Modelo basado en técnicas de machine learning para la clasificación de virus de ARN
ilustraciones, diagramas
- Autores:
-
Colmenares Celis, Carolina
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84608
- Palabra clave:
- Transmisión de enfermedad infecciosa
ARN viral
Zoonosis virales
Disease Transmission, Infectious
Viral Zoonoses
RNA, Viral
Virus ARN
Metagenómica
Metavirómica
Aprendizaje de máquina
Estructuras secundarias
Clasificación
RNA viruses
Metagenomics
Metaviromics
Machine learning
Secondary structures
Classification
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_0a71cef042da045f3aad315d40ea99ca |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84608 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo basado en técnicas de machine learning para la clasificación de virus de ARN |
dc.title.translated.eng.fl_str_mv |
Model based on machine learning techniques for the classification of RNA viruses |
title |
Modelo basado en técnicas de machine learning para la clasificación de virus de ARN |
spellingShingle |
Modelo basado en técnicas de machine learning para la clasificación de virus de ARN Transmisión de enfermedad infecciosa ARN viral Zoonosis virales Disease Transmission, Infectious Viral Zoonoses RNA, Viral Virus ARN Metagenómica Metavirómica Aprendizaje de máquina Estructuras secundarias Clasificación RNA viruses Metagenomics Metaviromics Machine learning Secondary structures Classification |
title_short |
Modelo basado en técnicas de machine learning para la clasificación de virus de ARN |
title_full |
Modelo basado en técnicas de machine learning para la clasificación de virus de ARN |
title_fullStr |
Modelo basado en técnicas de machine learning para la clasificación de virus de ARN |
title_full_unstemmed |
Modelo basado en técnicas de machine learning para la clasificación de virus de ARN |
title_sort |
Modelo basado en técnicas de machine learning para la clasificación de virus de ARN |
dc.creator.fl_str_mv |
Colmenares Celis, Carolina |
dc.contributor.advisor.none.fl_str_mv |
Bermúdez Santana, Clara Isabel Niño Vásquez, Luis Fernando |
dc.contributor.author.none.fl_str_mv |
Colmenares Celis, Carolina |
dc.contributor.researchgroup.spa.fl_str_mv |
Rnomica Teórica y Computacional laboratorio de Investigación en Sistemas Inteligentes Lisi |
dc.subject.decs.spa.fl_str_mv |
Transmisión de enfermedad infecciosa ARN viral Zoonosis virales |
topic |
Transmisión de enfermedad infecciosa ARN viral Zoonosis virales Disease Transmission, Infectious Viral Zoonoses RNA, Viral Virus ARN Metagenómica Metavirómica Aprendizaje de máquina Estructuras secundarias Clasificación RNA viruses Metagenomics Metaviromics Machine learning Secondary structures Classification |
dc.subject.decs.eng.fl_str_mv |
Disease Transmission, Infectious Viral Zoonoses |
dc.subject.lemb.spa.fl_str_mv |
RNA, Viral |
dc.subject.proposal.spa.fl_str_mv |
Virus ARN Metagenómica Metavirómica Aprendizaje de máquina Estructuras secundarias Clasificación |
dc.subject.proposal.eng.fl_str_mv |
RNA viruses Metagenomics Metaviromics Machine learning Secondary structures Classification |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-29T14:07:59Z |
dc.date.available.none.fl_str_mv |
2023-08-29T14:07:59Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84608 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84608 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Marz M, Beerenwinkel N, Drosten C, et al. (2014) Challenges in RNA virus bioinformatics.30(13):1793-1799. doi:10.1093/bioinformatics/btu105 Villa, T.G., Abril, A.G., Sanchez, S. et al. Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Arch Microbiol 203, 443–464 (2021). https://doi.org/10.1007/s00203-020-02040-5 Cobo Paz, V. (2020). Protocolo computacional para la asignaci´on taxon´omica de virus en metadatos gen´omicos. Universidad Nacional de Colombia Mahmoudabadi, G., and Phillips, R. (2018). A comprehensive and quantitative exploration of thousands of viral genomes. eLife, 7, e31955. https://doi.org/10.7554/eLife.31955. Struck D, Lawyer G, Ternes AM, Schmit JC, Bercoff DP (2014). Comet: adaptive context-based modeling for ultrafast hiv-1 subtype identification. Nucleic Acids Res.42(18):e144. Wagner, Edward K.; Hewlett, Martinez J. (1999). Basic virology. Malden, MA: Blackwell Science, Inc. p. 249. ISBN 0-632-04299-0. Patton JT (editor). (2008). Segmented Double-stranded RNA Viruses: Structure and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-21-9. Merriam-Webster. (n.d.). Orthomyxoviridae. In Merriam-Webster.com medical dictionary. Retrieved January 19, 2023, from https://www.merriam-webster.com/medical/Orthomyxoviridae. Merriam-Webster. (n.d.). Retroviridae. In Merriam-Webster.com medical dictionary. Retrieved January 19, 2023, from https://www.merriam-webster.com/medical/Retroviridae. Arteriviridae - ICTV. (s. f.). Retrieved January 19, 2023, from https://ictv.global/report_9th/RNApos/Nidovirales/Arteriviridae. Matthijnssens et al., (2022) ICTV Virus Taxonomy Profile: Sedoreoviridae, Journal of General Virology (2022) 103:001782. Matthijnssens et al., (2022) ICTV Virus Taxonomy Profile: Spinareoviridae, Journal of General Virology (2022) 103:001781. Jabeen A., Ahmad N., Raza K. (2018) Machine Learning-Based Stateof-the-Art Methods for the Classification of RNA-Seq Data. In: Dey N., Ashour A., Borra S. (eds) Classification in BioApps. Lecture Notes in Computational Vision and Biomechanics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-65981-76. Remita MA, Halioui A, Malick Diouara AA, Daigle B, Kiani G, Diallo AB. (2017 Apr 11) A machine learning approach for viral genome classification. BMC Bioinformatics. 18(1):208. doi:10.1186/s12859-017-1602-3 Fontana, W., Stadler, P. F., Bornberg-Bauer, E. G., Griesmacher, T., Hofacker, I. L., Tacker, M., Tarazona, P., Weinberger, E. D., & Schuster, P. (1993). RNA folding and combinatory landscapes. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 47(3), 2083–2099. https://doi.org/10.1103/ physreve.47.2083. Shapiro B. A. (1988). An algorithm for comparing multiple RNA secondary structures. Computer applications in the biosciences: CABIOS, 4(3), 387–393. https: //doi.org/10.1093/bioinformatics/4.3.387. Lorenz, Ronny and Bernhart, Stephan H. and H¨oner zu Siederdissen, Christian and Tafer, Hakim and Flamm, Christoph and Stadler, Peter F. and Hofacker, Ivo L. ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6:1 26, 2011, doi:10.1186/1748- 7188-6-26 Sikkema, R. S., y Koopmans, M. (2021). Preparing for Emerging Zoonotic Viruses. Encyclopedia of Virology, 256–266. https://doi.org/10.1016/ B978-0-12-814515-9.00150-8. Allen T. Global hotspots and correlates of emerging zoonotic diseases. Nature Communications. 2017;8(1) Jones K.E. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–993. S. Shadab, M. T. Alam Khan, N. A. Neezi, S. Adilina, and S. Shatabda, “DeepDBP: deep neural networks for identification of DNA-binding proteins,” Informatics in Medicine Unlocked, vol. 19, article 100318, 2020. Gunasekaran, H., Ramalakshmi, K., Rex Macedo Arokiaraj, A., Deepa Kanmani, S., Venkatesan, C., y Suresh Gnana Dhas, C. (2021). Analysis of DNA Sequence Classification Using CNN and Hybrid Models. Computational and mathematical methods in medicine, 2021, 1835056. https://doi.org/10.1155/2021/1835056. Fu, L., Niu, B., Zhu, Z., Wu, S., y Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England), 28(23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565. Li, W., y Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England), 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158. El Naqa, I., Murphy, M.J. (2015). What Is Machine Learning?. In: El Naqa, I., Li, R., Murphy, M. (eds) Machine Learning in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-18305-3_1. Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics30(22): 3276-3278. http://dx.doi.org/10.1093/ bioinformatics/bt. Pedro Larrañaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, I˜naki Inza, Jose A. Lozano, Ruben Armananzas, Guzman Santafe, Aritz Perez, Victor Robles, Machine learning in bioinformatics, Briefings in Bioinformatics, Volume 7, Issue 1, March 2006, Pages 86–112, https://doi.org/10.1093/bib/bbk007. Shastry, K.A., Sanjay, H.A. (2020). Machine Learning for Bioinformatics. In: Srinivasa, K., Siddesh, G., Manisekhar, S. (eds) Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/ 978-981-15-2445-5_3. Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. 1959;3(3):210–229. Qifang Bi, Katherine E Goodman, Joshua Kaminsky, Justin Lessler, What is Machine Learning? A Primer for the Epidemiologist, American Journal of Epidemiology, Volume 188, Issue 12, December 2019, Pages 2222–2239, https://doi.org/10.1093/ aje/kwz189. Madhu Chetty, Jennifer Hallinan, Gonzalo A. Ruz, Anil Wipat, Computational intelligence and machine learning in bioinformatics and computational biology, Biosystems, Volume 222, 2022, 104792, ISSN 0303-2647, https://doi.org/10.1016/j. biosystems.2022.104792. Hennig C, Meila M, Murtagh F, et al. Handbook of Cluster Analysis. 1st ed. Boca Raton, FL: CRC Press; 2015:34. Bishop CM. Pattern Recognition and Machine Learning. 1st ed. New York, NY: Springer Publishing Compnay; 2006:424. Bellett, A. J. D. (1967). Preliminary classification of viruses based on quantitative comparisons of viral nucleic acids. Journal of Virology, 1(2), 245-259. LWOFF, A., & TOURNIER, P. (1971). Remarks on the Classification of Viruses. Comparative Virology, 1–42. https://doi.org/10.1016/B978-0-12-470260-8. 50006-3. Libretexts. (2021, 3 enero). 9.8A: Positive-Strand RNA Viruses of Animals. Biology LibreTexts. https://bio.libretexts.org/Bookshelves/Microbiology/ Microbiology_(Boundless)/09:_Viruses. Patton JT, ed. (2008). Segmented Double-stranded RNA Viruses: Structure and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-21-9. Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral mutation rates. Journal of virology, 84(19), 9733-9748. Klein DW, Prescott LM, Harley J (1993). Microbiology. Dubuque, Iowa: Wm. C. Brown. ISBN 978-0-697-01372-9. Domingo E. (1997). Rapid evolution of viral RNA genomes. The Journal of nutrition, 127(5 Suppl), 958S–961S. https://doi.org/10.1093/jn/127.5.958S. RNA: The Versatile Molecule. (s. f.). https://learn.genetics.utah.edu/ content/basics/rna/ Molnar, C. (2015, 14 mayo). 9.1 The Structure of DNA – Concepts of Biology – 1st Canadian Edition. Pressbooks. https://opentextbc.ca/biology/chapter/ 9-1-the-structure-of-dna/ Berg, J. M., Tymoczko, J. L., Stryer, L., & National Center for Biotechnology Information (U.S.). (2002). Biochemistry, Fifth Edition. W. H. Freeman. Daros, J. A., Elena, S. F., & Flores, R. (2006). Viroids: an Ariadne’s thread into the RNA labyrinth. EMBO reports, 7(6), 593–598. https://doi.org/10.1038/sj.embor. 7400706. Payne S. (2017). Introduction to RNA Viruses. Viruses, 97–105. https://doi.org/ 10.1016/B978-0-12-803109-4.00010-6. Wang D, Farhana A. Biochemistry, RNA Structure. [Updated 2022 May 8]. In: Stat- Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558999/. Wooley, J. C., Godzik, A., & Friedberg, I. (2010). A primer on metagenomics. PLoS computational biology, 6(2), e1000667. https://doi.org/10.1371/journal. pcbi.1000667. Paez-Espino, D., Eloe-Fadrosh, E. A., Pavlopoulos, G. A., Thomas, A. D., Huntemann, M., Mikhailova, N., Rubin, E., Ivanova, N. N., & Kyrpides, N. C. (2016). Uncovering Earth’s virome. Nature, 536(7617), 425–430. https://doi.org/10.1038/ nature19094. Metagenomics. (s. f.). En Metagenomics. Recuperado 24 de febrero de 2023, de https://en.wikipedia.org/wiki/Metagenomics#Viruses Staden R. (1979). A strategy of DNA sequencing employing computer programs. Nucleic acids research, 6(7), 2601–2610. https://doi.org/10.1093/nar/6.7.2601. Edwards, R., Rohwer, F. Viral metagenomics. Nat Rev Microbiol 3, 504–510 (2005). https://doi.org/10.1038/nrmicro1163. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV. New dimensions of the virus world discovered through metagenomics. Trends Microbiol. 2010 Jan;18(1):11- 9. doi: 10.1016/j.tim.2009.11.003. Epub 2009 Nov 26. PMID: 19942437; PMCID: PMC3293453. Delwart, E. L. (2007). Viral metagenomics. Reviews in medical virology, 17(2), 115- 131. Sommers, P., Chatterjee, A., Varsani, A., & Trubl, G. (2021). Integrating Viral Metagenomics into an Ecological Framework. Annual review of virology, 8(1), 133–158. https://doi.org/10.1146/annurev-virology-010421-053015. Grasis J. A. (2018). Host-Associated Bacteriophage Isolation and Preparation for Viral Metagenomics. Methods in molecular biology (Clifton, N.J.), 1746, 1–25. https: //doi.org/10.1007/978-1-4939-7683-6_1. Alavandi SV, Poornima M. Viral metagenomics: a tool for virus discovery and diversity in aquaculture. Indian J Virol. 2012 Sep;23(2):88-98. doi: 10.1007/s13337-012- 0075-2. Epub 2012 Aug 14. PMID: 23997432; PMCID: PMC3550753. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, S¨oding J, Thompson JD, Higgins DG. Fast, scalable generation of highquality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011 Oct 11;7:539. doi: 10.1038/msb.2011.75. PMID: 21988835. Sievers, F. and Higgins, D.G. (2018), Clustal Omega for making accurate alignments of many protein sequences. Protein Science, 27: 135-145. https://doi.org/10.1002/ pro.3290. Hofacker, Ivo & Stadler, Peter. (2006). RNA Secondary Structures. 10.1002/3527600906.mcb.200500009. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the Gold Book). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/ 10.1351/goldbook. Jones, C. P., & Ferr´e-D’Amar´e, A. R. (2015). RNA quaternary structure and global symmetry. Trends in biochemical sciences, 40(4), 211–220. https://doi.org/10.1016/ j.tibs.2015.02.004. Xia, T., SantaLucia, J., Jr, Burkard, M. E., Kierzek, R., Schroeder, S. J., Jiao, X., Cox, C., & Turner, D. H. (1998). Thermodynamic parameters for an expanded nearestneighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry, 37(42), 14719–14735. https://doi.org/10.1021/bi9809425. Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., & Turner, D. H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences, 101(19), 7287-7292. Zuker M. (1989). On finding all suboptimal foldings of an RNA molecule. Science (New York, N.Y.), 244(4900), 48–52. https://doi.org/10.1126/science.2468181. Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat Commun 12, 941 (2021). https: //doi.org/10.1038/s41467-021-21194-4. Gruber, A. R., Findeiß, S., Washietl, S., Hofacker, I. L., & Stadler, P. F. (2010). RNAz 2.0: improved noncoding RNA detection. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 69–79. Washietl, S., Hofacker, I. L., & Stadler, P. F. (2005). Fast and reliable prediction of noncoding RNAs. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2454–2459. https://doi.org/10.1073/pnas.0409169102. Roux, S., Enault, F., Hurwitz, B. L., & Sullivan, M. B. (2015). VirSorter: mining viral signal from microbial genomic data. PeerJ, 3, e985. https://doi.org/10.7717/ peerj.985. Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microbial informatics and experimentation, 2(1), 3. https://doi. org/10.1186/2042-5783-2-3. Hofacker, I. L., Fekete, M., & Stadler, P. F. (2002). Secondary structure prediction for aligned RNA sequences. Journal of molecular biology, 319(5), 1059–1066. https: //doi.org/10.1016/S0022-2836(02)00308-X. Washietl, S., & Hofacker, I. L. (2004). Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. Journal of molecular biology, 342(1), 19–30. https://doi.org/10.1016/j.jmb.2004.07.018. Chiu, D. K., & Kolodziejczak, T. (1991). Inferring consensus structure from nucleic acid sequences. Computer applications in the biosciences : CABIOS, 7(3), 347–352. https://doi.org/10.1093/bioinformatics/7.3.347. Gutell, R. R., & Woese, C. R. (1990). Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs. Proceedings of the National Academy of Sciences of the United States of America, 87(2), 663–667. https://doi. org/10.1073/pnas.87.2.663. Gutell, R. R., Power, A., Hertz, G. Z., Putz, E. J., & Stormo, G. D. (1992). Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic acids research, 20(21), 5785–5795.https://doi.org/10.1093/nar/20.21.5785. Shang, L., Xu, W., Ozer, S., & Gutell, R. R. (2012). Structural constraints identified with covariation analysis in ribosomal RNA. PLoS One, 7(6), e39383. Waggener, Bill (1995). Pulse Code Modulation Techniques. Springer. p. 206. ISBN 9780442014360. I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), ”Fast Folding and Comparison of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188 Zuker, M., & Stiegler, P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic acids research, 9(1), 133–148. https://doi.org/10.1093/nar/9.1.133. Hofacker I. L. (2003). Vienna RNA secondary structure server. Nucleic acids research, 31(13), 3429–3431. https://doi.org/10.1093/nar/gkg599. Geron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and Tensor- Flow. O’Reilly Media, Inc. Sen, P.C., Hajra, M., Ghosh, M. (2020). Supervised Classification Algorithms in Machine Learning: A Survey and Review. In: Mandal, J., Bhattacharya, D. (eds) Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-7403-6_ 11. Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 160(1), 3-24. Kotsiantis, S. (2011). Feature selection for machine learning classification problems: a recent overview. Artificial Intelligence Review, 42(1), 157-176. Viral Genomes in Nature. (2021, January 3). Boundless. https://bio.libretexts. org/@go/page/9330. Vujovic, Z. (2021). Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications, 12(6), 599-606. A short Tutorial on RNA Bioinformatics. The ViennaRNA Package and related Programs. (s. f.). Recuperado 10 de abril de 2023, de https://algosb2019.sciencesconf. org/data/RNAtutorial.pdf. McQuarrie, A. (2000). Statistical Mechanics. Sausalito, CA: University Science Books. Raschka, S. (2017). Machine Learning. University of Wisconsin–Madison. Department of Statistics. Recuperado 11 de abril de 2023, de https://sebastianraschka. com/pdf/lecture-notes/stat479fs18/02_knn_notes.pdf. Wikipedia contributors. (2023, March 31). K-nearest neighbors algorithm. In Wikipedia, The Free Encyclopedia. Retrieved 16:44, April 11, 2023, from https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_ algorithm&oldid=1147498657. Landau, S., Leese, M., Stahl, D., & Everitt, B. S. (2011). Cluster analysis. John Wiley & Sons. 1.4. Support Vector Machines. (s. f.). scikit-learn. https://scikit-learn.org/ stable/modules/svm.html Wikipedia contributors. (2023, March 12). Support vector machine. In Wikipedia, The Free Encyclopedia. Retrieved 22:16, April 11, 2023, from https://en.wikipedia. org/w/index.php?title=Support_vector_machine&oldid=1144271534. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152). Song, Y. Y., & Lu, Y. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130–135. https://doi.org/10. 11919/j.issn.1002-0829.215044. Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2008). The Elements of Statistical Learning (2nd ed.). Springer. ISBN 0-387-95284-5. Haykin, S. S. (2009). Neural networks and learning machines. Upper Saddle River, NJ: Pearson Education. Ojha, V. K., Abraham, A., & Snasel, V. (2017). Metaheuristic design of feedforward neural networks: A review of two decades of research. Engineering Applications of Artificial Intelligence, 60, 97-116. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. Wikipedia contributors. (2023, March 2). Suffix tree. In Wikipedia, The Free Encyclopedia. Retrieved April 27 2023, from https://en.wikipedia.org/w/index.php? title=Suffix_tree&oldid=1142499280. Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14(3), 249- 260. Wikipedia contributors. (2023, March 22). Hidden Markov model. In Wikipedia, The Free Encyclopedia. Retrieved April 28 2023, from https://en.wikipedia.org/ w/index.php?title=Hidden_Markov_model&oldid=1146111455. Blunsom, P. (2004). Hidden markov models. Lecture notes, August, 15(18-19), 48. Yoon B. J. (2009). Hidden Markov Models and their Applications in Biological Sequence Analysis. Current genomics, 10(6), 402–415. https://doi.org/10.2174/ 138920209789177575. M. Przytycka, & Zheng, J. (2003). Encyclopedia of Life Sciences: Hidden Markov Models (TM in Nature Encyclopedia of the Human Genome Nature Publishing Group, Ed.). NCBI. Recuperado 28 de abril de 2023, de https://www.ncbi.nlm.nih.gov/ CBBresearch/Przytycka/index.cgi#publications. Nelwamondo, F. V., Marwala, T., & Mahola, U. (2006). Early classifications of bearing faults using hidden Markov models, Gaussian mixture models, mel-frequency cepstral coefficients and fractals. International Journal of Innovative Computing, Information and Control, 2(6), 1281-1299. Ryan, M. S., & Nudd, G. R. (1993). The viterbi algorithm. Muller, M. (2015). Fundamentals of music processing: Audio, analysis, algorithms, applications (Vol. 5, Pages 237-301). Cham: Springer. Ian Goodfellow and Yoshua Bengio and Aaron Courville (2016). Deep Learning. MIT Press. p. 326. Wikipedia contributors. (2023, April 30). Convolutional neural network. In Wikipedia, The Free Encyclopedia. Retrieved April 30, 2023, from https://en.wikipedia. org/w/index.php?title=Convolutional_neural_network&oldid=1152491486. Mishra, M. (2021, 15 diciembre). Convolutional Neural Networks, Explained - Towards Data Science. Medium. https://towardsdatascience.com/ convolutional-neural-networks-explained-9cc5188c4939. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: continual prediction with LSTM. Neural computation, 12(10), 2451–2471. https://doi.org/10. 1162/089976600300015015. Hochreiter, S., & Schmidhuber, J. (1996). LSTM can solve hard long time lag problems. Advances in neural information processing systems, 9. Brownlee, J. (2019). CNN Long Short-Term Memory Networks. https:// machinelearningmastery.com/cnn-long-short-term-memory-networks/. Zill, D., & Shanahan, P. (2009). A First Course in Complex Analysis with Applications. Jones & Bartlett Learning. Lefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G., & Smith, D. B. (2018). Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic acids research, 46(D1), D708-D717. King, A. M., Adams, M. J., Carstens, E. B., & Lefkowitz, E. J. (2012). Virus taxonomy. Ninth report of the International Committee on Taxonomy of Viruses, 9. Simmonds, P. (2015). Methods for virus classification and the challenge of incorporating metagenomic sequence data. Journal of General Virology, 96(6), 1193-1206. Forterre, P. (2010). Giant viruses: conflicts in revisiting the virus concept. Intervirology, 53(5), 362-378. Lwoff, A. (1959). Factors influencing the evolution of viral diseases at the cellular level and in the organism. Bacteriological reviews, 23(3), 109-124. Yamada, T. (2011). Giant viruses in the environment: their origins and evolution. Current opinion in virology, 1(1), 58-62. Doolittle, R. F., & Feng, D. F. (1992). Tracing the origin of retroviruses. Genetic Diversity of RNA Viruses, 195-211. Temin, H. M. (1970). Malignant transformation of cells by viruses. Perspectives in biology and medicine, 14(1), 11-26. Illangasekare, M., Sanchez, G., Nickles, T., & Yarus, M. (1995). Aminoacyl-RNA synthesis catalyzed by an RNA. Science, 267(5198), 643-647. Gilbert, W. (1986). Origin of life: The RNA world. nature, 319(6055), 618-618. Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics (Oxford, England), 31(10), 1674–1676. https: //doi.org/10.1093/bioinformatics/btv033. Li, D., Luo, R., Liu, C. M., Leung, C. M., Ting, H. F., Sadakane, K., Yamashita, H., & Lam, T. W. (2016). MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods (San Diego, Calif.), 102, 3–11. https://doi.org/10.1016/j.ymeth.2016.02.020. Xiong, J. (2006). Protein Motifs and Domain Prediction. In Essential Bioinformatics (pp. 85-94). Cambridge: Cambridge UniversityPress.doi:10.1017/ CBO9780511806087.008. Iqbal, T., Elahi, A., Wijns, W., & Shahzad, A. (2022). Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection. Frontiers in medical technology, 4, 782756. https://doi.org/10.3389/fmedt.2022.782756. Mock, F., Kretschmer, F., Kriese, A., B¨ocker, S., & Marz, M. (2022). Taxonomic classification of DNA sequences beyond sequence similarity using deep neural networks. Proceedings of the National Academy of Sciences, 119(35), e2122636119. Shang, J., & Sun, Y. (2021). CHEER: HierarCHical taxonomic classification for viral mEtagEnomic data via deep leaRning. Methods (San Diego, Calif.), 189, 95–103. https://doi.org/10.1016/j.ymeth.2020.05.018. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint ar- Xiv:1810.04805. Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome research, 17(3), 377-386. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26. Zerbino, D. R., & Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome research, 18(5), 821–829. https://doi.org/ 10.1101/gr.074492.107. Compeau, P. E., Pevzner, P. A., & Tesler, G. (2011). How to apply de Bruijn graphs to genome assembly. Nature biotechnology, 29(11), 987–991. https://doi.org/10. 1038/nbt.2023. Martin, J.,Wang, Z. (2011) Next-generation transcriptome assembly. Nat Rev Genet 12, 671–682. https://doi.org/10.1038/nrg3068. Damelin, S. B., & Miller Jr, W. (2012). The mathematics of signal processing (No. 48). Cambridge University Press. Wikipedia contributors (2023) Convolution. In Wikipedia, The Free Encyclopedia. Retrieved May 25, 2023, from https://en.wikipedia.org/w/index.php?title= Convolution&oldid=1155936911. Budach, S., & Marsico, A. (2018). pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks. Bioinformatics (Oxford, England), 34(17), 3035–3037. https://doi.org/10.1093/ bioinformatics/bty222. Gelderblom, H. R. (1996). Structure and Classification of Viruses. In S. Baron (Ed.), Medical Microbiology. (4th ed.). University of Texas Medical Branch at Galveston. Louten J. (2016). Virus Structure and Classification. Essential Human Virology, 19–29. https://doi.org/10.1016/B978-0-12-800947-5.00002-8. Ajami, N. J., Wong, M. C., Ross, M. C., Lloyd, R. E., & Petrosino, J. F. (2018). Maximal viral information recovery from sequence data using VirMAP. Nature communications, 9(1), 3205. https://doi.org/10.1038/s41467-018-05658-8. Lin, J., Kramna, L., Autio, R., Hy¨oty, H., Nykter, M., & Cinek, O. (2017). Vipie: web pipeline for parallel characterization of viral populations from multiple NGS samples. BMC genomics, 18(1), 378. https://doi.org/10.1186/s12864-017-3721-7. Lin, H. H., & Liao, Y. C. (2017). drVM: a new tool for efficient genome assembly of known eukaryotic viruses from metagenomes. GigaScience, 6(2), 1–10. https://doi. org/10.1093/gigascience/gix003. Rampelli, S., Soverini, M., Turroni, S., Quercia, S., Biagi, E., Brigidi, P., & Candela, M. (2016). ViromeScan: a new tool for metagenomic viral community profiling. BMC genomics, 17, 165. https://doi.org/10.1186/s12864-016-2446-3. Segata, N.,Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., & Huttenhower, C. (2012). Metagenomic microbial community profiling using unique clade-specific marker genes. Nature methods, 9(8), 811–814. https://doi.org/10.1038/nmeth.2066. Tithi, S. S., Aylward, F. O., Jensen, R. V., & Zhang, L. (2018). FastViromeExplorer: a pipeline for virus and phage identification and abundance profiling in metagenomics data. PeerJ, 6, e4227. https://doi.org/10.7717/peerj.4227. Yamashita, A., Sekizuka, T., & Kuroda, M. (2016). VirusTAP: Viral Genome- Targeted Assembly Pipeline. Frontiers in microbiology, 7, 32. https://doi.org/10. 3389/fmicb.2016.00032. Zhao, G., Wu, G., Lim, E. S., Droit, L., Krishnamurthy, S., Barouch, D. H., Virgin, H. W., & Wang, D. (2017). VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology, 503, 21–30. https://doi.org/10.1016/j. virol.2017.01.005. Menzel, P., Ng, K. L., & Krogh, A. (2016). Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature communications, 7, 11257. https: //doi.org/10.1038/ncomms11257. Wood, D. E., & Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 15(3), R46. https://doi.org/ 10.1186/gb-2014-15-3-r46. Fiers, Walter & Contreras, Roland & Duerinck, Fred & Haegeman, Guy & Iserentant, Dirk & Merregaert, Joseph & Jou, Willy & Molemans, Francis & Raeymaekers, Alex & Berghe, A & Volckaert, Guido & Ysebaert, Marc. (1976). Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature. 260. 500-7. 10.1038/260500a0. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, C. A., Hutchison, C. A., Slocombe, P. M., & Smith, M. (1977). Nucleotide sequence of bacteriophage phi X174 DNA. Nature, 265(5596), 687–695. https://doi.org/10.1038/ 265687a0. Cobbin, J. C., Charon, J., Harvey, E., Holmes, E. C., & Mahar, J. E. (2021). Current challenges to virus discovery by meta-transcriptomics. Current Opinion in Virology, 51, 48-55. Bashiardes, S., Zilberman-Schapira, G., & Elinav, E. (2016). Use of Metatranscriptomics in Microbiome Research. Bioinformatics and biology insights, 10, 19–25. https://doi.org/10.4137/BBI.S34610. Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., & Narasimhan, G. (2016). Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis. Evolutionary bioinformatics online, 12(Suppl 1), 5–16. https://doi.org/10.4137/EBO.S36436. Kelly, D., Yang, L., & Pei, Z. (2017). A review of the oesophageal microbiome in health and disease. Methods in microbiology, 44, 19-35. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
114 páginos |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Bioinformática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84608/4/1020808077.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84608/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/84608/5/1020808077.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
