Stiffness matrix and loading vector of a two-layer Timoshenko composite beam
Este trabajo presenta un resumen de los resultados obtenidos de la investigación realizada durante los estudios de doctorado. Inicialmente la propuestra del trabajo de grado consistía en la obtención de la "Matriz de rigidez y vector de carga de una viga de Timoshenko de dos capas" (ver Ca...
- Autores:
-
Areiza-Hurtado, Mauricio
- Tipo de recurso:
- Informe
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77476
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77476
- Palabra clave:
- 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Stiffnes Matrix
Two layer
Timoshenko beam
Stiffness matrix
Two-layer Timoshenko beam
Coupled systems
Loading vector
Steel beams
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_0a7f63421b6a73272efb733801153d32 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77476 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Stiffness matrix and loading vector of a two-layer Timoshenko composite beam |
dc.title.alternative.spa.fl_str_mv |
Matriz de rigidez y vector de carga de una viga de Timoshenko de dos capas. |
title |
Stiffness matrix and loading vector of a two-layer Timoshenko composite beam |
spellingShingle |
Stiffness matrix and loading vector of a two-layer Timoshenko composite beam 620 - Ingeniería y operaciones afines::624 - Ingeniería civil Stiffnes Matrix Two layer Timoshenko beam Stiffness matrix Two-layer Timoshenko beam Coupled systems Loading vector Steel beams |
title_short |
Stiffness matrix and loading vector of a two-layer Timoshenko composite beam |
title_full |
Stiffness matrix and loading vector of a two-layer Timoshenko composite beam |
title_fullStr |
Stiffness matrix and loading vector of a two-layer Timoshenko composite beam |
title_full_unstemmed |
Stiffness matrix and loading vector of a two-layer Timoshenko composite beam |
title_sort |
Stiffness matrix and loading vector of a two-layer Timoshenko composite beam |
dc.creator.fl_str_mv |
Areiza-Hurtado, Mauricio |
dc.contributor.advisor.spa.fl_str_mv |
Aristizabal-Ochoa, Jose Dario |
dc.contributor.author.spa.fl_str_mv |
Areiza-Hurtado, Mauricio |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
dc.contributor.researchgroup.spa.fl_str_mv |
ESTABILIDAD ESTRUCTURAL |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil |
topic |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil Stiffnes Matrix Two layer Timoshenko beam Stiffness matrix Two-layer Timoshenko beam Coupled systems Loading vector Steel beams |
dc.subject.proposal.spa.fl_str_mv |
Stiffnes Matrix Two layer Timoshenko beam Stiffness matrix Two-layer Timoshenko beam |
dc.subject.proposal.eng.fl_str_mv |
Coupled systems Loading vector Steel beams |
description |
Este trabajo presenta un resumen de los resultados obtenidos de la investigación realizada durante los estudios de doctorado. Inicialmente la propuestra del trabajo de grado consistía en la obtención de la "Matriz de rigidez y vector de carga de una viga de Timoshenko de dos capas" (ver Capítulo 5), sin embargo se ha adjuntado a este documento otros capítulos que se encuentran intimamente relacionados y que fueron también fruto del trabajo de investigación. Los capítulos 1 y 2 presentan la formulación teórica y la verificación con ejemplos, respectivamente, de la matriz de rigidez y el vector de carga de una viga pretensada incluyendo los efectos de largo plazo. El capítulo 3 presenta el análisis de segundo orden de una viga columna sobre fundación elástica con deflección inicial y conexiones semirrigidas. Los capítulos 4, 5 y 6 presentan el análisis de una viga de Timoshenko de dos capas. En el capítulo 4 se presenta la formulación para un sólo elemento, en el capítulo 5 se presenta la derivación de la matriz de rigidez y se hace la verificación con aplicaciones al diseño de vigas mixtas de acero y concreto. Finalemnte en el capitulo 6 se usa la formulación desarrollada en el capítulo 5 para realizar el análisis de nudos adhesivados. Los capitulos 3 al 6 cuentan con el identificador único y permanente para las publicaciones electrónicas (DOI) en el encabezado de cada capítulo para una fácil referencia. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-05-05T20:55:41Z |
dc.date.available.spa.fl_str_mv |
2020-05-05T20:55:41Z |
dc.date.issued.spa.fl_str_mv |
2020-02-01 |
dc.type.spa.fl_str_mv |
Reporte |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/report |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_93fc |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTCASO |
format |
http://purl.org/coar/resource_type/c_93fc |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Areiza-2020 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77476 |
identifier_str_mv |
Areiza-2020 |
url |
https://repositorio.unal.edu.co/handle/unal/77476 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
A., L. and J., L. (2016). Non-linear buckling of elliptical curved beams. Int. J. Non. Linear. Mech., 82:132–143. Ansourian, P. (1981). Experiments on continuous composite beams. Proceedings Institute of Civil Engineers. part 2., 71:25–51. Arboleda-Monsalve, L. G., Z.-M. D. G. and Aristizabal-Ochoa, J. D. (2008). Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector. Journal of Sound and Vibration, 310:1057–1079 Aristizabal-Ochoa, J. D. (1997). First- and second-order stiffness matrices and load vector of beam-columns with semirigid connections. ASCE J. Struct. Eng., 123:669–678. Aydo˘gan, M. (1995). Stiffness-matrix formulation of beams with shear effect on elastic foundation. J. Struct. Engrg., ASCE, 121:1265–1270. Aziz, K. A. (1986). Modelisation et etude experimentale de poutres mixtes acier-beton a connexion partielle ou espacee, doktorska disertacija. Institut National des Sciences Appliquees des Rennes. Bazzucchi F., M. A. and A., C. (2017). Interaction between snap-through and eulerian instability in shallow structures. Int. J. Non. Linear. Mech., 88:11–20. Chen J.and Hung, S. (2012). Exact snapping loads of a buckled beam under a midpoint force. Appl. Math. Model., 36:1776–1782. Collins, M. P. and Mitchell, D. (1997). Prestressed Concrete Structures. Prentice Hall College, ISBN 13: 9780136916352. Cosenza, E. (2001). Shear and normal stresses interaction in coupled structural systems. J Struct Eng, 127:84–88 Ecsedi, I. and Baksa, A. (2016). Analytical solution for layered composite beams with partial shear interaction based on timoshenko beam theory. Eng Struct, 115:107–117. Faella, C., M. E. and Nigro, E. (2010). Steel–concrete composite beams in partial interaction: Closed-form ‘exact’ expression of the stiffness matrix and the vector of equivalent nodal forces. Engineering Structures, 32:2744–2754. Foraboschi, P. (2009). Analytical solution of two-layer beam taking into account nonlinear interlayer slip. Journal of Engineering Mechanics, 135:1129–1146. G. Ranzi, F. G. and Ansourian, P. (2006). General method of analysis for composite beams with longitudinal and transverse partial interaction. Comput Struct, 84:2373–2384. Gay, D. and Hoa., S. V. (2007). Composite Materials. Design and Applications. CRC Press, ISBN 13:978-1-4200-4519- Lezgy-Nazargah, M. (2014). An isogeometric approach for the analysis of composite steel–concrete beams. Thin Walled Struct, 84:406–415. LIN., T. Y. (1963). Load-balancing method for desingn and analysis of prestressed concrete structures. J. Am. Concr. institute., 60:719–742. Lin, T. Y. and Thornton, K. (1972). Secondary moment and moment redistribution in continuous prestressed concrete beams. PCI J., 18:8–20. P. Keo, Q.-H. Nguyen, H. S. and Hjiaj, M. (2016). Derivation of the exact stiffness matrix of shear-deformable multi-layered beam element in partial interaction. Finite Elem Anal Des, 112:40–49. Q.-H. Nguyen, E. M. and Hjiaj, M. (2011). Derivation of the exact stiffness matrix for a two-layer timoshenko beam element with partial interaction. Eng Struct, 33:298–307. Q.-H. Nguyen, M. H. and Lai, V.-A. (2014). Force-based f.e. for large displacement inelastic analysis of two-layer timoshenko beams with interlayer slips. Finite Elem Anal Des, 85:1–10. S.-F. Jiang, X. Z. and Zhou, D. (2014). Novel two-node linear composite beam element with both interface slip and shear deformation into consideration: formulation and validation. Int J Mech Sci, 85:110–119. Sua, Y.-Y. and Gao, X.-L. (2014). Analytical model for adhesively bonded composite panel-flange joints based on the timoshenko beam theory. Compos Struct, 107:112–118 Timoshenko S. P, G. J. M. (1961.). Theory of Elastic Stability. McGraw-Hill Book Company, 2 ed.. Z. Liu, Y. Huang, Z. Y. S. B. and Valvo, P. (2014). A general solution for the twodimensional stress analysis of balanced and unbalanced adhesively bonded joints. Int J Adhes Adhes, 54:112–123. Zona, A. and Ranzi, G. (2011). Finite element models for nonlinear analysis of steel–concrete composite beams with partial interaction in combined bending and shear. Finite Elem Anal Des, 47:98–118. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
146 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Ingeniería Civil |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Civil |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77476/4/71776289.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/77476/6/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77476/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/77476/7/71776289.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
1a6be97d178cf6d2dc13c3b6f215d9e5 42fd4ad1e89814f5e4a476b409eb708c 6f3f13b02594d02ad110b3ad534cd5df 81d278087e14d31a2d63c20b68b4fd84 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089671113703424 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aristizabal-Ochoa, Jose Dario3d822d18-3e28-4438-9ade-1b1a140f45ec-1Areiza-Hurtado, Mauricio7ccc3c1b-6124-46f0-80d0-596e72f4da39Universidad Nacional de Colombia - Sede MedellínESTABILIDAD ESTRUCTURAL2020-05-05T20:55:41Z2020-05-05T20:55:41Z2020-02-01Areiza-2020https://repositorio.unal.edu.co/handle/unal/77476Este trabajo presenta un resumen de los resultados obtenidos de la investigación realizada durante los estudios de doctorado. Inicialmente la propuestra del trabajo de grado consistía en la obtención de la "Matriz de rigidez y vector de carga de una viga de Timoshenko de dos capas" (ver Capítulo 5), sin embargo se ha adjuntado a este documento otros capítulos que se encuentran intimamente relacionados y que fueron también fruto del trabajo de investigación. Los capítulos 1 y 2 presentan la formulación teórica y la verificación con ejemplos, respectivamente, de la matriz de rigidez y el vector de carga de una viga pretensada incluyendo los efectos de largo plazo. El capítulo 3 presenta el análisis de segundo orden de una viga columna sobre fundación elástica con deflección inicial y conexiones semirrigidas. Los capítulos 4, 5 y 6 presentan el análisis de una viga de Timoshenko de dos capas. En el capítulo 4 se presenta la formulación para un sólo elemento, en el capítulo 5 se presenta la derivación de la matriz de rigidez y se hace la verificación con aplicaciones al diseño de vigas mixtas de acero y concreto. Finalemnte en el capitulo 6 se usa la formulación desarrollada en el capítulo 5 para realizar el análisis de nudos adhesivados. Los capitulos 3 al 6 cuentan con el identificador único y permanente para las publicaciones electrónicas (DOI) en el encabezado de cada capítulo para una fácil referencia.Initially, the proposal of the degree work consisted of obtaining the "Stiffness matrix and loading vector of a two-layer Timoshenko beam" (see Chapter 5 and 6), however it has been attached to this document other chapters that are closely related and that were also the result of the research work of these years. Chapters 1 and 2 present the theoretical formulation and verification with examples, respectively, of the stiffness matrix and load vector of a prestressed beam including long-term effects. Chapter 3 presents the second order analysis of a column beam on elastic foundation with initial deflection and semi-rigid connections. Chapters 4, 5 and 6 present the analysis of a two-layer Tymoshenko beam. In chapter 4 the formulation for a single element is presented, in chapter 5 the bypass of the stiffness matrix is presented and verification is made with applications to the design of mixed steel and concrete beams. Finally in chapter 6 the formulation developed in chapter 5 is used to perform the analysis of adhesive joints. Chapters 3 through 6 have the unique and permanent Digital Object Identifier (DOI) in the heading of each chapter for easy reference.ColcienciasDoctorado146application/pdfeng620 - Ingeniería y operaciones afines::624 - Ingeniería civilStiffnes MatrixTwo layerTimoshenko beamStiffness matrixTwo-layer Timoshenko beamCoupled systemsLoading vectorSteel beamsStiffness matrix and loading vector of a two-layer Timoshenko composite beamMatriz de rigidez y vector de carga de una viga de Timoshenko de dos capas.Reporteinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_93fcTexthttp://purl.org/redcol/resource_type/ARTCASOMedellín - Minas - Doctorado en Ingeniería - Ingeniería CivilDepartamento de Ingeniería CivilUniversidad Nacional de Colombia - Sede MedellínA., L. and J., L. (2016). Non-linear buckling of elliptical curved beams. Int. J. Non. Linear. Mech., 82:132–143.Ansourian, P. (1981). Experiments on continuous composite beams. Proceedings Institute of Civil Engineers. part 2., 71:25–51.Arboleda-Monsalve, L. G., Z.-M. D. G. and Aristizabal-Ochoa, J. D. (2008). Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector. Journal of Sound and Vibration, 310:1057–1079Aristizabal-Ochoa, J. D. (1997). First- and second-order stiffness matrices and load vector of beam-columns with semirigid connections. ASCE J. Struct. Eng., 123:669–678.Aydo˘gan, M. (1995). Stiffness-matrix formulation of beams with shear effect on elastic foundation. J. Struct. Engrg., ASCE, 121:1265–1270.Aziz, K. A. (1986). Modelisation et etude experimentale de poutres mixtes acier-beton a connexion partielle ou espacee, doktorska disertacija. Institut National des Sciences Appliquees des Rennes.Bazzucchi F., M. A. and A., C. (2017). Interaction between snap-through and eulerian instability in shallow structures. Int. J. Non. Linear. Mech., 88:11–20.Chen J.and Hung, S. (2012). Exact snapping loads of a buckled beam under a midpoint force. Appl. Math. Model., 36:1776–1782.Collins, M. P. and Mitchell, D. (1997). Prestressed Concrete Structures. Prentice Hall College, ISBN 13: 9780136916352.Cosenza, E. (2001). Shear and normal stresses interaction in coupled structural systems. J Struct Eng, 127:84–88Ecsedi, I. and Baksa, A. (2016). Analytical solution for layered composite beams with partial shear interaction based on timoshenko beam theory. Eng Struct, 115:107–117.Faella, C., M. E. and Nigro, E. (2010). Steel–concrete composite beams in partial interaction: Closed-form ‘exact’ expression of the stiffness matrix and the vector of equivalent nodal forces. Engineering Structures, 32:2744–2754.Foraboschi, P. (2009). Analytical solution of two-layer beam taking into account nonlinear interlayer slip. Journal of Engineering Mechanics, 135:1129–1146.G. Ranzi, F. G. and Ansourian, P. (2006). General method of analysis for composite beams with longitudinal and transverse partial interaction. Comput Struct, 84:2373–2384.Gay, D. and Hoa., S. V. (2007). Composite Materials. Design and Applications. CRC Press, ISBN 13:978-1-4200-4519-Lezgy-Nazargah, M. (2014). An isogeometric approach for the analysis of composite steel–concrete beams. Thin Walled Struct, 84:406–415.LIN., T. Y. (1963). Load-balancing method for desingn and analysis of prestressed concrete structures. J. Am. Concr. institute., 60:719–742.Lin, T. Y. and Thornton, K. (1972). Secondary moment and moment redistribution in continuous prestressed concrete beams. PCI J., 18:8–20.P. Keo, Q.-H. Nguyen, H. S. and Hjiaj, M. (2016). Derivation of the exact stiffness matrix of shear-deformable multi-layered beam element in partial interaction. Finite Elem Anal Des, 112:40–49.Q.-H. Nguyen, E. M. and Hjiaj, M. (2011). Derivation of the exact stiffness matrix for a two-layer timoshenko beam element with partial interaction. Eng Struct, 33:298–307.Q.-H. Nguyen, M. H. and Lai, V.-A. (2014). Force-based f.e. for large displacement inelastic analysis of two-layer timoshenko beams with interlayer slips. Finite Elem Anal Des, 85:1–10.S.-F. Jiang, X. Z. and Zhou, D. (2014). Novel two-node linear composite beam element with both interface slip and shear deformation into consideration: formulation and validation. Int J Mech Sci, 85:110–119.Sua, Y.-Y. and Gao, X.-L. (2014). Analytical model for adhesively bonded composite panel-flange joints based on the timoshenko beam theory. Compos Struct, 107:112–118Timoshenko S. P, G. J. M. (1961.). Theory of Elastic Stability. McGraw-Hill Book Company, 2 ed..Z. Liu, Y. Huang, Z. Y. S. B. and Valvo, P. (2014). A general solution for the twodimensional stress analysis of balanced and unbalanced adhesively bonded joints. Int J Adhes Adhes, 54:112–123.Zona, A. and Ranzi, G. (2011). Finite element models for nonlinear analysis of steel–concrete composite beams with partial interaction in combined bending and shear. Finite Elem Anal Des, 47:98–118.ORIGINAL71776289.2020.pdf71776289.2020.pdfTesis de Doctorado en Ingeniería - Ingeniería Civilapplication/pdf6357343https://repositorio.unal.edu.co/bitstream/unal/77476/4/71776289.2020.pdf1a6be97d178cf6d2dc13c3b6f215d9e5MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/77476/6/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD56LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77476/5/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD55THUMBNAIL71776289.2020.pdf.jpg71776289.2020.pdf.jpgGenerated Thumbnailimage/jpeg6023https://repositorio.unal.edu.co/bitstream/unal/77476/7/71776289.2020.pdf.jpg81d278087e14d31a2d63c20b68b4fd84MD57unal/77476oai:repositorio.unal.edu.co:unal/774762024-07-19 23:32:56.889Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |