estudio%20de%20la%20reactividad%20de%204-hidroxibencilaminas%20frente%20a%20formaldeh%c3%addo.pdf.jpgd76215fe5b7bf9e69ef9d405c8adf649MD53unal/84967oai:repositorio.unal.edu.co:unal/849672024-08-19 23:11:23.57Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=