Stiffness matrix and loading vector of a two-layer Timoshenko composite beam

Este trabajo presenta un resumen de los resultados obtenidos de la investigación realizada durante los estudios de doctorado. Inicialmente la propuestra del trabajo de grado consistía en la obtención de la "Matriz de rigidez y vector de carga de una viga de Timoshenko de dos capas" (ver Ca...

Full description

Autores:
Areiza-Hurtado, Mauricio
Tipo de recurso:
Informe
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77476
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77476
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Stiffnes Matrix
Two layer
Timoshenko beam
Stiffness matrix
Two-layer Timoshenko beam
Coupled systems
Loading vector
Steel beams
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_0a7f63421b6a73272efb733801153d32
oai_identifier_str oai:repositorio.unal.edu.co:unal/77476
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Stiffness matrix and loading vector of a two-layer Timoshenko composite beam
dc.title.alternative.spa.fl_str_mv Matriz de rigidez y vector de carga de una viga de Timoshenko de dos capas.
title Stiffness matrix and loading vector of a two-layer Timoshenko composite beam
spellingShingle Stiffness matrix and loading vector of a two-layer Timoshenko composite beam
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Stiffnes Matrix
Two layer
Timoshenko beam
Stiffness matrix
Two-layer Timoshenko beam
Coupled systems
Loading vector
Steel beams
title_short Stiffness matrix and loading vector of a two-layer Timoshenko composite beam
title_full Stiffness matrix and loading vector of a two-layer Timoshenko composite beam
title_fullStr Stiffness matrix and loading vector of a two-layer Timoshenko composite beam
title_full_unstemmed Stiffness matrix and loading vector of a two-layer Timoshenko composite beam
title_sort Stiffness matrix and loading vector of a two-layer Timoshenko composite beam
dc.creator.fl_str_mv Areiza-Hurtado, Mauricio
dc.contributor.advisor.spa.fl_str_mv Aristizabal-Ochoa, Jose Dario
dc.contributor.author.spa.fl_str_mv Areiza-Hurtado, Mauricio
dc.contributor.corporatename.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroup.spa.fl_str_mv ESTABILIDAD ESTRUCTURAL
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Stiffnes Matrix
Two layer
Timoshenko beam
Stiffness matrix
Two-layer Timoshenko beam
Coupled systems
Loading vector
Steel beams
dc.subject.proposal.spa.fl_str_mv Stiffnes Matrix
Two layer
Timoshenko beam
Stiffness matrix
Two-layer Timoshenko beam
dc.subject.proposal.eng.fl_str_mv Coupled systems
Loading vector
Steel beams
description Este trabajo presenta un resumen de los resultados obtenidos de la investigación realizada durante los estudios de doctorado. Inicialmente la propuestra del trabajo de grado consistía en la obtención de la "Matriz de rigidez y vector de carga de una viga de Timoshenko de dos capas" (ver Capítulo 5), sin embargo se ha adjuntado a este documento otros capítulos que se encuentran intimamente relacionados y que fueron también fruto del trabajo de investigación. Los capítulos 1 y 2 presentan la formulación teórica y la verificación con ejemplos, respectivamente, de la matriz de rigidez y el vector de carga de una viga pretensada incluyendo los efectos de largo plazo. El capítulo 3 presenta el análisis de segundo orden de una viga columna sobre fundación elástica con deflección inicial y conexiones semirrigidas. Los capítulos 4, 5 y 6 presentan el análisis de una viga de Timoshenko de dos capas. En el capítulo 4 se presenta la formulación para un sólo elemento, en el capítulo 5 se presenta la derivación de la matriz de rigidez y se hace la verificación con aplicaciones al diseño de vigas mixtas de acero y concreto. Finalemnte en el capitulo 6 se usa la formulación desarrollada en el capítulo 5 para realizar el análisis de nudos adhesivados. Los capitulos 3 al 6 cuentan con el identificador único y permanente para las publicaciones electrónicas (DOI) en el encabezado de cada capítulo para una fácil referencia.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-05-05T20:55:41Z
dc.date.available.spa.fl_str_mv 2020-05-05T20:55:41Z
dc.date.issued.spa.fl_str_mv 2020-02-01
dc.type.spa.fl_str_mv Reporte
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/report
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTCASO
format http://purl.org/coar/resource_type/c_93fc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Areiza-2020
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77476
identifier_str_mv Areiza-2020
url https://repositorio.unal.edu.co/handle/unal/77476
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv A., L. and J., L. (2016). Non-linear buckling of elliptical curved beams. Int. J. Non. Linear. Mech., 82:132–143.
Ansourian, P. (1981). Experiments on continuous composite beams. Proceedings Institute of Civil Engineers. part 2., 71:25–51.
Arboleda-Monsalve, L. G., Z.-M. D. G. and Aristizabal-Ochoa, J. D. (2008). Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector. Journal of Sound and Vibration, 310:1057–1079
Aristizabal-Ochoa, J. D. (1997). First- and second-order stiffness matrices and load vector of beam-columns with semirigid connections. ASCE J. Struct. Eng., 123:669–678.
Aydo˘gan, M. (1995). Stiffness-matrix formulation of beams with shear effect on elastic foundation. J. Struct. Engrg., ASCE, 121:1265–1270.
Aziz, K. A. (1986). Modelisation et etude experimentale de poutres mixtes acier-beton a connexion partielle ou espacee, doktorska disertacija. Institut National des Sciences Appliquees des Rennes.
Bazzucchi F., M. A. and A., C. (2017). Interaction between snap-through and eulerian instability in shallow structures. Int. J. Non. Linear. Mech., 88:11–20.
Chen J.and Hung, S. (2012). Exact snapping loads of a buckled beam under a midpoint force. Appl. Math. Model., 36:1776–1782.
Collins, M. P. and Mitchell, D. (1997). Prestressed Concrete Structures. Prentice Hall College, ISBN 13: 9780136916352.
Cosenza, E. (2001). Shear and normal stresses interaction in coupled structural systems. J Struct Eng, 127:84–88
Ecsedi, I. and Baksa, A. (2016). Analytical solution for layered composite beams with partial shear interaction based on timoshenko beam theory. Eng Struct, 115:107–117.
Faella, C., M. E. and Nigro, E. (2010). Steel–concrete composite beams in partial interaction: Closed-form ‘exact’ expression of the stiffness matrix and the vector of equivalent nodal forces. Engineering Structures, 32:2744–2754.
Foraboschi, P. (2009). Analytical solution of two-layer beam taking into account nonlinear interlayer slip. Journal of Engineering Mechanics, 135:1129–1146.
G. Ranzi, F. G. and Ansourian, P. (2006). General method of analysis for composite beams with longitudinal and transverse partial interaction. Comput Struct, 84:2373–2384.
Gay, D. and Hoa., S. V. (2007). Composite Materials. Design and Applications. CRC Press, ISBN 13:978-1-4200-4519-
Lezgy-Nazargah, M. (2014). An isogeometric approach for the analysis of composite steel–concrete beams. Thin Walled Struct, 84:406–415.
LIN., T. Y. (1963). Load-balancing method for desingn and analysis of prestressed concrete structures. J. Am. Concr. institute., 60:719–742.
Lin, T. Y. and Thornton, K. (1972). Secondary moment and moment redistribution in continuous prestressed concrete beams. PCI J., 18:8–20.
P. Keo, Q.-H. Nguyen, H. S. and Hjiaj, M. (2016). Derivation of the exact stiffness matrix of shear-deformable multi-layered beam element in partial interaction. Finite Elem Anal Des, 112:40–49.
Q.-H. Nguyen, E. M. and Hjiaj, M. (2011). Derivation of the exact stiffness matrix for a two-layer timoshenko beam element with partial interaction. Eng Struct, 33:298–307.
Q.-H. Nguyen, M. H. and Lai, V.-A. (2014). Force-based f.e. for large displacement inelastic analysis of two-layer timoshenko beams with interlayer slips. Finite Elem Anal Des, 85:1–10.
S.-F. Jiang, X. Z. and Zhou, D. (2014). Novel two-node linear composite beam element with both interface slip and shear deformation into consideration: formulation and validation. Int J Mech Sci, 85:110–119.
Sua, Y.-Y. and Gao, X.-L. (2014). Analytical model for adhesively bonded composite panel-flange joints based on the timoshenko beam theory. Compos Struct, 107:112–118
Timoshenko S. P, G. J. M. (1961.). Theory of Elastic Stability. McGraw-Hill Book Company, 2 ed..
Z. Liu, Y. Huang, Z. Y. S. B. and Valvo, P. (2014). A general solution for the twodimensional stress analysis of balanced and unbalanced adhesively bonded joints. Int J Adhes Adhes, 54:112–123.
Zona, A. and Ranzi, G. (2011). Finite element models for nonlinear analysis of steel–concrete composite beams with partial interaction in combined bending and shear. Finite Elem Anal Des, 47:98–118.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 146
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Ingeniería Civil
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77476/4/71776289.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/77476/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/77476/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77476/7/71776289.2020.pdf.jpg
bitstream.checksum.fl_str_mv 1a6be97d178cf6d2dc13c3b6f215d9e5
42fd4ad1e89814f5e4a476b409eb708c
6f3f13b02594d02ad110b3ad534cd5df
81d278087e14d31a2d63c20b68b4fd84
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089671113703424
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aristizabal-Ochoa, Jose Dario3d822d18-3e28-4438-9ade-1b1a140f45ec-1Areiza-Hurtado, Mauricio7ccc3c1b-6124-46f0-80d0-596e72f4da39Universidad Nacional de Colombia - Sede MedellínESTABILIDAD ESTRUCTURAL2020-05-05T20:55:41Z2020-05-05T20:55:41Z2020-02-01Areiza-2020https://repositorio.unal.edu.co/handle/unal/77476Este trabajo presenta un resumen de los resultados obtenidos de la investigación realizada durante los estudios de doctorado. Inicialmente la propuestra del trabajo de grado consistía en la obtención de la "Matriz de rigidez y vector de carga de una viga de Timoshenko de dos capas" (ver Capítulo 5), sin embargo se ha adjuntado a este documento otros capítulos que se encuentran intimamente relacionados y que fueron también fruto del trabajo de investigación. Los capítulos 1 y 2 presentan la formulación teórica y la verificación con ejemplos, respectivamente, de la matriz de rigidez y el vector de carga de una viga pretensada incluyendo los efectos de largo plazo. El capítulo 3 presenta el análisis de segundo orden de una viga columna sobre fundación elástica con deflección inicial y conexiones semirrigidas. Los capítulos 4, 5 y 6 presentan el análisis de una viga de Timoshenko de dos capas. En el capítulo 4 se presenta la formulación para un sólo elemento, en el capítulo 5 se presenta la derivación de la matriz de rigidez y se hace la verificación con aplicaciones al diseño de vigas mixtas de acero y concreto. Finalemnte en el capitulo 6 se usa la formulación desarrollada en el capítulo 5 para realizar el análisis de nudos adhesivados. Los capitulos 3 al 6 cuentan con el identificador único y permanente para las publicaciones electrónicas (DOI) en el encabezado de cada capítulo para una fácil referencia.Initially, the proposal of the degree work consisted of obtaining the "Stiffness matrix and loading vector of a two-layer Timoshenko beam" (see Chapter 5 and 6), however it has been attached to this document other chapters that are closely related and that were also the result of the research work of these years. Chapters 1 and 2 present the theoretical formulation and verification with examples, respectively, of the stiffness matrix and load vector of a prestressed beam including long-term effects. Chapter 3 presents the second order analysis of a column beam on elastic foundation with initial deflection and semi-rigid connections. Chapters 4, 5 and 6 present the analysis of a two-layer Tymoshenko beam. In chapter 4 the formulation for a single element is presented, in chapter 5 the bypass of the stiffness matrix is presented and verification is made with applications to the design of mixed steel and concrete beams. Finally in chapter 6 the formulation developed in chapter 5 is used to perform the analysis of adhesive joints. Chapters 3 through 6 have the unique and permanent Digital Object Identifier (DOI) in the heading of each chapter for easy reference.ColcienciasDoctorado146application/pdfeng620 - Ingeniería y operaciones afines::624 - Ingeniería civilStiffnes MatrixTwo layerTimoshenko beamStiffness matrixTwo-layer Timoshenko beamCoupled systemsLoading vectorSteel beamsStiffness matrix and loading vector of a two-layer Timoshenko composite beamMatriz de rigidez y vector de carga de una viga de Timoshenko de dos capas.Reporteinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_93fcTexthttp://purl.org/redcol/resource_type/ARTCASOMedellín - Minas - Doctorado en Ingeniería - Ingeniería CivilDepartamento de Ingeniería CivilUniversidad Nacional de Colombia - Sede MedellínA., L. and J., L. (2016). Non-linear buckling of elliptical curved beams. Int. J. Non. Linear. Mech., 82:132–143.Ansourian, P. (1981). Experiments on continuous composite beams. Proceedings Institute of Civil Engineers. part 2., 71:25–51.Arboleda-Monsalve, L. G., Z.-M. D. G. and Aristizabal-Ochoa, J. D. (2008). Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector. Journal of Sound and Vibration, 310:1057–1079Aristizabal-Ochoa, J. D. (1997). First- and second-order stiffness matrices and load vector of beam-columns with semirigid connections. ASCE J. Struct. Eng., 123:669–678.Aydo˘gan, M. (1995). Stiffness-matrix formulation of beams with shear effect on elastic foundation. J. Struct. Engrg., ASCE, 121:1265–1270.Aziz, K. A. (1986). Modelisation et etude experimentale de poutres mixtes acier-beton a connexion partielle ou espacee, doktorska disertacija. Institut National des Sciences Appliquees des Rennes.Bazzucchi F., M. A. and A., C. (2017). Interaction between snap-through and eulerian instability in shallow structures. Int. J. Non. Linear. Mech., 88:11–20.Chen J.and Hung, S. (2012). Exact snapping loads of a buckled beam under a midpoint force. Appl. Math. Model., 36:1776–1782.Collins, M. P. and Mitchell, D. (1997). Prestressed Concrete Structures. Prentice Hall College, ISBN 13: 9780136916352.Cosenza, E. (2001). Shear and normal stresses interaction in coupled structural systems. J Struct Eng, 127:84–88Ecsedi, I. and Baksa, A. (2016). Analytical solution for layered composite beams with partial shear interaction based on timoshenko beam theory. Eng Struct, 115:107–117.Faella, C., M. E. and Nigro, E. (2010). Steel–concrete composite beams in partial interaction: Closed-form ‘exact’ expression of the stiffness matrix and the vector of equivalent nodal forces. Engineering Structures, 32:2744–2754.Foraboschi, P. (2009). Analytical solution of two-layer beam taking into account nonlinear interlayer slip. Journal of Engineering Mechanics, 135:1129–1146.G. Ranzi, F. G. and Ansourian, P. (2006). General method of analysis for composite beams with longitudinal and transverse partial interaction. Comput Struct, 84:2373–2384.Gay, D. and Hoa., S. V. (2007). Composite Materials. Design and Applications. CRC Press, ISBN 13:978-1-4200-4519-Lezgy-Nazargah, M. (2014). An isogeometric approach for the analysis of composite steel–concrete beams. Thin Walled Struct, 84:406–415.LIN., T. Y. (1963). Load-balancing method for desingn and analysis of prestressed concrete structures. J. Am. Concr. institute., 60:719–742.Lin, T. Y. and Thornton, K. (1972). Secondary moment and moment redistribution in continuous prestressed concrete beams. PCI J., 18:8–20.P. Keo, Q.-H. Nguyen, H. S. and Hjiaj, M. (2016). Derivation of the exact stiffness matrix of shear-deformable multi-layered beam element in partial interaction. Finite Elem Anal Des, 112:40–49.Q.-H. Nguyen, E. M. and Hjiaj, M. (2011). Derivation of the exact stiffness matrix for a two-layer timoshenko beam element with partial interaction. Eng Struct, 33:298–307.Q.-H. Nguyen, M. H. and Lai, V.-A. (2014). Force-based f.e. for large displacement inelastic analysis of two-layer timoshenko beams with interlayer slips. Finite Elem Anal Des, 85:1–10.S.-F. Jiang, X. Z. and Zhou, D. (2014). Novel two-node linear composite beam element with both interface slip and shear deformation into consideration: formulation and validation. Int J Mech Sci, 85:110–119.Sua, Y.-Y. and Gao, X.-L. (2014). Analytical model for adhesively bonded composite panel-flange joints based on the timoshenko beam theory. Compos Struct, 107:112–118Timoshenko S. P, G. J. M. (1961.). Theory of Elastic Stability. McGraw-Hill Book Company, 2 ed..Z. Liu, Y. Huang, Z. Y. S. B. and Valvo, P. (2014). A general solution for the twodimensional stress analysis of balanced and unbalanced adhesively bonded joints. Int J Adhes Adhes, 54:112–123.Zona, A. and Ranzi, G. (2011). Finite element models for nonlinear analysis of steel–concrete composite beams with partial interaction in combined bending and shear. Finite Elem Anal Des, 47:98–118.ORIGINAL71776289.2020.pdf71776289.2020.pdfTesis de Doctorado en Ingeniería - Ingeniería Civilapplication/pdf6357343https://repositorio.unal.edu.co/bitstream/unal/77476/4/71776289.2020.pdf1a6be97d178cf6d2dc13c3b6f215d9e5MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/77476/6/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD56LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77476/5/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD55THUMBNAIL71776289.2020.pdf.jpg71776289.2020.pdf.jpgGenerated Thumbnailimage/jpeg6023https://repositorio.unal.edu.co/bitstream/unal/77476/7/71776289.2020.pdf.jpg81d278087e14d31a2d63c20b68b4fd84MD57unal/77476oai:repositorio.unal.edu.co:unal/774762024-07-19 23:32:56.889Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==