3b3f4f66744d9cd102bd27b1e89964b2 eb34b1cf90b7e1103fc9dfd26be24b4a b3316e619df562868fdb783a03a92e94 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089600925171712 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bermúdez Santana, Clara Isabel4640436fa6ecd6a7d3ab0cad7b367eaeNiño Vásquez, Luis Fernandobc784b82735e16fe53653c3f5c8f3bbeColmenares Celis, Carolina4205c0dd28645d4e6d82371d4b52e857Rnomica Teórica y Computacionallaboratorio de Investigación en Sistemas Inteligentes Lisi2023-08-29T14:07:59Z2023-08-29T14:07:59Z2023https://repositorio.unal.edu.co/handle/unal/84608Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLos virus son las entidades biológicas más abundantes de la Tierra, pero detectarlos, aislarlos y clasificarlos ha sido todo un reto para la ciencia. Los virus de ARN patógenos causan numerosas muertes humanas, especialmente los implicados en la transmisión de enfermedades zoonóticas, lo que conduce a emergencias víricas y pandemias globales como la asociada al SARS-CoV-2. En este estudio, se explora y describen representaciones teóricas como la de árbol extendido, HIT y árbol de grano grueso para virus de ARN, basados en niveles de secuencia y estructura. Estas representaciones se utilizaron para determinar cuál de ellas demuestra un mejor potencial como entradas para un modelo de clasificación basado en técnicas de aprendizaje de máquina. Para el diseño del modelo, se investigaron algoritmos de perceptrón multicapa, árboles de sufijos, modelos ocultos de Markov (HMM) y redes neuronales convolucionales con memoria de corto y largo plazo (CNN-LSTM). La aplicación de estos algoritmos se llevó a cabo utilizando dos conjuntos de datos. Los datos de entrenamiento consistieron en secuencias de familias de virus ARN, incluyendo Orthomyxoviridae, Sedoreoviridae, Spinareoviridae, Retroviridae y Arteriviridae, obtenidas de la base de datos del Centro Nacional para la Información Biotecnológica (NCBI). Los datos de prueba están comprendidos de metaviromas recolectados durante la "Expedición Biológica en Ecosistemas Representativos de Colombia: Bosque húmedo tropical de la Sierra Nevada de Santa Marta", un proyecto financiado por Colciencias en colaboración con el grupo de investigación teórica y computacional RNomica de la Universidad Nacional de Colombia. Ambos conjuntos de datos se transformaron en las representaciones estructurales mencionadas utilizando el paquete ViennaRNA. La representación HIT mostró las mejores características para la extracción, y los modelos basados en HMMs y CNN-LSTM demostraron un rendimiento superior y potencial para clasificar metagenomas de virus ARN. (Texto tomado de la fuente)Viruses are the most abundant biological entities on Earth, but detecting, isolating, and classifying them has posed a significant challenge for science. Pathogenic RNA viruses cause numerous human deaths, especially those involved in the transmission of zoonotic diseases, leading to viral emergencies and global pandemics like the one associated with SARS-CoV-2. In this study, theoretical frameworks such as extended tree, HIT, and coarse-grained tree are explored and described for RNA viruses, based on levels of sequence and structure. These representations were used to determine which of them demonstrates better potential as inputs for a classification model based on machine learning techniques. For model design, algorithms including multilayer perceptrons, suffix trees, hidden Markov models (HMMs), and convolutional neural networks with short and long-term memory (CNN-LSTM) were investigated. The application of these algorithms was carried out using two datasets. The training data consisted of sequences from families of RNA viruses, including Orthomyxoviridae, Sedoreoviridae, Spinareoviridae, Retroviridae, and Arteriviridae, obtained from the National Center for Biotechnology Information (NCBI) database. The test data comprised metaviromes collected during the "Biological Expedition in Representative Ecosystems of Colombia: Tropical Rainforest of the Sierra Nevada de Santa Marta," a project funded by Colciencias in collaboration with the theoretical and computational research group RNomica at the National University of Colombia. Both datasets were transformed into the mentioned structural representations using the ViennaRNA package. The HIT representation exhibited the most favorable features for extraction, and models based on HMMs and CNN-LSTM demonstrated superior performance and potential for classifying RNA virus metagenomes.MaestríaTecnologías computacionales en Bioinformática114 páginosapplication/pdfspaModelo basado en técnicas de machine learning para la clasificación de virus de ARNModel based on machine learning techniques for the classification of RNA virusesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ingeniería - Maestría en BioinformáticaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáMarz M, Beerenwinkel N, Drosten C, et al. (2014) Challenges in RNA virus bioinformatics.30(13):1793-1799. doi:10.1093/bioinformatics/btu105Villa, T.G., Abril, A.G., Sanchez, S. et al. Animal and human RNA viruses: genetic variability and ability to overcome vaccines. Arch Microbiol 203, 443–464 (2021). https://doi.org/10.1007/s00203-020-02040-5Cobo Paz, V. (2020). Protocolo computacional para la asignaci´on taxon´omica de virus en metadatos gen´omicos. Universidad Nacional de ColombiaMahmoudabadi, G., and Phillips, R. (2018). A comprehensive and quantitative exploration of thousands of viral genomes. eLife, 7, e31955. https://doi.org/10.7554/eLife.31955.Struck D, Lawyer G, Ternes AM, Schmit JC, Bercoff DP (2014). Comet: adaptive context-based modeling for ultrafast hiv-1 subtype identification. Nucleic Acids Res.42(18):e144.Wagner, Edward K.; Hewlett, Martinez J. (1999). Basic virology. Malden, MA: Blackwell Science, Inc. p. 249. ISBN 0-632-04299-0.Patton JT (editor). (2008). Segmented Double-stranded RNA Viruses: Structure and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-21-9.Merriam-Webster. (n.d.). Orthomyxoviridae. In Merriam-Webster.com medical dictionary. Retrieved January 19, 2023, from https://www.merriam-webster.com/medical/Orthomyxoviridae.Merriam-Webster. (n.d.). Retroviridae. In Merriam-Webster.com medical dictionary. Retrieved January 19, 2023, from https://www.merriam-webster.com/medical/Retroviridae.Arteriviridae - ICTV. (s. f.). Retrieved January 19, 2023, from https://ictv.global/report_9th/RNApos/Nidovirales/Arteriviridae.Matthijnssens et al., (2022) ICTV Virus Taxonomy Profile: Sedoreoviridae, Journal of General Virology (2022) 103:001782.Matthijnssens et al., (2022) ICTV Virus Taxonomy Profile: Spinareoviridae, Journal of General Virology (2022) 103:001781.Jabeen A., Ahmad N., Raza K. (2018) Machine Learning-Based Stateof-the-Art Methods for the Classification of RNA-Seq Data. In: Dey N., Ashour A., Borra S. (eds) Classification in BioApps. Lecture Notes in Computational Vision and Biomechanics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-65981-76.Remita MA, Halioui A, Malick Diouara AA, Daigle B, Kiani G, Diallo AB. (2017 Apr 11) A machine learning approach for viral genome classification. BMC Bioinformatics. 18(1):208. doi:10.1186/s12859-017-1602-3Fontana, W., Stadler, P. F., Bornberg-Bauer, E. G., Griesmacher, T., Hofacker, I. L., Tacker, M., Tarazona, P., Weinberger, E. D., & Schuster, P. (1993). RNA folding and combinatory landscapes. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 47(3), 2083–2099. https://doi.org/10.1103/ physreve.47.2083.Shapiro B. A. (1988). An algorithm for comparing multiple RNA secondary structures. Computer applications in the biosciences: CABIOS, 4(3), 387–393. https: //doi.org/10.1093/bioinformatics/4.3.387.Lorenz, Ronny and Bernhart, Stephan H. and H¨oner zu Siederdissen, Christian and Tafer, Hakim and Flamm, Christoph and Stadler, Peter F. and Hofacker, Ivo L. ViennaRNA Package 2.0. Algorithms for Molecular Biology, 6:1 26, 2011, doi:10.1186/1748- 7188-6-26Sikkema, R. S., y Koopmans, M. (2021). Preparing for Emerging Zoonotic Viruses. Encyclopedia of Virology, 256–266. https://doi.org/10.1016/ B978-0-12-814515-9.00150-8.Allen T. Global hotspots and correlates of emerging zoonotic diseases. Nature Communications. 2017;8(1)Jones K.E. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–993.S. Shadab, M. T. Alam Khan, N. A. Neezi, S. Adilina, and S. Shatabda, “DeepDBP: deep neural networks for identification of DNA-binding proteins,” Informatics in Medicine Unlocked, vol. 19, article 100318, 2020.Gunasekaran, H., Ramalakshmi, K., Rex Macedo Arokiaraj, A., Deepa Kanmani, S., Venkatesan, C., y Suresh Gnana Dhas, C. (2021). Analysis of DNA Sequence Classification Using CNN and Hybrid Models. Computational and mathematical methods in medicine, 2021, 1835056. https://doi.org/10.1155/2021/1835056.Fu, L., Niu, B., Zhu, Z., Wu, S., y Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England), 28(23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565.Li, W., y Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England), 22(13), 1658–1659. https://doi.org/10.1093/bioinformatics/btl158.El Naqa, I., Murphy, M.J. (2015). What Is Machine Learning?. In: El Naqa, I., Li, R., Murphy, M. (eds) Machine Learning in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-18305-3_1.Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics30(22): 3276-3278. http://dx.doi.org/10.1093/ bioinformatics/bt.Pedro Larrañaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, I˜naki Inza, Jose A. Lozano, Ruben Armananzas, Guzman Santafe, Aritz Perez, Victor Robles, Machine learning in bioinformatics, Briefings in Bioinformatics, Volume 7, Issue 1, March 2006, Pages 86–112, https://doi.org/10.1093/bib/bbk007.Shastry, K.A., Sanjay, H.A. (2020). Machine Learning for Bioinformatics. In: Srinivasa, K., Siddesh, G., Manisekhar, S. (eds) Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/ 978-981-15-2445-5_3.Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. 1959;3(3):210–229.Qifang Bi, Katherine E Goodman, Joshua Kaminsky, Justin Lessler, What is Machine Learning? A Primer for the Epidemiologist, American Journal of Epidemiology, Volume 188, Issue 12, December 2019, Pages 2222–2239, https://doi.org/10.1093/ aje/kwz189.Madhu Chetty, Jennifer Hallinan, Gonzalo A. Ruz, Anil Wipat, Computational intelligence and machine learning in bioinformatics and computational biology, Biosystems, Volume 222, 2022, 104792, ISSN 0303-2647, https://doi.org/10.1016/j. biosystems.2022.104792.Hennig C, Meila M, Murtagh F, et al. Handbook of Cluster Analysis. 1st ed. Boca Raton, FL: CRC Press; 2015:34.Bishop CM. Pattern Recognition and Machine Learning. 1st ed. New York, NY: Springer Publishing Compnay; 2006:424.Bellett, A. J. D. (1967). Preliminary classification of viruses based on quantitative comparisons of viral nucleic acids. Journal of Virology, 1(2), 245-259.LWOFF, A., & TOURNIER, P. (1971). Remarks on the Classification of Viruses. Comparative Virology, 1–42. https://doi.org/10.1016/B978-0-12-470260-8. 50006-3.Libretexts. (2021, 3 enero). 9.8A: Positive-Strand RNA Viruses of Animals. Biology LibreTexts. https://bio.libretexts.org/Bookshelves/Microbiology/ Microbiology_(Boundless)/09:_Viruses.Patton JT, ed. (2008). Segmented Double-stranded RNA Viruses: Structure and Molecular Biology. Caister Academic Press. ISBN 978-1-904455-21-9.Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral mutation rates. Journal of virology, 84(19), 9733-9748.Klein DW, Prescott LM, Harley J (1993). Microbiology. Dubuque, Iowa: Wm. C. Brown. ISBN 978-0-697-01372-9.Domingo E. (1997). Rapid evolution of viral RNA genomes. The Journal of nutrition, 127(5 Suppl), 958S–961S. https://doi.org/10.1093/jn/127.5.958S.RNA: The Versatile Molecule. (s. f.). https://learn.genetics.utah.edu/ content/basics/rna/Molnar, C. (2015, 14 mayo). 9.1 The Structure of DNA – Concepts of Biology – 1st Canadian Edition. Pressbooks. https://opentextbc.ca/biology/chapter/ 9-1-the-structure-of-dna/Berg, J. M., Tymoczko, J. L., Stryer, L., & National Center for Biotechnology Information (U.S.). (2002). Biochemistry, Fifth Edition. W. H. Freeman.Daros, J. A., Elena, S. F., & Flores, R. (2006). Viroids: an Ariadne’s thread into the RNA labyrinth. EMBO reports, 7(6), 593–598. https://doi.org/10.1038/sj.embor. 7400706.Payne S. (2017). Introduction to RNA Viruses. Viruses, 97–105. https://doi.org/ 10.1016/B978-0-12-803109-4.00010-6.Wang D, Farhana A. Biochemistry, RNA Structure. [Updated 2022 May 8]. In: Stat- Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK558999/.Wooley, J. C., Godzik, A., & Friedberg, I. (2010). A primer on metagenomics. PLoS computational biology, 6(2), e1000667. https://doi.org/10.1371/journal. pcbi.1000667.Paez-Espino, D., Eloe-Fadrosh, E. A., Pavlopoulos, G. A., Thomas, A. D., Huntemann, M., Mikhailova, N., Rubin, E., Ivanova, N. N., & Kyrpides, N. C. (2016). Uncovering Earth’s virome. Nature, 536(7617), 425–430. https://doi.org/10.1038/ nature19094.Metagenomics. (s. f.). En Metagenomics. Recuperado 24 de febrero de 2023, de https://en.wikipedia.org/wiki/Metagenomics#VirusesStaden R. (1979). A strategy of DNA sequencing employing computer programs. Nucleic acids research, 6(7), 2601–2610. https://doi.org/10.1093/nar/6.7.2601.Edwards, R., Rohwer, F. Viral metagenomics. Nat Rev Microbiol 3, 504–510 (2005). https://doi.org/10.1038/nrmicro1163.Kristensen DM, Mushegian AR, Dolja VV, Koonin EV. New dimensions of the virus world discovered through metagenomics. Trends Microbiol. 2010 Jan;18(1):11- 9. doi: 10.1016/j.tim.2009.11.003. Epub 2009 Nov 26. PMID: 19942437; PMCID: PMC3293453.Delwart, E. L. (2007). Viral metagenomics. Reviews in medical virology, 17(2), 115- 131.Sommers, P., Chatterjee, A., Varsani, A., & Trubl, G. (2021). Integrating Viral Metagenomics into an Ecological Framework. Annual review of virology, 8(1), 133–158. https://doi.org/10.1146/annurev-virology-010421-053015.Grasis J. A. (2018). Host-Associated Bacteriophage Isolation and Preparation for Viral Metagenomics. Methods in molecular biology (Clifton, N.J.), 1746, 1–25. https: //doi.org/10.1007/978-1-4939-7683-6_1.Alavandi SV, Poornima M. Viral metagenomics: a tool for virus discovery and diversity in aquaculture. Indian J Virol. 2012 Sep;23(2):88-98. doi: 10.1007/s13337-012- 0075-2. Epub 2012 Aug 14. PMID: 23997432; PMCID: PMC3550753.Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, S¨oding J, Thompson JD, Higgins DG. Fast, scalable generation of highquality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011 Oct 11;7:539. doi: 10.1038/msb.2011.75. PMID: 21988835.Sievers, F. and Higgins, D.G. (2018), Clustal Omega for making accurate alignments of many protein sequences. Protein Science, 27: 135-145. https://doi.org/10.1002/ pro.3290.Hofacker, Ivo & Stadler, Peter. (2006). RNA Secondary Structures. 10.1002/3527600906.mcb.200500009.IUPAC. Compendium of Chemical Terminology, 2nd ed. (the Gold Book). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/ 10.1351/goldbook.Jones, C. P., & Ferr´e-D’Amar´e, A. R. (2015). RNA quaternary structure and global symmetry. Trends in biochemical sciences, 40(4), 211–220. https://doi.org/10.1016/ j.tibs.2015.02.004.Xia, T., SantaLucia, J., Jr, Burkard, M. E., Kierzek, R., Schroeder, S. J., Jiao, X., Cox, C., & Turner, D. H. (1998). Thermodynamic parameters for an expanded nearestneighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry, 37(42), 14719–14735. https://doi.org/10.1021/bi9809425.Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., & Turner, D. H. (2004). Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences, 101(19), 7287-7292.Zuker M. (1989). On finding all suboptimal foldings of an RNA molecule. Science (New York, N.Y.), 244(4900), 48–52. https://doi.org/10.1126/science.2468181.Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat Commun 12, 941 (2021). https: //doi.org/10.1038/s41467-021-21194-4.Gruber, A. R., Findeiß, S., Washietl, S., Hofacker, I. L., & Stadler, P. F. (2010). RNAz 2.0: improved noncoding RNA detection. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 69–79.Washietl, S., Hofacker, I. L., & Stadler, P. F. (2005). Fast and reliable prediction of noncoding RNAs. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2454–2459. https://doi.org/10.1073/pnas.0409169102.Roux, S., Enault, F., Hurwitz, B. L., & Sullivan, M. B. (2015). VirSorter: mining viral signal from microbial genomic data. PeerJ, 3, e985. https://doi.org/10.7717/ peerj.985.Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microbial informatics and experimentation, 2(1), 3. https://doi. org/10.1186/2042-5783-2-3.Hofacker, I. L., Fekete, M., & Stadler, P. F. (2002). Secondary structure prediction for aligned RNA sequences. Journal of molecular biology, 319(5), 1059–1066. https: //doi.org/10.1016/S0022-2836(02)00308-X.Washietl, S., & Hofacker, I. L. (2004). Consensus folding of aligned sequences as a new measure for the detection of functional RNAs by comparative genomics. Journal of molecular biology, 342(1), 19–30. https://doi.org/10.1016/j.jmb.2004.07.018.Chiu, D. K., & Kolodziejczak, T. (1991). Inferring consensus structure from nucleic acid sequences. Computer applications in the biosciences : CABIOS, 7(3), 347–352. https://doi.org/10.1093/bioinformatics/7.3.347.Gutell, R. R., & Woese, C. R. (1990). Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs. Proceedings of the National Academy of Sciences of the United States of America, 87(2), 663–667. https://doi. org/10.1073/pnas.87.2.663.Gutell, R. R., Power, A., Hertz, G. Z., Putz, E. J., & Stormo, G. D. (1992). Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic acids research, 20(21), 5785–5795.https://doi.org/10.1093/nar/20.21.5785.Shang, L., Xu, W., Ozer, S., & Gutell, R. R. (2012). Structural constraints identified with covariation analysis in ribosomal RNA. PLoS One, 7(6), e39383.Waggener, Bill (1995). Pulse Code Modulation Techniques. Springer. p. 206. ISBN 9780442014360.I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. Tacker, P. Schuster (1994), ”Fast Folding and Comparison of RNA Secondary Structures”, Monatshefte f. Chemie: 125, pp 167-188Zuker, M., & Stiegler, P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic acids research, 9(1), 133–148. https://doi.org/10.1093/nar/9.1.133.Hofacker I. L. (2003). Vienna RNA secondary structure server. Nucleic acids research, 31(13), 3429–3431. https://doi.org/10.1093/nar/gkg599.Geron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and Tensor- Flow. O’Reilly Media, Inc.Sen, P.C., Hajra, M., Ghosh, M. (2020). Supervised Classification Algorithms in Machine Learning: A Survey and Review. In: Mandal, J., Bhattacharya, D. (eds) Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-7403-6_ 11.Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 160(1), 3-24.Kotsiantis, S. (2011). Feature selection for machine learning classification problems: a recent overview. Artificial Intelligence Review, 42(1), 157-176.Viral Genomes in Nature. (2021, January 3). Boundless. https://bio.libretexts. org/@go/page/9330.Vujovic, Z. (2021). Classification model evaluation metrics. International Journal of Advanced Computer Science and Applications, 12(6), 599-606.A short Tutorial on RNA Bioinformatics. The ViennaRNA Package and related Programs. (s. f.). Recuperado 10 de abril de 2023, de https://algosb2019.sciencesconf. org/data/RNAtutorial.pdf.McQuarrie, A. (2000). Statistical Mechanics. Sausalito, CA: University Science Books.Raschka, S. (2017). Machine Learning. University of Wisconsin–Madison. Department of Statistics. Recuperado 11 de abril de 2023, de https://sebastianraschka. com/pdf/lecture-notes/stat479fs18/02_knn_notes.pdf.Wikipedia contributors. (2023, March 31). K-nearest neighbors algorithm. In Wikipedia, The Free Encyclopedia. Retrieved 16:44, April 11, 2023, from https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_ algorithm&oldid=1147498657.Landau, S., Leese, M., Stahl, D., & Everitt, B. S. (2011). Cluster analysis. John Wiley & Sons.1.4. Support Vector Machines. (s. f.). scikit-learn. https://scikit-learn.org/ stable/modules/svm.htmlWikipedia contributors. (2023, March 12). Support vector machine. In Wikipedia, The Free Encyclopedia. Retrieved 22:16, April 11, 2023, from https://en.wikipedia. org/w/index.php?title=Support_vector_machine&oldid=1144271534.Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152).Song, Y. Y., & Lu, Y. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130–135. https://doi.org/10. 11919/j.issn.1002-0829.215044.Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2008). The Elements of Statistical Learning (2nd ed.). Springer. ISBN 0-387-95284-5.Haykin, S. S. (2009). Neural networks and learning machines. Upper Saddle River, NJ: Pearson Education.Ojha, V. K., Abraham, A., & Snasel, V. (2017). Metaheuristic design of feedforward neural networks: A review of two decades of research. Engineering Applications of Artificial Intelligence, 60, 97-116.Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.Wikipedia contributors. (2023, March 2). Suffix tree. In Wikipedia, The Free Encyclopedia. Retrieved April 27 2023, from https://en.wikipedia.org/w/index.php? title=Suffix_tree&oldid=1142499280.Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14(3), 249- 260.Wikipedia contributors. (2023, March 22). Hidden Markov model. In Wikipedia, The Free Encyclopedia. Retrieved April 28 2023, from https://en.wikipedia.org/ w/index.php?title=Hidden_Markov_model&oldid=1146111455.Blunsom, P. (2004). Hidden markov models. Lecture notes, August, 15(18-19), 48.Yoon B. J. (2009). Hidden Markov Models and their Applications in Biological Sequence Analysis. Current genomics, 10(6), 402–415. https://doi.org/10.2174/ 138920209789177575.M. Przytycka, & Zheng, J. (2003). Encyclopedia of Life Sciences: Hidden Markov Models (TM in Nature Encyclopedia of the Human Genome Nature Publishing Group, Ed.). NCBI. Recuperado 28 de abril de 2023, de https://www.ncbi.nlm.nih.gov/ CBBresearch/Przytycka/index.cgi#publications.Nelwamondo, F. V., Marwala, T., & Mahola, U. (2006). Early classifications of bearing faults using hidden Markov models, Gaussian mixture models, mel-frequency cepstral coefficients and fractals. International Journal of Innovative Computing, Information and Control, 2(6), 1281-1299.Ryan, M. S., & Nudd, G. R. (1993). The viterbi algorithm.Muller, M. (2015). Fundamentals of music processing: Audio, analysis, algorithms, applications (Vol. 5, Pages 237-301). Cham: Springer.Ian Goodfellow and Yoshua Bengio and Aaron Courville (2016). Deep Learning. MIT Press. p. 326.Wikipedia contributors. (2023, April 30). Convolutional neural network. In Wikipedia, The Free Encyclopedia. Retrieved April 30, 2023, from https://en.wikipedia. org/w/index.php?title=Convolutional_neural_network&oldid=1152491486.Mishra, M. (2021, 15 diciembre). Convolutional Neural Networks, Explained - Towards Data Science. Medium. https://towardsdatascience.com/ convolutional-neural-networks-explained-9cc5188c4939.Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: continual prediction with LSTM. Neural computation, 12(10), 2451–2471. https://doi.org/10. 1162/089976600300015015.Hochreiter, S., & Schmidhuber, J. (1996). LSTM can solve hard long time lag problems. Advances in neural information processing systems, 9.Brownlee, J. (2019). CNN Long Short-Term Memory Networks. https:// machinelearningmastery.com/cnn-long-short-term-memory-networks/.Zill, D., & Shanahan, P. (2009). A First Course in Complex Analysis with Applications. Jones & Bartlett Learning.Lefkowitz, E. J., Dempsey, D. M., Hendrickson, R. C., Orton, R. J., Siddell, S. G., & Smith, D. B. (2018). Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic acids research, 46(D1), D708-D717.King, A. M., Adams, M. J., Carstens, E. B., & Lefkowitz, E. J. (2012). Virus taxonomy. Ninth report of the International Committee on Taxonomy of Viruses, 9.Simmonds, P. (2015). Methods for virus classification and the challenge of incorporating metagenomic sequence data. Journal of General Virology, 96(6), 1193-1206.Forterre, P. (2010). Giant viruses: conflicts in revisiting the virus concept. Intervirology, 53(5), 362-378.Lwoff, A. (1959). Factors influencing the evolution of viral diseases at the cellular level and in the organism. Bacteriological reviews, 23(3), 109-124.Yamada, T. (2011). Giant viruses in the environment: their origins and evolution. Current opinion in virology, 1(1), 58-62.Doolittle, R. F., & Feng, D. F. (1992). Tracing the origin of retroviruses. Genetic Diversity of RNA Viruses, 195-211.Temin, H. M. (1970). Malignant transformation of cells by viruses. Perspectives in biology and medicine, 14(1), 11-26.Illangasekare, M., Sanchez, G., Nickles, T., & Yarus, M. (1995). Aminoacyl-RNA synthesis catalyzed by an RNA. Science, 267(5198), 643-647.Gilbert, W. (1986). Origin of life: The RNA world. nature, 319(6055), 618-618.Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics (Oxford, England), 31(10), 1674–1676. https: //doi.org/10.1093/bioinformatics/btv033.Li, D., Luo, R., Liu, C. M., Leung, C. M., Ting, H. F., Sadakane, K., Yamashita, H., & Lam, T. W. (2016). MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods (San Diego, Calif.), 102, 3–11. https://doi.org/10.1016/j.ymeth.2016.02.020.Xiong, J. (2006). Protein Motifs and Domain Prediction. In Essential Bioinformatics (pp. 85-94). Cambridge: Cambridge UniversityPress.doi:10.1017/ CBO9780511806087.008.Iqbal, T., Elahi, A., Wijns, W., & Shahzad, A. (2022). Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection. Frontiers in medical technology, 4, 782756. https://doi.org/10.3389/fmedt.2022.782756.Mock, F., Kretschmer, F., Kriese, A., B¨ocker, S., & Marz, M. (2022). Taxonomic classification of DNA sequences beyond sequence similarity using deep neural networks. Proceedings of the National Academy of Sciences, 119(35), e2122636119.Shang, J., & Sun, Y. (2021). CHEER: HierarCHical taxonomic classification for viral mEtagEnomic data via deep leaRning. Methods (San Diego, Calif.), 189, 95–103. https://doi.org/10.1016/j.ymeth.2020.05.018.Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint ar- Xiv:1810.04805.Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome research, 17(3), 377-386.Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.Zerbino, D. R., & Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome research, 18(5), 821–829. https://doi.org/ 10.1101/gr.074492.107.Compeau, P. E., Pevzner, P. A., & Tesler, G. (2011). How to apply de Bruijn graphs to genome assembly. Nature biotechnology, 29(11), 987–991. https://doi.org/10. 1038/nbt.2023.Martin, J.,Wang, Z. (2011) Next-generation transcriptome assembly. Nat Rev Genet 12, 671–682. https://doi.org/10.1038/nrg3068.Damelin, S. B., & Miller Jr, W. (2012). The mathematics of signal processing (No. 48). Cambridge University Press.Wikipedia contributors (2023) Convolution. In Wikipedia, The Free Encyclopedia. Retrieved May 25, 2023, from https://en.wikipedia.org/w/index.php?title= Convolution&oldid=1155936911.Budach, S., & Marsico, A. (2018). pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks. Bioinformatics (Oxford, England), 34(17), 3035–3037. https://doi.org/10.1093/ bioinformatics/bty222.Gelderblom, H. R. (1996). Structure and Classification of Viruses. In S. Baron (Ed.), Medical Microbiology. (4th ed.). University of Texas Medical Branch at Galveston.Louten J. (2016). Virus Structure and Classification. Essential Human Virology, 19–29. https://doi.org/10.1016/B978-0-12-800947-5.00002-8.Ajami, N. J., Wong, M. C., Ross, M. C., Lloyd, R. E., & Petrosino, J. F. (2018). Maximal viral information recovery from sequence data using VirMAP. Nature communications, 9(1), 3205. https://doi.org/10.1038/s41467-018-05658-8.Lin, J., Kramna, L., Autio, R., Hy¨oty, H., Nykter, M., & Cinek, O. (2017). Vipie: web pipeline for parallel characterization of viral populations from multiple NGS samples. BMC genomics, 18(1), 378. https://doi.org/10.1186/s12864-017-3721-7.Lin, H. H., & Liao, Y. C. (2017). drVM: a new tool for efficient genome assembly of known eukaryotic viruses from metagenomes. GigaScience, 6(2), 1–10. https://doi. org/10.1093/gigascience/gix003.Rampelli, S., Soverini, M., Turroni, S., Quercia, S., Biagi, E., Brigidi, P., & Candela, M. (2016). ViromeScan: a new tool for metagenomic viral community profiling. BMC genomics, 17, 165. https://doi.org/10.1186/s12864-016-2446-3.Segata, N.,Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., & Huttenhower, C. (2012). Metagenomic microbial community profiling using unique clade-specific marker genes. Nature methods, 9(8), 811–814. https://doi.org/10.1038/nmeth.2066.Tithi, S. S., Aylward, F. O., Jensen, R. V., & Zhang, L. (2018). FastViromeExplorer: a pipeline for virus and phage identification and abundance profiling in metagenomics data. PeerJ, 6, e4227. https://doi.org/10.7717/peerj.4227.Yamashita, A., Sekizuka, T., & Kuroda, M. (2016). VirusTAP: Viral Genome- Targeted Assembly Pipeline. Frontiers in microbiology, 7, 32. https://doi.org/10. 3389/fmicb.2016.00032.Zhao, G., Wu, G., Lim, E. S., Droit, L., Krishnamurthy, S., Barouch, D. H., Virgin, H. W., & Wang, D. (2017). VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology, 503, 21–30. https://doi.org/10.1016/j. virol.2017.01.005.Menzel, P., Ng, K. L., & Krogh, A. (2016). Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nature communications, 7, 11257. https: //doi.org/10.1038/ncomms11257.Wood, D. E., & Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome biology, 15(3), R46. https://doi.org/ 10.1186/gb-2014-15-3-r46.Fiers, Walter & Contreras, Roland & Duerinck, Fred & Haegeman, Guy & Iserentant, Dirk & Merregaert, Joseph & Jou, Willy & Molemans, Francis & Raeymaekers, Alex & Berghe, A & Volckaert, Guido & Ysebaert, Marc. (1976). Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature. 260. 500-7. 10.1038/260500a0.Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, C. A., Hutchison, C. A., Slocombe, P. M., & Smith, M. (1977). Nucleotide sequence of bacteriophage phi X174 DNA. Nature, 265(5596), 687–695. https://doi.org/10.1038/ 265687a0.Cobbin, J. C., Charon, J., Harvey, E., Holmes, E. C., & Mahar, J. E. (2021). Current challenges to virus discovery by meta-transcriptomics. Current Opinion in Virology, 51, 48-55.Bashiardes, S., Zilberman-Schapira, G., & Elinav, E. (2016). Use of Metatranscriptomics in Microbiome Research. Bioinformatics and biology insights, 10, 19–25. https://doi.org/10.4137/BBI.S34610.Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., & Narasimhan, G. (2016). Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis. Evolutionary bioinformatics online, 12(Suppl 1), 5–16. https://doi.org/10.4137/EBO.S36436.Kelly, D., Yang, L., & Pei, Z. (2017). A review of the oesophageal microbiome in health and disease. Methods in microbiology, 44, 19-35.Transmisión de enfermedad infecciosaARN viralZoonosis viralesDisease Transmission, InfectiousViral ZoonosesRNA, ViralVirus ARNMetagenómicaMetavirómicaAprendizaje de máquinaEstructuras secundariasClasificaciónRNA virusesMetagenomicsMetaviromicsMachine learningSecondary structuresClassificationORIGINAL1020808077.2023.pdf1020808077.2023.pdfTesis de Maestría en Bioinformáticaapplication/pdf3065650https://repositorio.unal.edu.co/bitstream/unal/84608/4/1020808077.2023.pdf3b3f4f66744d9cd102bd27b1e89964b2MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84608/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1020808077.2023.pdf.jpg1020808077.2023.pdf.jpgGenerated Thumbnailimage/jpeg3684https://repositorio.unal.edu.co/bitstream/unal/84608/5/1020808077.2023.pdf.jpgb3316e619df562868fdb783a03a92e94MD55unal/84608oai:repositorio.unal.edu.co:unal/846082024-08-11 01:06:54.527Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |