Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación

La producción de biosólidos en la Planta de Tratamiento de Aguas Residuales (PTAR) San Fernando de propiedad de Empresas Públicas de Medellín (EPM) en Medellín, Antioquia, Colombia, está regulada por el Ministerio de Medio Ambiente Colombiano y custodiada por la autoridad regional ambiental Corporac...

Full description

Autores:
Vélez Zuluaga, Juan Alberto
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79588
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79588
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología
660 - Ingeniería química
Bioremediación
Biodegradación del agua
Bacterias patogenas
Bioremediación
Bacterias remediadoras
Oxido-reducción
Biosólidos
Metales Pesados
Biosolids
Bioremediation
Hexavalent Chromium
Oxide-Reduction
Remedial Bacteria
Rhizotron
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_0a4b28eda1a55fb302bedc71920ac1ea
oai_identifier_str oai:repositorio.unal.edu.co:unal/79588
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación
dc.title.translated.eng.fl_str_mv Biotechnological strategies to evaluate the presence of chromium in the generation of safe biosolids. Possible bioremediation alternatives
title Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación
spellingShingle Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación
570 - Biología
660 - Ingeniería química
Bioremediación
Biodegradación del agua
Bacterias patogenas
Bioremediación
Bacterias remediadoras
Oxido-reducción
Biosólidos
Metales Pesados
Biosolids
Bioremediation
Hexavalent Chromium
Oxide-Reduction
Remedial Bacteria
Rhizotron
title_short Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación
title_full Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación
title_fullStr Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación
title_full_unstemmed Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación
title_sort Estrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación
dc.creator.fl_str_mv Vélez Zuluaga, Juan Alberto
dc.contributor.advisor.none.fl_str_mv Ordúz Peralta, Sergio
Montoya Campuzano, Olga Inés
Ruíz Villadiego, , Orlando Simón
dc.contributor.author.none.fl_str_mv Vélez Zuluaga, Juan Alberto
dc.subject.ddc.spa.fl_str_mv 570 - Biología
660 - Ingeniería química
topic 570 - Biología
660 - Ingeniería química
Bioremediación
Biodegradación del agua
Bacterias patogenas
Bioremediación
Bacterias remediadoras
Oxido-reducción
Biosólidos
Metales Pesados
Biosolids
Bioremediation
Hexavalent Chromium
Oxide-Reduction
Remedial Bacteria
Rhizotron
dc.subject.lemb.none.fl_str_mv Bioremediación
Biodegradación del agua
Bacterias patogenas
dc.subject.proposal.spa.fl_str_mv Bioremediación
Bacterias remediadoras
Oxido-reducción
dc.subject.proposal.zho.fl_str_mv Biosólidos
Metales Pesados
dc.subject.proposal.eng.fl_str_mv Biosolids
Bioremediation
Hexavalent Chromium
Oxide-Reduction
Remedial Bacteria
Rhizotron
description La producción de biosólidos en la Planta de Tratamiento de Aguas Residuales (PTAR) San Fernando de propiedad de Empresas Públicas de Medellín (EPM) en Medellín, Antioquia, Colombia, está regulada por el Ministerio de Medio Ambiente Colombiano y custodiada por la autoridad regional ambiental Corporación Autónoma Regional del Centro de Antioquia (Corantioquia). Uno de los metales más cuestionados y vigilados en la producción de biosólidos en el mundo es el cromo derivado de múltiples actividades antrópicas, cuyas formas más significativas son la especie hexavalente (Cr6+) conocida por sus propiedades ácidas de naturaleza oxidante, que ocasiona daño a los tejidos y lesiones en los órganos, generando serios trastornos en la salud humana y animal con efectos mutagénicos, teratogénicos y carcinogénicos y la especie trivalente (Cr3+), considerada vital y necesaria para la síntesis de la glucosa, algunos lípidos y proteínas. Las posibilidades de oxidoreducción entre estas dos especies son motivo de serias discusiones y múltiples investigaciones, pero todavía son inciertos algunos de los mecanismos que influyen y gobiernan estas reacciones de doble vía. Cinco experimentos fueron llevados a cabo en la Universidad Nacional de Medellín tendientes a encontrar hongos y bacterias que fuesen capaces de crecer en medios de cultivo enriquecidos con cromo, con el objeto de aislarlos, purificarlos y multiplicarlos; para someterlos a concentraciones crecientes del metal, hasta encontrar la Concentración Mínima Inhibitoria (CMI), con el objeto de ser utilizados posteriormente como posibles alternativas biotecnológicas en la remediación de ambientes con presencia de cromo. Los microorganismos fueron obtenidos mediante aislados de aguas residuales de la empresa Curtiembres de Itagüí, Antioquia y de los biosólidos de la PTAR San Fernando, de los ceparios de la Universidad Nacional y de la Universidad de Antioquia, aportes de las empresas privadas Natural Control y Soluciones Microbiales para el Trópico; también se recurrió al interior del laboratorio a contaminantes ambientales colonizadores de un medio de cultivo enriquecido con cromo y fueron evaluados algunos fitopatógenos aleatorios obtenidos del cultivo del cacao. Aquellos organismos seleccionados por su cromotolerancia, fueron evaluados en forma de consorcio microbiano bajo invernadero, en macetas plásticas de 2 kilogramos de peso, con suelos contrastantes (Andisol e Inceptisol) y adiciones de biosólidos (20 Ton Ha-1) de la PTAR San Fernando, en presencia de una dosis alta de dicromato de potasio equivalente al doble de la CMI explorada (2.400 mg kg-1). Como planta bioindicadora se utilizó frijol arbustivo Phaseolus vulgaris durante todo el período vegetativo y reproductivo por 4 meses al cabo de los cuales se tomaron muestras de suelo rizosférico y no rizosférico con el propósito de llevar a cabo pruebas de metagenómica para rastrear la trazabilidad de las especies adicionadas y observar potenciales géneros nuevos que no hayan sido investigados. Los microorganismos que demostraron mayor potencial por su capacidad para remover cromo total o reducir cromo hexavalente a trivalente fueron caracterizados molecularmente en la Universidad de Antioquia y bioquímicamente en la Universidad Nacional, sede de Medellín mediante el empleo del Kit API y del sistema Biolog Microstation ID System. Posteriormente purificados y escalados y previa confrontación con los hallazgos de otros investigadores a nivel global, fueron empleados en pruebas de biotest de toxicidad, para confirmar su capacidad remediadora en presencia de silicato de magnesio y en ausencia de él como posible agente neutralizador del cromo en el suelo, usando prototipos no comerciales de Rhizotrones como herramientas de diagnóstico. Plantas de lechuga Lactuca sativa y lenteja Lens culinaris fueron empleadas como biosensores por su alta sensibilidad a los metales traza. Finalmente las bacterias Ochrobactrum antropi, O. intermedium, Bacillus amyloliquefacien, Bacillus cereus , B. megaterium, B. firmus; Staphylococcus saprophyticus y los hongos Scedosporium dehoogii, S. boydii, Paecilomyces lilacinus y Trichoderma sp., fueron elegidos como los organismos con mayor potencial para ser usados como bioremediadores de ambientes con presencia de cromo mediante la utilización de un biofiltro a través de un consorcio microbiano, o de manera individual empleados in situ, en combinación con correctivos que contengan silicatos de magnesio, dado su poder neutralizador de cromo en el suelo, como fue demostrado en este estudio.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2021-06-01T20:45:36Z
dc.date.available.none.fl_str_mv 2021-06-01T20:45:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79588
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79588
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acevedo, F. ; Espinosa, A. ; Rodríguez I, Rivera, M. ; Ávila, M. ; Wrobel ,K. ; Lappe, P.; Ulloa, M. ; Gutiérrez, J. (2006). Hexavalent chromium removal in Vitro and from industrial wastes, using chromate resistant strains of filamentous fungi indigenous to contaminated wastes. Can. J. Microbiol. 52 (9), 809-815.
Achal, V., Kumari, D., & Pan, X. (2011). Bioremediation of Chromium Contaminated Soil by a Brown-rot Fungus, Gloeophyllum sepiarium. Research Journal of Microbiology, 6(2), 166–171. https://doi.org/10.3923/jm.2011.166.171
Agency for Toxic Substances and Disease Registry (ATSDR) (1998) Toxicological Profile for Chromium. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
Ahluwalia, S. S., & Goyal, D. (2013). Microbial Waste Biomass for Removal of Chromium(VI) from Chrome Effluent. Bioremediation Journal, 17(3), 190–199. https://doi.org/10.1080/10889868.2013.807770
Ahmed, E., Abdulla, H. M., Mohamed, A. H., & El-Bassuony, A. D. (2016). Remediation and recycling of chromium from tannery wastewater using combined chemical–biological treatment system. Process Safety and Environmental Protection, 104, 1–10. https://doi.org/10.1016/j.psep.2016.08.004
Akram, M., Bhatti, H. N., Iqbal, M., Noreen, S., & Sadaf, S. (2017). Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies. Journal of Environmental Chemical Engineering, 5(1), 400–411. https://doi.org/10.1016/j.jece.2016.12.002
Amorena, A. (1995). Plan integral de reutilización de los lodos de la depuradora de la comarca de Pamplona. Gestión y utilización de residuos urbanos para la Agricultura. Barcelona: Fundación la Caixa, pp. 45-53.
Alekhya Iyengar, C., & Subbaiah Usha, M. (2016). Removal of chromium by Staphylococcus saprophyticus subsp. bovis strain 1. Biologija, 62(1). https://doi.org/10.6001/biologija.v62i1.3285
Apte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121(1–3), 215–222. https://doi.org/10.1016/J.JHAZMAT.2005.02.010
Aruoja, V. Kahru, A., Dubourguier, H. (2008). Toxicity of ZnO, TiO2 and CuO nanoparticles to microalgae Pseudokirchneriella subcapitata. Toxicology Letters, 180 (1) p 220.
Asatiani, N. V., Abuladze, M. K., Kartvelishvili, T. M., Bakradze, N. G., Sapojnikova, N. A., Tsibakhashvili, N. Y., … Holman, H.-Y. (2004). Effect of Chromium(VI) Action on Arthrobacter oxydans. Current Microbiology, 49(5), 321–326. https://doi.org/10.1007/s00284-004-4351-2
Avudainayagam, S., Megharaj, M., Owens, G., Kookana, R. S., Chittleborough, D., & Naidu, R. (2003). Chemistry of Chromium in Soils with Emphasis on Tannery Waste Sites (pp. 53–91). Springer, New York, NY. https://doi.org/10.1007/0-387-21728-2_3
Azmat, R., & Khanum, R. (2005). Effect of Chromium Metal on the Uptakes of Mineral Atoms in Seedlings of Bean Plant Vigna radiata (L.) Wilckzek. Pakistan Journal of Biological Sciences, 8(2), 281–283. https://doi.org/10.3923/pjbs.2005.281.283
Bachate, S. P., Nandre, V. S., Ghatpande, N. S., & Kodam, K. M. (2013). Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent. Chemosphere, 90(8), 2273–2278. https://doi.org/10.1016/j.chemosphere.2012.10.081
Balls, M., Fentem, J., Jooint, E. (1992). Animal Experiments. Hobson Publishing, Cambridge. 2-15.
Bartlett, R., & James, B. (1979). Behavior of Chromium in Soils: III. Oxidation1. Journal of Environment Quality, 8(1), 31. https://doi.org/10.2134/jeq1979.00472425000800010008x
Bedoya-Urrego, K., Acevedo-Ruíz, J. M., Peláez-Jaramillo, C. A., & Del Pilar Agudelo-López, S. (2013). Caracterización de biosólidos generados en la planta de tratamiento de agua residual San Fernando, Itagüí (Antioquia, Colombia) The characterization of biosolids produced by the San Fernando wastewater treatment plant in Itagui, Antioquia, Colombia. Rev. Salud pública.Enviado Para Modificación, 15(22), 778–790. Retrieved from http://www.scielo.org.co/pdf/rsap/v15n5/v15n5a13.pdf
Beltrán-Pineda, M. E., & Gómez-Rodríguez, A. M. (2016). Biorremediación de Metales Pesados Cadmio (Cd), Cromo (Cr) y Mercurio (Hg), Mecanismos Bioquímicos e Ingeniería Genética: Una Revisión. Revista Facultad de Ciencias Básicas, 12(2), 172–197. https://doi.org/10.18359/RFCB.2027
Bharagava, R. N., & Mishra, S. (2018). Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2017.08.040
Bhattacharya, A., Gupta, A., Kaur, A., & Malik, D. (2014). Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Applied Microbiology and Biotechnology, 98(23). https://doi.org/10.1007/s00253-014-5910-5
Bielefeldt, A. R., & Vos, C. (2014). Stability of biologically reduced chromium in soil. Journal of Environmental Chemical Engineering, 2(1). https://doi.org/10.1016/j.jece.2013.10.012
Bishop, M. E., Glasser, P., Dong, H., Arey, B., & Kovarik, L. (2014). Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochimica et Cosmochimica Acta, 133, 186–203. https://doi.org/10.1016/j.gca.2014.02.040
Brose, D. A., & James, B. R. (2008a). Oxidation-Reduction Transformations of Chromium in Electron-Shuttling Quinones in Chemical and Microbiological pathways, (Vi).
Brose, D. A., & James, B. R. (2008b). Title of Thesis: Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones in chemical and microbiological pathways.
Bulich, A., (1979). Use of luminiscent bacteria for determining toxicity in aquatic environments. Aquatic Toxicology. ASTM 667. L. L. Markings y R. A. Kimerle (Eds.). American Society for Testing Materials. 98- 106.
Bulich, A. (1988) Analytical application of the MICROTOX system. Analytical Techniques and Residuals Management.Conference En:___WaterPollutionControlFederationSpecialty.19-20.Atlanta
Busch, J., Mendelssohn, I. A., Lorenzen, B., Brix, H., & Miao, S. (2006). A rhizotron to study root growth under flooded conditions tested with two wetland Cyperaceae. Flora - Morphology, Distribution, Functional Ecology of Plants, 201(6), 429–439. https://doi.org/10.1016/J.FLORA.2005.08.007
Cala, V., Cases, M. A., & Walter, I. (2005). Biomass production and heavy metal content of Rosmarinus officinalis grown on organic waste-amended soil. Journal of Arid Environments, 62(3), 401–412. https://doi.org/10.1016/J.JARIDENV.2005.01.007
Calleja, M. ; Persoone, G. ( 1992). The potential of ecotoxicological tests for prediction of acute toxicity in man as avaluates on the first ten chemicals of the MEIC programme. 20 (3), 396-405.
Cárdenas-González, J. F., Martínez-Juárez, V. M., & Acosta-Rodríguez, I. (2011). Remoción de Cromo (VI) por una Cepa de Paecilomyces sp Resistente a Cromato. Información Tecnológica, 22(4), 43–50. https://doi.org/10.4067/S0718-07642011000400006
Cervantes, C., & Campos-García, J. (2007). Reduction and Efflux of Chromate by Bacteria. In Molecular Microbiology of Heavy Metals (pp. 407–419). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/7171_2006_087
Chaney, R, y Giordano, P. (1977). Microelements as related to plant deficiencies and toxicities.
Charrier, T., Durand, M., Affi, M., Jouanneau, S., Gezekel, H., Thouand, G., (2006). Bacterial Bioluminescent Biosensor Characterisation for On-line Monitoring of Heavy Metals Pollutions Waste Water Treatment Plant Effluents. University of Nantes. Department of Biology. Francia.
Cheng, Y., Yan, F., Huang, F., Chu, W., Pan, D., Chen, Z., … Wu, Z. (2010). Bioremediation of Cr ( VI ) and Immobilization as Cr ( III ) by Ochrobactrum anthropi. Environmental Science & Technology, 44(16), 6357–6363. https://doi.org/10.1021/es100198v
Choong, C. E., Ibrahim, S., Yoon, Y., & Jang, M. (2018). Removal of lead and bisphenol A using magnesium silicate impregnated palm-shell waste powdered activated carbon: Comparative studies on single and binary pollutant adsorption. Ecotoxicology and Environmental Safety, 148, 142–151. https://doi.org/10.1016/J.ECOENV.2017.10.025
Coleman, R. N., & Qureshi, A. A. (1985). Microtox® andSpirillum volutans tests for assessing toxicity of environmental samples. Bulletin of Environmental Contamination and Toxicology, 35(1), 443–451. https://doi.org/10.1007/BF01636536
Coreño-Alonso, A., Solé, A., Diestra, E., Esteve, I., Gutiérrez-Corona, J. F., Reyna López, G. E., … Tomasini, A. (2014). Mechanisms of interaction of chromium with Aspergillus niger var tubingensis strain Ed8. Bioresource Technology, 158, 188–192. https://doi.org/10.1016/j.biortech.2014.02.036
Dáguer, G. P. (s.f.). Gestión de biosólidos en Colombia. Retrieved from http://www.bvsde.paho.org/bvsaar/fulltext/biosolidos.pdf
Dalzell, D. J. B., Alte, S., Aspichueta, E., de la Sota, A., Etxebarria, J., Gutierrez, M., … Christofi, N. (2002). A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere, 47(5), 535–545. https://doi.org/10.1016/S0045-6535(01)00331-9
Das, A., Davis, M. A., & Rudel, L. L. (2008). Identification of putative active site residues of ACAT enzymes. Journal of Lipid Research, 49(8), 1770–1781. https://doi.org/10.1194/jlr.M800131-JLR200
Das, S., Mishra, J., Das, S. K., Pandey, S., Rao, D. S., Chakraborty, A., … Thatoi, H. (2014). Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere, 96, 112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080
De Flora, S., D’Agostini, F., Balansky, R., Micale, R., Baluce, B., & Izzotti, A. (2008). Lack of genotoxic effects in hematopoietic and gastrointestinal cells of mice receiving chromium(VI) with the drinking water. Mutation Research/Reviews in Mutation Research, 659(1–2), 60–67. https://doi.org/10.1016/J.MRREV.2007.11.005
Duarte, B., Silva, V., & Caçador, I. (2012). Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicology and Environmental Safety, 83, 1–7. https://doi.org/10.1016/J.ECOENV.2012.04.026
Dvorak, P. Benova, K. Vitek, J., (s.f.) Aternative Biotes on Artemia franciscana. University of veterinary and pharmaceutical Science, Czech Republic and Slovack republic.
Faisal. M, & S. H. (2006). Harazdous Impact of Chromium on Environment and its Appropriate Remediations.Journalof Pharmacology and Toxicology, 1(3), 248–258. https://doi.org/10.3923/jpt.2006.248.258
Felipo, M. (1.995) Reutilización de residuos urbanos y posible contaminación. Gestión y utilización de residuos urbanos para la agricultura. Madrid: Editorial Aedos. 23-36.
Fukuda, T., Ishino, Y., Ogawa, A., Tsutsumi, K., & Morita, H. (2008). Cr(VI) reduction from contaminated soils by Aspergillus sp. N2 and Penicillium sp. N3 isolated from chromium deposits. The Journal of General and Applied Microbiology, 54(5), 295–303. https://doi.org/10.2323/jgam.54.295
Gadd, G. M. (1993). Interactions of fungip with toxic metals. New Phytologist, 124(1), 25–60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x
Gantzer, C., Gaspard, P., Galvez, L., Huyard, A., Dumouthier, N., & Schwartzbrod, J. (2001). Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Research, 35(16), 3763–70. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12230157
Ghate, S., & Chaphekar, S. . (2000). Plagiochasma appendiculatum as a biotest for water quality assessment. Environmental Pollution, 108(2), 173–181. https://doi.org/10.1016/S0269-7491(99)00243-2
Gómez, S., Torres, V., García, Y., Fraga, L. M., Sarduy, L., & Savón, L. L. (2012). Comparación de modelos de efectos fijos y mixto en el análisis de un experimento con cepas mutantes de hongos celulolíticos Trichoderma viride. Revista Cubana de Ciencia Agrícola, 46(2). Retrieved from http://www.redalyc.org/pdf/1930/193024447002.pdf
Gove, L., Cooke, C. M., Nicholson, F. A., & Beck, A. J. (2001). Movement of water and heavy metals (Zn, Cu, Pb and Ni) through sand and sandy loam amended with biosolids under steady-state hydrological conditions. Bioresource Technology, 78(2), 171–179. https://doi.org/10.1016/S0960-8524(01)00004-9
Gruiz, K., Fenyvesi, É., Kriston, É., Molnár, M., & Horváth, B. (1996). Potential use of Cyclodextrins in Soil Bioremediation. In Proceedings of the Eighth International Symposium on Cyclodextrins (pp. 609–612). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-5448-2_133
Guillén-Jiménez, F. de M., Morales-Barrera, L., Morales-Jiménez, J., Hernández-Rodríguez, C. H., & Cristiani-Urbina, E. (2008). Modulation of tolerance to Cr(VI) and Cr(VI) reduction by sulfate ion in a Candida yeast strain isolated from tannery wastewater. Journal of Industrial Microbiology & Biotechnology, 35(11), 1277–1287. https://doi.org/10.1007/s10295-008-0425-7
Gutiérrez Corona, J. F., Espino Saldaña, Á. E., Coreño Alonso, A., Acevedo Aguilar, F. J., Reyna López, G. E., Fernández, F. J., … Wrobel, K. (2010). Mecanismos de interacción con cromo y aplicaciones biotecnológicas en hongos. Revista Latinoamericana de Biotecnología Amb Algal, 1(1), 47–63. Retrieved from http://www.ambientalex.info/revistas/Mecintcroaplbiohon.pdf
Hassan, S. H. A., Van Ginkel, S. W., & Oh, S.-E. (2012). Detection of Cr 6+ by the Sulfur Oxidizing Bacteria Biosensor: Effect of Different Physical Factors. Environmental Science & Technology, 46(14), 7844–7848. https://doi.org/10.1021/es301360a
Hindák, F., & Hindáková, A. (2008). Morphology and taxonomy of some rare chlorococcalean algae (Chlorophyta). Biologia, 63(6). https://doi.org/10.2478/s11756-008-0099-7
Hlywka, J., Beck, M. , Bullerman, L. (1997). The Use of the Chicken Embryo Screening Test and Brine Shrimp (Artemia salina) Bioassays to Assess the Toxicity of Fumonisin B1 Mycotoxin. Food and Chemical Toxicology, 35(10-11), 991-999.
Horbath, B. , Gruiz, K., Sara, B. (1996). Ecotoxicological testing of soil by four bacterial Biotest. Technical University of Budapest.
Huang, G., Wang, W., & Liu, G. (2015). Simultaneous chromate reduction and azo dye decolourization by Lactobacillus paracase CL1107 isolated from deep sea sediment. Journal of Environmental Management, 157, 297–302. https://doi.org/10.1016/j.jenvman.2015.04.031
Ilhan, S., Cabuk, A., Filik, C., Calikan, F., (2004). Effect of pretreatment on biosorption of heavy metals by fungal biomass. Trakya. Univ. J. Sc.
Ivask, A., Virta, M., Kahru, A. (2002). Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium. Soil Biol. And Biochem. 34 (1439-1447).
Javaid, M., & Sultan, S. (2013). Plant growth promotion traits and Cr (VI) reduction potentials of Cr (VI) resistant Streptomyces strains. Journal of Basic Microbiology, 53(5), 420–428. https://doi.org/10.1002/jobm.201200032
Kang, C.-H., Kwon, Y.-J., & So, J.-S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64–69. https://doi.org/10.1016/j.ecoleng.2016.01.023
Kasemets, K., Ivask, A., Dubourguier, H.-C., & Kahru, A. (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 23(6), 1116–1122. https://doi.org/10.1016/j.tiv.2009.05.015
Kavita, B., & Keharia, H. (2012). Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech, 2(1), 79–87. https://doi.org/10.1007/s13205-011-0038-0
Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Biosorption of Cr(VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World Journal of Microbiology and Biotechnology, 25(8), 1413–1421. https://doi.org/10.1007/s11274-009-0028-0
Kotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution. https://doi.org/10.1016/S0269-7491(99)00168-2
Ksheminska, H., Honchar, T., Gayda, G., & Gonchar, M. (2006). Extra-cellular chromate-reducing activity of the yeast cultures. Open Life Sciences, 1(1), 137–149. https://doi.org/10.2478/s11535-006-0009-3
Kumral, E. (2007). “Speciation of Chromium in Waters Via Sol-Gel Preconcentration Prior To Atomic Spectrometric Determination”. master degree in chemistry, (July).
Labunska, I., Brigden, K., Johnston, R., Santillo, P., & Ashton, D. &. (n.d.). Identificación y trascendencia ambiental de contaminantes orgánicos y metales pesados asociados con la curtiembre Arlei S.A., Las Toscas, Provincia de Santa Fe, Argentina 2000. Retrieved from http://www.greenpeace.org/argentina/Global/argentina/report/2006/4/identificaci-n-y-trascendencia-2.pdf
Lackner, M., Najafzadeh, M. J., Sun, J., Lu, Q., & Hoog, G. S. de. (2012). Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification. Applied and Environmental Microbiology, 78(1), 126–33. https://doi.org/10.1128/AEM.05280-11
Lee, D.-J., Tay, J.-H., Hung, Y.-T., & He, P. J. (2005). Introduction to Sludge Treatment. In Physicochemical Treatment Processes (pp. 677–703). Totowa, NJ: Humana Press. https://doi.org/10.1385/1-59259-820-x:677
Lewis,B., Levering, D. (2004). A high-level disinfection standard for land-applied sewage sludges (biosolids). Retrieved March 4, 2018, from https://www.thefreelibrary.com/Lewis%2c+David+Levering-a195
Lovley, D. R. (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 14(2), 85–93. https://doi.org/10.1007/BF01569889
Mahmoud, M. E., Yakout, A. A., Abdel-Aal, H., & Osman, M. M. (2015). Speciation and Selective Biosorption of Cr(III) and Cr(VI) Using Nanosilica Immobilized-Fungi Biosorbents. Journal of Environmental Engineering, 141(4), 4014079. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000899
Mandal, K., Singh, B., Jariyal, M., & Gupta, V. K. (2014). Bioremediation of fipronil by a Bacillus firmus isolate from soil. Chemosphere, 101, 55–60. https://doi.org/10.1016/j.chemosphere.2013.11.043
McDougall, W. B. (1916). The Growth of Forest Tree Roots. American Journal of Botany, 3(7), 384. https://doi.org/10.2307/2435018
Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of Hexavalent Chromium and Its Reduction by Bacteria Isolated from Soil Contaminated with Tannery Waste. Current Microbiology, 47(1), 51–54. https://doi.org/10.1007/s00284-002-3889-0
Montauban-González, R. (2013). Determinación de Cromo(III) y Cromo (VI) mediantes tecnicas electroquímicas de análisis, 2(Iii), 1–118.
Mora Collazos, A. (2016). Bacillus sp. G3 un microorganismo promisorio en la biorremediación de aguas industriales contaminadas con cromo hexavalente. Nova Scientia, 8(17), 361. https://doi.org/10.21640/ns.v8i17.655
Morales-Barrera, L., & Cristiani-Urbina, E. (2007). Hexavalent Chromium Removal by a Trichoderma inhamatum Fungal Strain Isolated from Tannery Effluent. Water, Air, and Soil Pollution, 187(1–4), 327–336. https://doi.org/10.1007/s11270-007-9520-z
Nendza, M. (2002). Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere, 48(8), 865–883. https://doi.org/10.1016/S0045-6535(02)00003-6
Nepomuscene, N. J., Daniel, D., & Krastanov, A. (2007). Biosensor to detect chromium in wastewater. Biotechnology and Biotechnological Equipment, 21(3), 377–381. https://doi.org/10.1080/13102818.2007.10817477
Nguyên-nhu, N. T., & Knoops, B. (2002). Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicology Letters, 135(3), 219–228. https://doi.org/10.1016/S0378-4274(02)00280-1
Nicolotti, G., & Egli, S. (1998). Soil contamination by crude oil: impact on the mycorrhizosphere and on the revegetation potential of forest trees. Environmental Pollution, 99(1), 37–43. https://doi.org/10.1016/S0269-7491(97)00179-6
Niculescu, M., Dana Ionita, A., & Filipescu, L. (2010). Bucureoti) 61 Nr. REV. CHIM, 2. Retrieved from http://www.revistadechimie.ro200
Niculescu, M., Dana Ionita, A., & Filipescu, L. (2010). Bucureoti) ♦ 61♦ Nr. REV. CHIM, 2. Retrieved from http://www.revistadechimie.ro200
Nies, D. H. (1999). Microbial heavy-metal resistance, 730–750.
Overcash, M. R., Sims, R. C., Sims, J. L., Nieman, K. C., Overcash, M. R. ;, Sims, R. C. ;, … Nieman, C. (2005). Beneficial Reuse and Sustainability: The Fate of Organic Compounds in the Land-Applied Waste Recommended Citation Beneficial Reuse and Sustainability: The Fate of Organic Compounds in Land-Applied Waste. Retrieved from http://digitalcommons.usu.edu/bioeng_facpub
Pan, X., Liu, Z., Chen, Z., Cheng, Y., Pan, D., Shao, J., … Guan, X. (2014). Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633. Water Research, 55(Vi), 21–29. https://doi.org/10.1016/j.watres.2014.01.066
Panda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian Journal of Plant Physiology, 17(1), 95–102. https://doi.org/10.1590/S1677-04202005000100008
Pillichshammer, M., Pompel, T., Powder, R., Eller, K., Klima, J., & Schinner, F. (1995). Biosorption of chromium to fungi. Biometals, 8(2), 117–121. https://doi.org/10.1007/BF00142010
Ratto, C. M. & L. M. (200)). Metales pesados por aplicacion de biosolidos en un hapludol de tucuman, republica Argentina ... Retrieved March 3, 2018, from https://www.researchgate.net/publication/237756197_
Ramírez-Díaz, M. I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J., & Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium compounds. BioMetals, 21(3), 321–332. https://doi.org/10.1007/s10534-007-9121-8
Ramírez-Ramírez, R., Calvo-Méndez, C., Ávila-Rodríguez, M., Lappe, P., Ulloa, M., Vázquez-Juárez, R., & Félix Gutiérrez-Coron, J. (2004). Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie van Leeuwenhoek, 85(1), 63–68. https://doi.org/10.1023/B:ANTO.0000020151.22858.7f
Reish, D., Oshida, O. (1987). Manual of Methods in aquatic environment research. Part 10. Short-term static bioassays . FAO, Rome Fisheries Technical Paper (247), pp 62.
Sandana Mala, J. G., Sujatha, D., & Rose, C. (2015). Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiological Research, 170, 235–241. https://doi.org/10.1016/j.micres.2014.06.001
Schmidt, B., Schafer, A. (2012). Development of a system to investigate the contamination level in soils by use of collembola as bioindicators. Aachen University. Thailand
Schnoor, J. L. (n.d.). Ground-Water Remediation Technologies Analysis Center. Retrieved from https://clu-in.org/download/toolkit/phyto_e.pdf
Semra Ilhan, Cansu Filik, Ahmet Çabuk, F. C. (2004). Effect of pretreatment on biosorption of heavy metals by fungal biomass (PDF Download Available). Retrieved February 24, om https://www.researchgate.net/publication/268186503_Effect_of_pretreatment_on_biosorption_of_heavy metals_by_fungal_biomass
Semra Ilhan,Cansu Filik,Ahmet Çabuk, F. C. (2004). Effect of pretreatment on biosorption of heavy metals by fungal biomass (PDF Download Available). Retrieved February 24, 2018, from https://www.researchgate.net/publication/268186503_Effect_of_pretreatment_on_biosorption_of_heavy_metals_by_fungal_biomass
Seoánez Calvo, M., & Gutiérrez de Ojesto, A. (1999). Aguas residuales : tratamiento por humedales artificiales : fundamentos científicos : tecnologías : diseño. Mundi-Prensa.
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. https://doi.org/10.1016/j.envint.2005.02.003
Sharma, S., & Adholeya, A. (2012). Hexavalent Chromium Reduction in Tannery Effluent by Bacterial Species Isolated from Tannery Effluent Contaminated Soil. Journal of Environmental Science and Technology, 5(3), 142–154. https://doi.org/10.3923/jest.2012.142.154
Sharma, S., & Malaviya, P. (2016). Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecological Engineering, 91, 419–425. https://doi.org/10.1016/j.ecoleng.2016.03.005
Silva, J., Torrejón, G., Bay-Schmith, E., & Larrain, A. (n.d.). Calibration of the acute toxicity bioassay with daphnia pulex (crustacea:cladocera)using a reference toxicant. Retrieved from https://scielo.conicyt.cl/pdf/gayana/v67n1/art11.pdf
Singh, N., Verma, T., & Gaur, R. (2013). Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent. African Journal of Biotechnology, 12(10), 1091–1103. https://doi.org/10.5897/AJB12.1636
Singh, R., Dong, H., Liu, D., Zhao, L., Marts, A. R., Farquhar, E., … Briggs, B. R. (2016). Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochimica et Cosmochimica Acta, 148, 442–456. https://doi.org/10.1016/j.gca.2014.10.012.Reduction
Smith, S. R. (2009). A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 35(1), 142–56. https://doi.org/10.1016/j.envint.2008.06.009
Stein, K., & Schwedt, G. (1994a). Speciation of chromium in the waste water from a tannery. Fresenius’ Journal of Analytical Chemistry, 350(1–2), 38–43. https://doi.org/10.1007/BF00326250
Sumner, E. R., Shanmuganathan, A., Sideri, T. C., Willetts, S. A., Houghton, J. E., & Avery, S. V. (2005). Oxidative protein damage causes chromium toxicity in yeast. Microbiology, 151(6), 1939–1948. https://doi.org/10.1099/mic.0.27945-0
Tait, K., Sayer, J. A., Gharieb, M. M., & Gadd, G. M. (1999). Fungal production of calcium oxalate in leaf litter microcosms. Soil Biology and Biochemistry, 31(8), 1189–1192. https://doi.org/10.1016/S0038-0717(99)00008-5
Tejeda-Benitez, L., Flegal, R., Odigie, K., & Olivero-Verbel, J. (2016). Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environmental Pollution, 212, 238–250. https://doi.org/10.1016/j.envpol.2016.01.057
Telles-Mosquera, J. , Carvajal, R., Gaitan, A. (2004). Aspectos toxicológicos relacionados con la utilización del cromo en el proceso productivo de curtiembres. Retrieved March 3, 2018, from http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo=29604&id_seccion=1979&id_ejemplar=3035&id_revista=121
Tenenbaum, D. (1997). The beauty of biosolids. Environmental Health Perspectives, 105(1), 32–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9074877
Tewari, N., Vasudevan, P., & Guha, B. K. (2005). Study on biosorption of Cr(VI) by Mucor hiemalis. Biochemical Engineering Journal, 23(2), 185–192. https://doi.org/10.1016/J.BEJ.2005.01.011
Thatoi, H., Das, S., Mishra, J., Rath, B. P., & Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. Journal of Environmental Management, 146, 383–399. https://doi.org/10.1016/j.jenvman.2014.07.014
Tigini, V., Bevione, F., Prigione, V., Poli, A., Ranieri, L., Spennati, F., … Varese, G. C. (2018). Tannery mixed liquors from an ecotoxicological and mycological point of view: Risks vs potential biodegradation application. Science of The Total Environment, 627, 835–843. https://doi.org/10.1016/J.SCITOTENV.2018.01.240
Torres, P. L., Parra, C. A. M., & Puentes, G. V. M. (2008). Estabilización alcalina de biosólidos compostados de plantas de tratamiento de aguas residuales domésticas para aprovechamiento agrícola. Revista Facultad Nacional de Agronomía - Medellín, 61(1), 4432–4444. Retrieved from http://www.redalyc.org/exportarcita.oa?id=179914077019
Tortorelli, M. ; H. D. (n.d.). Descripción de un protocolo estandarizado de toxicidad aguda para cladóceros (página 2) - Monografias.com. Retrieved February 23, 2018, from http://www.monografias.com/trabajos11/clado/clado2.shtml
Trottier, S., Blaise, C., Kusui, T., & Johnson, E. M. (1997). Acute toxicity assessment of aqueous samples using a microplate-basedHydra attenuata assay. Environmental Toxicology and Water Quality, 12(3), 265–271. https://doi.org/10.1002/(SICI)1098-2256(1997)12:3<265::AID-TOX10>3.0.CO;2-9
Turdean, G. (2011) Design and Development of Biosensors for the Detection of Heavy Metal Toxicity. International Journal of Electrochemistry Physical. Chemistry Department Babes Bolyai, University Napoca, Romania.
Troung, P. (2005). Application of the Vetiver system phytoremediation of mercury pollution in the lake and Yolo counties, northern California.
US Environmental Protection Agency (EPA) (1993) A Guide to the Biosolids. Risk Assessments for the EPA Part 503 Rule.
US Environmental Protection Agency EPA (2002) Nomination guidance biosolids exemplary. Management awards programs for operating projects, Technology Development Research and Public Acceptance.
US Environmental Protection Agency EPA (2003) Progress Report. Metal biosensors. Development and environmental testing.
US Environmental Protection Agency (EPA) (2012) Leyes y Normas: el proceso de reglamentación: EPA en español.
Verce, M. F., Stiles, A. R., Chong, K. C., & Terry, N. (2012). Isolation of an extremely boron-tolerant strain of Bacillus firmus.: EBSCOhost. https://doi.org/10.1139/W2012-049
Verma, J. P., Yadav, J., Tiwari, K. N., . L., & Singh, V. (2010). Impact of Plant Growth Promoting Rhizobacteria on Crop Production. International Journal of Agricultural Research, 5(11), 954–983. https://doi.org/10.3923/ijar.2010.954.983
Verma, T., Garg, S. K., & Ramteke, P. W. (2009). Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. Journal of Applied Microbiology, 107(5), 1425–1432. https://doi.org/10.1111/j.1365-2672.2009.04326.x
Villegas, L. B., Fernández, P. M., Amoroso, M. J., & de Figueroa, L. I. C. (2008). Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina. BioMetals, 21(5), 591–600. https://doi.org/10.1007/s10534-008-9145-8
Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. ., & Pigna, M. (2010). Mobility and Bioavailability of Heavy Metals and Metalloids in Soil Environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292. https://doi.org/10.4067/S0718-95162010000100005
Viti, C., Pace, A., & Giovannetti, L. (2003). Characterization of Cr(VI)-Resistant Bacteria Isolated from Chromium-Contaminated Soil by Tannery Activity. Current Microbiology, 46(1), 1–5. https://doi.org/10.1007/s00284-002-3800-z
Viti, C., Pace, A., & Giovannetti, L. (2003). Characterization of Cr(VI)-Resistant Bacteria Isolated from Chromium-Contaminated Soil by Tannery Activity. Current Microbiology, 46(1), 1–5.
Xu, W., Liu, Y., Zeng, G., Zhou, M., Fan, T., Wang, X., & Xia, W. (2009). Speciation of chromium in soil inoculated with Cr(VI)-reducing strain, Bacillus sp. XW-4. Journal of Central South University of Technology, 16(2), 253–257. https://doi.org/10.1007/s11771-009-0043-1
Yang, H., & Wang, H. Z. (2013). Adsorption of Nickel and Cobalt Ions on Magnesium Silicate. Advanced Materials Research, 726–731, 2855–2858. https://doi.org/10.4028/www.scientific.net/AMR.726-731.2855
Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2016.06.059
Zhang, K., Chen, Q., Luo, H. B., & Li, X. T. (2014). Accumulation of Chromium in Vetiveria zizanioides Assisted by Earthworm in Contaminated Soil. Advanced Materials Research, 989–994, 1313–1318. https://doi.org/10.4028/www.scientific.net/AMR.989-994.1313
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 167 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Doctorado en Ecología
dc.publisher.department.spa.fl_str_mv Departamento de Ciencias Forestales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79588/4/Tesis%20Doctorado%20en%20Ecolog%c3%ada
https://repositorio.unal.edu.co/bitstream/unal/79588/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79588/5/Tesis%20Doctorado%20en%20Ecolog%c3%ada.jpg
bitstream.checksum.fl_str_mv 31c166af30af25d3eae4c03153629a26
cccfe52f796b7c63423298c2d3365fc6
0cb3f186c3415dcc678919eec33d7337
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089841294442496
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ordúz Peralta, Sergioe35fb835286379572fd1a61b7cd91546Montoya Campuzano, Olga Inés4b04a4a60b5a0df6e629979838d9c079Ruíz Villadiego, , Orlando Simón8ee4ce4ae615b7a743eed98818fc2c2eVélez Zuluaga, Juan Albertofae8b2c22e678ed3b2cb358f9c29b40d2021-06-01T20:45:36Z2021-06-01T20:45:36Z2018https://repositorio.unal.edu.co/handle/unal/79588Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/La producción de biosólidos en la Planta de Tratamiento de Aguas Residuales (PTAR) San Fernando de propiedad de Empresas Públicas de Medellín (EPM) en Medellín, Antioquia, Colombia, está regulada por el Ministerio de Medio Ambiente Colombiano y custodiada por la autoridad regional ambiental Corporación Autónoma Regional del Centro de Antioquia (Corantioquia). Uno de los metales más cuestionados y vigilados en la producción de biosólidos en el mundo es el cromo derivado de múltiples actividades antrópicas, cuyas formas más significativas son la especie hexavalente (Cr6+) conocida por sus propiedades ácidas de naturaleza oxidante, que ocasiona daño a los tejidos y lesiones en los órganos, generando serios trastornos en la salud humana y animal con efectos mutagénicos, teratogénicos y carcinogénicos y la especie trivalente (Cr3+), considerada vital y necesaria para la síntesis de la glucosa, algunos lípidos y proteínas. Las posibilidades de oxidoreducción entre estas dos especies son motivo de serias discusiones y múltiples investigaciones, pero todavía son inciertos algunos de los mecanismos que influyen y gobiernan estas reacciones de doble vía. Cinco experimentos fueron llevados a cabo en la Universidad Nacional de Medellín tendientes a encontrar hongos y bacterias que fuesen capaces de crecer en medios de cultivo enriquecidos con cromo, con el objeto de aislarlos, purificarlos y multiplicarlos; para someterlos a concentraciones crecientes del metal, hasta encontrar la Concentración Mínima Inhibitoria (CMI), con el objeto de ser utilizados posteriormente como posibles alternativas biotecnológicas en la remediación de ambientes con presencia de cromo. Los microorganismos fueron obtenidos mediante aislados de aguas residuales de la empresa Curtiembres de Itagüí, Antioquia y de los biosólidos de la PTAR San Fernando, de los ceparios de la Universidad Nacional y de la Universidad de Antioquia, aportes de las empresas privadas Natural Control y Soluciones Microbiales para el Trópico; también se recurrió al interior del laboratorio a contaminantes ambientales colonizadores de un medio de cultivo enriquecido con cromo y fueron evaluados algunos fitopatógenos aleatorios obtenidos del cultivo del cacao. Aquellos organismos seleccionados por su cromotolerancia, fueron evaluados en forma de consorcio microbiano bajo invernadero, en macetas plásticas de 2 kilogramos de peso, con suelos contrastantes (Andisol e Inceptisol) y adiciones de biosólidos (20 Ton Ha-1) de la PTAR San Fernando, en presencia de una dosis alta de dicromato de potasio equivalente al doble de la CMI explorada (2.400 mg kg-1). Como planta bioindicadora se utilizó frijol arbustivo Phaseolus vulgaris durante todo el período vegetativo y reproductivo por 4 meses al cabo de los cuales se tomaron muestras de suelo rizosférico y no rizosférico con el propósito de llevar a cabo pruebas de metagenómica para rastrear la trazabilidad de las especies adicionadas y observar potenciales géneros nuevos que no hayan sido investigados. Los microorganismos que demostraron mayor potencial por su capacidad para remover cromo total o reducir cromo hexavalente a trivalente fueron caracterizados molecularmente en la Universidad de Antioquia y bioquímicamente en la Universidad Nacional, sede de Medellín mediante el empleo del Kit API y del sistema Biolog Microstation ID System. Posteriormente purificados y escalados y previa confrontación con los hallazgos de otros investigadores a nivel global, fueron empleados en pruebas de biotest de toxicidad, para confirmar su capacidad remediadora en presencia de silicato de magnesio y en ausencia de él como posible agente neutralizador del cromo en el suelo, usando prototipos no comerciales de Rhizotrones como herramientas de diagnóstico. Plantas de lechuga Lactuca sativa y lenteja Lens culinaris fueron empleadas como biosensores por su alta sensibilidad a los metales traza. Finalmente las bacterias Ochrobactrum antropi, O. intermedium, Bacillus amyloliquefacien, Bacillus cereus , B. megaterium, B. firmus; Staphylococcus saprophyticus y los hongos Scedosporium dehoogii, S. boydii, Paecilomyces lilacinus y Trichoderma sp., fueron elegidos como los organismos con mayor potencial para ser usados como bioremediadores de ambientes con presencia de cromo mediante la utilización de un biofiltro a través de un consorcio microbiano, o de manera individual empleados in situ, en combinación con correctivos que contengan silicatos de magnesio, dado su poder neutralizador de cromo en el suelo, como fue demostrado en este estudio.The biosolid production in the water treatment plant (PTAR) San Fernando property of EPM de Medellin is regulated by the environment minister of Colombia and monitored by the regional environment authority Corantioquia. One of the most questioned and guarded metals in the production of biosolids is Chrome. This metal originates in several anthropic activities and has as its most representative forms the hexavalent (Cr6+) species. This from is known for its acidic properties and oxidant nature, it produces damage to tissues and organ injuries generating serious disorders in human and animal health that include mutagenic, teratogenic and carcinogenic effects. The trivalent species (Cr3+) is considered vital and necessary for the synthesis of glucose, and some lipids and proteins. The possibilities of oxide reduction between these two species are object of serious discussions and multiple researches but the mechanisms that govern and influentiate these double way reactions are still uncertain. Five experiments were made in the Universidad Nacional de Medellin aiming to find fungus and bacteria that were able to grow in chrome enriched environment with the objective of aisle, purify and multiply them. Then they would be exposed to incremental concentration of the metal until finding the minimum inhibitory concentration (CMI), with the objective of using them in possible biotechnological alternatives aiming to remediate environments with chrome presence. The microorganisms where obtained by isolating samples from the company Curtiembres de Itagui and from the Biosolids of the PTAR San Fernando property of Empresas Públicas de Medellín (EPM), borrowings from the stumps of Universidad Nacional and Universidad de Antioquia, contributions from the private companies Natural Control and Soluciones Microbiales para el Tropico, environmental colonizer contaminants to the chrome enriched media where also used and some phytopathogens obtained randomly from cacao plantations where also evaluated. The microorganisms selected due to their chrome tolerance where exposed to react under a greenhouse microbiological consortium in plastic pots weighing 2kg. Contrasting soils (Andisol and Inceptisol) and added biosolids (20 Ton Ha-1) of the PTAR San Fernando un presence of a high dose of potassium dichromate equivalent to double of the explored CMI (2.400 mg kg-1). The arbustive bean Phaseolus vulgaris was used as a bioindicator, the whole vegetative and reproductive period was followed for a period of 4 moths during which samples of rizospheric and non rizospheric soil where taken with the purpose of developing metagenomics tests keeping track of the traceability of the added genera and observe potential new genera that haven’t been investigated. The microorganism that demonstrated a higher potential based on their capacity to remove total chrome, reduce hexavalent chrome to trivalent where characterized molecularly at the Universidad de Antioquia and biochemically at the Universidad Nacional using the API protocol and Biolog Microstation ID System. After a confrontation against other researchers at a global level the microorganisms where purified and escalated and then used in bio toxicity tests in order to confirm their corrective capacity in presence and absence of magnesium silicate as a possible neutralizing agent of Chrome in the soil, non-commercial prototypes of Rhizotrones where used to as diagnostic tools. Lettuce Lactuca sativa and lentil Lens culinaris where used as biosensors due to their high sensitivity to trace metals. Finally the bacteria Ochrobactrum antropi, O. intermedium, Bacillus amyloliquefacien, B. cereus, B. megaterium, B. firmus; Staphylococcus saprophyticus and fungus Scedosporium dehoogii, S. boydii, Paecilomyces lilacinus y Trichoderma sp. Where selected as the microorganisms with the highest potential to be used as bio-remediating agents for environments with chrome presence using them as a biofilter in a microbial consortium or in a individual way using them in situ in combination with correctives containing magnesium silicates due to its chrome neutralizing capacity as shown in this study.DoctoradoDoctor en Ecología167 páginasapplication/pdfspaUniversidad Nacional de Colombia - Sede MedellínMedellín - Ciencias Agrarias - Doctorado en EcologíaDepartamento de Ciencias ForestalesFacultad de Ciencias AgrariasMedellínUniversidad Nacional de Colombia - Sede Medellín570 - Biología660 - Ingeniería químicaBioremediaciónBiodegradación del aguaBacterias patogenasBioremediaciónBacterias remediadorasOxido-reducciónBiosólidosMetales PesadosBiosolidsBioremediationHexavalent ChromiumOxide-ReductionRemedial BacteriaRhizotronEstrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediaciónBiotechnological strategies to evaluate the presence of chromium in the generation of safe biosolids. Possible bioremediation alternativesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAcevedo, F. ; Espinosa, A. ; Rodríguez I, Rivera, M. ; Ávila, M. ; Wrobel ,K. ; Lappe, P.; Ulloa, M. ; Gutiérrez, J. (2006). Hexavalent chromium removal in Vitro and from industrial wastes, using chromate resistant strains of filamentous fungi indigenous to contaminated wastes. Can. J. Microbiol. 52 (9), 809-815.Achal, V., Kumari, D., & Pan, X. (2011). Bioremediation of Chromium Contaminated Soil by a Brown-rot Fungus, Gloeophyllum sepiarium. Research Journal of Microbiology, 6(2), 166–171. https://doi.org/10.3923/jm.2011.166.171Agency for Toxic Substances and Disease Registry (ATSDR) (1998) Toxicological Profile for Chromium. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.Ahluwalia, S. S., & Goyal, D. (2013). Microbial Waste Biomass for Removal of Chromium(VI) from Chrome Effluent. Bioremediation Journal, 17(3), 190–199. https://doi.org/10.1080/10889868.2013.807770Ahmed, E., Abdulla, H. M., Mohamed, A. H., & El-Bassuony, A. D. (2016). Remediation and recycling of chromium from tannery wastewater using combined chemical–biological treatment system. Process Safety and Environmental Protection, 104, 1–10. https://doi.org/10.1016/j.psep.2016.08.004Akram, M., Bhatti, H. N., Iqbal, M., Noreen, S., & Sadaf, S. (2017). Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies. Journal of Environmental Chemical Engineering, 5(1), 400–411. https://doi.org/10.1016/j.jece.2016.12.002Amorena, A. (1995). Plan integral de reutilización de los lodos de la depuradora de la comarca de Pamplona. Gestión y utilización de residuos urbanos para la Agricultura. Barcelona: Fundación la Caixa, pp. 45-53.Alekhya Iyengar, C., & Subbaiah Usha, M. (2016). Removal of chromium by Staphylococcus saprophyticus subsp. bovis strain 1. Biologija, 62(1). https://doi.org/10.6001/biologija.v62i1.3285Apte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121(1–3), 215–222. https://doi.org/10.1016/J.JHAZMAT.2005.02.010Aruoja, V. Kahru, A., Dubourguier, H. (2008). Toxicity of ZnO, TiO2 and CuO nanoparticles to microalgae Pseudokirchneriella subcapitata. Toxicology Letters, 180 (1) p 220.Asatiani, N. V., Abuladze, M. K., Kartvelishvili, T. M., Bakradze, N. G., Sapojnikova, N. A., Tsibakhashvili, N. Y., … Holman, H.-Y. (2004). Effect of Chromium(VI) Action on Arthrobacter oxydans. Current Microbiology, 49(5), 321–326. https://doi.org/10.1007/s00284-004-4351-2Avudainayagam, S., Megharaj, M., Owens, G., Kookana, R. S., Chittleborough, D., & Naidu, R. (2003). Chemistry of Chromium in Soils with Emphasis on Tannery Waste Sites (pp. 53–91). Springer, New York, NY. https://doi.org/10.1007/0-387-21728-2_3Azmat, R., & Khanum, R. (2005). Effect of Chromium Metal on the Uptakes of Mineral Atoms in Seedlings of Bean Plant Vigna radiata (L.) Wilckzek. Pakistan Journal of Biological Sciences, 8(2), 281–283. https://doi.org/10.3923/pjbs.2005.281.283Bachate, S. P., Nandre, V. S., Ghatpande, N. S., & Kodam, K. M. (2013). Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent. Chemosphere, 90(8), 2273–2278. https://doi.org/10.1016/j.chemosphere.2012.10.081Balls, M., Fentem, J., Jooint, E. (1992). Animal Experiments. Hobson Publishing, Cambridge. 2-15.Bartlett, R., & James, B. (1979). Behavior of Chromium in Soils: III. Oxidation1. Journal of Environment Quality, 8(1), 31. https://doi.org/10.2134/jeq1979.00472425000800010008xBedoya-Urrego, K., Acevedo-Ruíz, J. M., Peláez-Jaramillo, C. A., & Del Pilar Agudelo-López, S. (2013). Caracterización de biosólidos generados en la planta de tratamiento de agua residual San Fernando, Itagüí (Antioquia, Colombia) The characterization of biosolids produced by the San Fernando wastewater treatment plant in Itagui, Antioquia, Colombia. Rev. Salud pública.Enviado Para Modificación, 15(22), 778–790. Retrieved from http://www.scielo.org.co/pdf/rsap/v15n5/v15n5a13.pdfBeltrán-Pineda, M. E., & Gómez-Rodríguez, A. M. (2016). Biorremediación de Metales Pesados Cadmio (Cd), Cromo (Cr) y Mercurio (Hg), Mecanismos Bioquímicos e Ingeniería Genética: Una Revisión. Revista Facultad de Ciencias Básicas, 12(2), 172–197. https://doi.org/10.18359/RFCB.2027Bharagava, R. N., & Mishra, S. (2018). Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2017.08.040Bhattacharya, A., Gupta, A., Kaur, A., & Malik, D. (2014). Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Applied Microbiology and Biotechnology, 98(23). https://doi.org/10.1007/s00253-014-5910-5Bielefeldt, A. R., & Vos, C. (2014). Stability of biologically reduced chromium in soil. Journal of Environmental Chemical Engineering, 2(1). https://doi.org/10.1016/j.jece.2013.10.012Bishop, M. E., Glasser, P., Dong, H., Arey, B., & Kovarik, L. (2014). Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochimica et Cosmochimica Acta, 133, 186–203. https://doi.org/10.1016/j.gca.2014.02.040Brose, D. A., & James, B. R. (2008a). Oxidation-Reduction Transformations of Chromium in Electron-Shuttling Quinones in Chemical and Microbiological pathways, (Vi).Brose, D. A., & James, B. R. (2008b). Title of Thesis: Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones in chemical and microbiological pathways.Bulich, A., (1979). Use of luminiscent bacteria for determining toxicity in aquatic environments. Aquatic Toxicology. ASTM 667. L. L. Markings y R. A. Kimerle (Eds.). American Society for Testing Materials. 98- 106.Bulich, A. (1988) Analytical application of the MICROTOX system. Analytical Techniques and Residuals Management.Conference En:___WaterPollutionControlFederationSpecialty.19-20.AtlantaBusch, J., Mendelssohn, I. A., Lorenzen, B., Brix, H., & Miao, S. (2006). A rhizotron to study root growth under flooded conditions tested with two wetland Cyperaceae. Flora - Morphology, Distribution, Functional Ecology of Plants, 201(6), 429–439. https://doi.org/10.1016/J.FLORA.2005.08.007Cala, V., Cases, M. A., & Walter, I. (2005). Biomass production and heavy metal content of Rosmarinus officinalis grown on organic waste-amended soil. Journal of Arid Environments, 62(3), 401–412. https://doi.org/10.1016/J.JARIDENV.2005.01.007Calleja, M. ; Persoone, G. ( 1992). The potential of ecotoxicological tests for prediction of acute toxicity in man as avaluates on the first ten chemicals of the MEIC programme. 20 (3), 396-405.Cárdenas-González, J. F., Martínez-Juárez, V. M., & Acosta-Rodríguez, I. (2011). Remoción de Cromo (VI) por una Cepa de Paecilomyces sp Resistente a Cromato. Información Tecnológica, 22(4), 43–50. https://doi.org/10.4067/S0718-07642011000400006Cervantes, C., & Campos-García, J. (2007). Reduction and Efflux of Chromate by Bacteria. In Molecular Microbiology of Heavy Metals (pp. 407–419). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/7171_2006_087Chaney, R, y Giordano, P. (1977). Microelements as related to plant deficiencies and toxicities.Charrier, T., Durand, M., Affi, M., Jouanneau, S., Gezekel, H., Thouand, G., (2006). Bacterial Bioluminescent Biosensor Characterisation for On-line Monitoring of Heavy Metals Pollutions Waste Water Treatment Plant Effluents. University of Nantes. Department of Biology. Francia.Cheng, Y., Yan, F., Huang, F., Chu, W., Pan, D., Chen, Z., … Wu, Z. (2010). Bioremediation of Cr ( VI ) and Immobilization as Cr ( III ) by Ochrobactrum anthropi. Environmental Science & Technology, 44(16), 6357–6363. https://doi.org/10.1021/es100198vChoong, C. E., Ibrahim, S., Yoon, Y., & Jang, M. (2018). Removal of lead and bisphenol A using magnesium silicate impregnated palm-shell waste powdered activated carbon: Comparative studies on single and binary pollutant adsorption. Ecotoxicology and Environmental Safety, 148, 142–151. https://doi.org/10.1016/J.ECOENV.2017.10.025Coleman, R. N., & Qureshi, A. A. (1985). Microtox® andSpirillum volutans tests for assessing toxicity of environmental samples. Bulletin of Environmental Contamination and Toxicology, 35(1), 443–451. https://doi.org/10.1007/BF01636536Coreño-Alonso, A., Solé, A., Diestra, E., Esteve, I., Gutiérrez-Corona, J. F., Reyna López, G. E., … Tomasini, A. (2014). Mechanisms of interaction of chromium with Aspergillus niger var tubingensis strain Ed8. Bioresource Technology, 158, 188–192. https://doi.org/10.1016/j.biortech.2014.02.036Dáguer, G. P. (s.f.). Gestión de biosólidos en Colombia. Retrieved from http://www.bvsde.paho.org/bvsaar/fulltext/biosolidos.pdfDalzell, D. J. B., Alte, S., Aspichueta, E., de la Sota, A., Etxebarria, J., Gutierrez, M., … Christofi, N. (2002). A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere, 47(5), 535–545. https://doi.org/10.1016/S0045-6535(01)00331-9Das, A., Davis, M. A., & Rudel, L. L. (2008). Identification of putative active site residues of ACAT enzymes. Journal of Lipid Research, 49(8), 1770–1781. https://doi.org/10.1194/jlr.M800131-JLR200Das, S., Mishra, J., Das, S. K., Pandey, S., Rao, D. S., Chakraborty, A., … Thatoi, H. (2014). Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere, 96, 112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080De Flora, S., D’Agostini, F., Balansky, R., Micale, R., Baluce, B., & Izzotti, A. (2008). Lack of genotoxic effects in hematopoietic and gastrointestinal cells of mice receiving chromium(VI) with the drinking water. Mutation Research/Reviews in Mutation Research, 659(1–2), 60–67. https://doi.org/10.1016/J.MRREV.2007.11.005Duarte, B., Silva, V., & Caçador, I. (2012). Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicology and Environmental Safety, 83, 1–7. https://doi.org/10.1016/J.ECOENV.2012.04.026Dvorak, P. Benova, K. Vitek, J., (s.f.) Aternative Biotes on Artemia franciscana. University of veterinary and pharmaceutical Science, Czech Republic and Slovack republic.Faisal. M, & S. H. (2006). Harazdous Impact of Chromium on Environment and its Appropriate Remediations.Journalof Pharmacology and Toxicology, 1(3), 248–258. https://doi.org/10.3923/jpt.2006.248.258Felipo, M. (1.995) Reutilización de residuos urbanos y posible contaminación. Gestión y utilización de residuos urbanos para la agricultura. Madrid: Editorial Aedos. 23-36.Fukuda, T., Ishino, Y., Ogawa, A., Tsutsumi, K., & Morita, H. (2008). Cr(VI) reduction from contaminated soils by Aspergillus sp. N2 and Penicillium sp. N3 isolated from chromium deposits. The Journal of General and Applied Microbiology, 54(5), 295–303. https://doi.org/10.2323/jgam.54.295Gadd, G. M. (1993). Interactions of fungip with toxic metals. New Phytologist, 124(1), 25–60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.xGantzer, C., Gaspard, P., Galvez, L., Huyard, A., Dumouthier, N., & Schwartzbrod, J. (2001). Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Research, 35(16), 3763–70. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12230157Ghate, S., & Chaphekar, S. . (2000). Plagiochasma appendiculatum as a biotest for water quality assessment. Environmental Pollution, 108(2), 173–181. https://doi.org/10.1016/S0269-7491(99)00243-2Gómez, S., Torres, V., García, Y., Fraga, L. M., Sarduy, L., & Savón, L. L. (2012). Comparación de modelos de efectos fijos y mixto en el análisis de un experimento con cepas mutantes de hongos celulolíticos Trichoderma viride. Revista Cubana de Ciencia Agrícola, 46(2). Retrieved from http://www.redalyc.org/pdf/1930/193024447002.pdfGove, L., Cooke, C. M., Nicholson, F. A., & Beck, A. J. (2001). Movement of water and heavy metals (Zn, Cu, Pb and Ni) through sand and sandy loam amended with biosolids under steady-state hydrological conditions. Bioresource Technology, 78(2), 171–179. https://doi.org/10.1016/S0960-8524(01)00004-9Gruiz, K., Fenyvesi, É., Kriston, É., Molnár, M., & Horváth, B. (1996). Potential use of Cyclodextrins in Soil Bioremediation. In Proceedings of the Eighth International Symposium on Cyclodextrins (pp. 609–612). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-5448-2_133Guillén-Jiménez, F. de M., Morales-Barrera, L., Morales-Jiménez, J., Hernández-Rodríguez, C. H., & Cristiani-Urbina, E. (2008). Modulation of tolerance to Cr(VI) and Cr(VI) reduction by sulfate ion in a Candida yeast strain isolated from tannery wastewater. Journal of Industrial Microbiology & Biotechnology, 35(11), 1277–1287. https://doi.org/10.1007/s10295-008-0425-7Gutiérrez Corona, J. F., Espino Saldaña, Á. E., Coreño Alonso, A., Acevedo Aguilar, F. J., Reyna López, G. E., Fernández, F. J., … Wrobel, K. (2010). Mecanismos de interacción con cromo y aplicaciones biotecnológicas en hongos. Revista Latinoamericana de Biotecnología Amb Algal, 1(1), 47–63. Retrieved from http://www.ambientalex.info/revistas/Mecintcroaplbiohon.pdfHassan, S. H. A., Van Ginkel, S. W., & Oh, S.-E. (2012). Detection of Cr 6+ by the Sulfur Oxidizing Bacteria Biosensor: Effect of Different Physical Factors. Environmental Science & Technology, 46(14), 7844–7848. https://doi.org/10.1021/es301360aHindák, F., & Hindáková, A. (2008). Morphology and taxonomy of some rare chlorococcalean algae (Chlorophyta). Biologia, 63(6). https://doi.org/10.2478/s11756-008-0099-7Hlywka, J., Beck, M. , Bullerman, L. (1997). The Use of the Chicken Embryo Screening Test and Brine Shrimp (Artemia salina) Bioassays to Assess the Toxicity of Fumonisin B1 Mycotoxin. Food and Chemical Toxicology, 35(10-11), 991-999.Horbath, B. , Gruiz, K., Sara, B. (1996). Ecotoxicological testing of soil by four bacterial Biotest. Technical University of Budapest.Huang, G., Wang, W., & Liu, G. (2015). Simultaneous chromate reduction and azo dye decolourization by Lactobacillus paracase CL1107 isolated from deep sea sediment. Journal of Environmental Management, 157, 297–302. https://doi.org/10.1016/j.jenvman.2015.04.031Ilhan, S., Cabuk, A., Filik, C., Calikan, F., (2004). Effect of pretreatment on biosorption of heavy metals by fungal biomass. Trakya. Univ. J. Sc.Ivask, A., Virta, M., Kahru, A. (2002). Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium. Soil Biol. And Biochem. 34 (1439-1447).Javaid, M., & Sultan, S. (2013). Plant growth promotion traits and Cr (VI) reduction potentials of Cr (VI) resistant Streptomyces strains. Journal of Basic Microbiology, 53(5), 420–428. https://doi.org/10.1002/jobm.201200032Kang, C.-H., Kwon, Y.-J., & So, J.-S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64–69. https://doi.org/10.1016/j.ecoleng.2016.01.023Kasemets, K., Ivask, A., Dubourguier, H.-C., & Kahru, A. (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 23(6), 1116–1122. https://doi.org/10.1016/j.tiv.2009.05.015Kavita, B., & Keharia, H. (2012). Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech, 2(1), 79–87. https://doi.org/10.1007/s13205-011-0038-0Khambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Biosorption of Cr(VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World Journal of Microbiology and Biotechnology, 25(8), 1413–1421. https://doi.org/10.1007/s11274-009-0028-0Kotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution. https://doi.org/10.1016/S0269-7491(99)00168-2Ksheminska, H., Honchar, T., Gayda, G., & Gonchar, M. (2006). Extra-cellular chromate-reducing activity of the yeast cultures. Open Life Sciences, 1(1), 137–149. https://doi.org/10.2478/s11535-006-0009-3Kumral, E. (2007). “Speciation of Chromium in Waters Via Sol-Gel Preconcentration Prior To Atomic Spectrometric Determination”. master degree in chemistry, (July).Labunska, I., Brigden, K., Johnston, R., Santillo, P., & Ashton, D. &. (n.d.). Identificación y trascendencia ambiental de contaminantes orgánicos y metales pesados asociados con la curtiembre Arlei S.A., Las Toscas, Provincia de Santa Fe, Argentina 2000. Retrieved from http://www.greenpeace.org/argentina/Global/argentina/report/2006/4/identificaci-n-y-trascendencia-2.pdfLackner, M., Najafzadeh, M. J., Sun, J., Lu, Q., & Hoog, G. S. de. (2012). Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification. Applied and Environmental Microbiology, 78(1), 126–33. https://doi.org/10.1128/AEM.05280-11Lee, D.-J., Tay, J.-H., Hung, Y.-T., & He, P. J. (2005). Introduction to Sludge Treatment. In Physicochemical Treatment Processes (pp. 677–703). Totowa, NJ: Humana Press. https://doi.org/10.1385/1-59259-820-x:677Lewis,B., Levering, D. (2004). A high-level disinfection standard for land-applied sewage sludges (biosolids). Retrieved March 4, 2018, from https://www.thefreelibrary.com/Lewis%2c+David+Levering-a195Lovley, D. R. (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 14(2), 85–93. https://doi.org/10.1007/BF01569889Mahmoud, M. E., Yakout, A. A., Abdel-Aal, H., & Osman, M. M. (2015). Speciation and Selective Biosorption of Cr(III) and Cr(VI) Using Nanosilica Immobilized-Fungi Biosorbents. Journal of Environmental Engineering, 141(4), 4014079. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000899Mandal, K., Singh, B., Jariyal, M., & Gupta, V. K. (2014). Bioremediation of fipronil by a Bacillus firmus isolate from soil. Chemosphere, 101, 55–60. https://doi.org/10.1016/j.chemosphere.2013.11.043McDougall, W. B. (1916). The Growth of Forest Tree Roots. American Journal of Botany, 3(7), 384. https://doi.org/10.2307/2435018Megharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of Hexavalent Chromium and Its Reduction by Bacteria Isolated from Soil Contaminated with Tannery Waste. Current Microbiology, 47(1), 51–54. https://doi.org/10.1007/s00284-002-3889-0Montauban-González, R. (2013). Determinación de Cromo(III) y Cromo (VI) mediantes tecnicas electroquímicas de análisis, 2(Iii), 1–118.Mora Collazos, A. (2016). Bacillus sp. G3 un microorganismo promisorio en la biorremediación de aguas industriales contaminadas con cromo hexavalente. Nova Scientia, 8(17), 361. https://doi.org/10.21640/ns.v8i17.655Morales-Barrera, L., & Cristiani-Urbina, E. (2007). Hexavalent Chromium Removal by a Trichoderma inhamatum Fungal Strain Isolated from Tannery Effluent. Water, Air, and Soil Pollution, 187(1–4), 327–336. https://doi.org/10.1007/s11270-007-9520-zNendza, M. (2002). Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere, 48(8), 865–883. https://doi.org/10.1016/S0045-6535(02)00003-6Nepomuscene, N. J., Daniel, D., & Krastanov, A. (2007). Biosensor to detect chromium in wastewater. Biotechnology and Biotechnological Equipment, 21(3), 377–381. https://doi.org/10.1080/13102818.2007.10817477Nguyên-nhu, N. T., & Knoops, B. (2002). Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicology Letters, 135(3), 219–228. https://doi.org/10.1016/S0378-4274(02)00280-1Nicolotti, G., & Egli, S. (1998). Soil contamination by crude oil: impact on the mycorrhizosphere and on the revegetation potential of forest trees. Environmental Pollution, 99(1), 37–43. https://doi.org/10.1016/S0269-7491(97)00179-6Niculescu, M., Dana Ionita, A., & Filipescu, L. (2010). Bucureoti) 61 Nr. REV. CHIM, 2. Retrieved from http://www.revistadechimie.ro200Niculescu, M., Dana Ionita, A., & Filipescu, L. (2010). Bucureoti) ♦ 61♦ Nr. REV. CHIM, 2. Retrieved from http://www.revistadechimie.ro200Nies, D. H. (1999). Microbial heavy-metal resistance, 730–750.Overcash, M. R., Sims, R. C., Sims, J. L., Nieman, K. C., Overcash, M. R. ;, Sims, R. C. ;, … Nieman, C. (2005). Beneficial Reuse and Sustainability: The Fate of Organic Compounds in the Land-Applied Waste Recommended Citation Beneficial Reuse and Sustainability: The Fate of Organic Compounds in Land-Applied Waste. Retrieved from http://digitalcommons.usu.edu/bioeng_facpubPan, X., Liu, Z., Chen, Z., Cheng, Y., Pan, D., Shao, J., … Guan, X. (2014). Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633. Water Research, 55(Vi), 21–29. https://doi.org/10.1016/j.watres.2014.01.066Panda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian Journal of Plant Physiology, 17(1), 95–102. https://doi.org/10.1590/S1677-04202005000100008Pillichshammer, M., Pompel, T., Powder, R., Eller, K., Klima, J., & Schinner, F. (1995). Biosorption of chromium to fungi. Biometals, 8(2), 117–121. https://doi.org/10.1007/BF00142010Ratto, C. M. & L. M. (200)). Metales pesados por aplicacion de biosolidos en un hapludol de tucuman, republica Argentina ... Retrieved March 3, 2018, from https://www.researchgate.net/publication/237756197_Ramírez-Díaz, M. I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J., & Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium compounds. BioMetals, 21(3), 321–332. https://doi.org/10.1007/s10534-007-9121-8Ramírez-Ramírez, R., Calvo-Méndez, C., Ávila-Rodríguez, M., Lappe, P., Ulloa, M., Vázquez-Juárez, R., & Félix Gutiérrez-Coron, J. (2004). Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie van Leeuwenhoek, 85(1), 63–68. https://doi.org/10.1023/B:ANTO.0000020151.22858.7fReish, D., Oshida, O. (1987). Manual of Methods in aquatic environment research. Part 10. Short-term static bioassays . FAO, Rome Fisheries Technical Paper (247), pp 62.Sandana Mala, J. G., Sujatha, D., & Rose, C. (2015). Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiological Research, 170, 235–241. https://doi.org/10.1016/j.micres.2014.06.001Schmidt, B., Schafer, A. (2012). Development of a system to investigate the contamination level in soils by use of collembola as bioindicators. Aachen University. ThailandSchnoor, J. L. (n.d.). Ground-Water Remediation Technologies Analysis Center. Retrieved from https://clu-in.org/download/toolkit/phyto_e.pdfSemra Ilhan, Cansu Filik, Ahmet Çabuk, F. C. (2004). Effect of pretreatment on biosorption of heavy metals by fungal biomass (PDF Download Available). Retrieved February 24, om https://www.researchgate.net/publication/268186503_Effect_of_pretreatment_on_biosorption_of_heavy metals_by_fungal_biomassSemra Ilhan,Cansu Filik,Ahmet Çabuk, F. C. (2004). Effect of pretreatment on biosorption of heavy metals by fungal biomass (PDF Download Available). Retrieved February 24, 2018, from https://www.researchgate.net/publication/268186503_Effect_of_pretreatment_on_biosorption_of_heavy_metals_by_fungal_biomassSeoánez Calvo, M., & Gutiérrez de Ojesto, A. (1999). Aguas residuales : tratamiento por humedales artificiales : fundamentos científicos : tecnologías : diseño. Mundi-Prensa.Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. https://doi.org/10.1016/j.envint.2005.02.003Sharma, S., & Adholeya, A. (2012). Hexavalent Chromium Reduction in Tannery Effluent by Bacterial Species Isolated from Tannery Effluent Contaminated Soil. Journal of Environmental Science and Technology, 5(3), 142–154. https://doi.org/10.3923/jest.2012.142.154Sharma, S., & Malaviya, P. (2016). Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecological Engineering, 91, 419–425. https://doi.org/10.1016/j.ecoleng.2016.03.005Silva, J., Torrejón, G., Bay-Schmith, E., & Larrain, A. (n.d.). Calibration of the acute toxicity bioassay with daphnia pulex (crustacea:cladocera)using a reference toxicant. Retrieved from https://scielo.conicyt.cl/pdf/gayana/v67n1/art11.pdfSingh, N., Verma, T., & Gaur, R. (2013). Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent. African Journal of Biotechnology, 12(10), 1091–1103. https://doi.org/10.5897/AJB12.1636Singh, R., Dong, H., Liu, D., Zhao, L., Marts, A. R., Farquhar, E., … Briggs, B. R. (2016). Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochimica et Cosmochimica Acta, 148, 442–456. https://doi.org/10.1016/j.gca.2014.10.012.ReductionSmith, S. R. (2009). A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 35(1), 142–56. https://doi.org/10.1016/j.envint.2008.06.009Stein, K., & Schwedt, G. (1994a). Speciation of chromium in the waste water from a tannery. Fresenius’ Journal of Analytical Chemistry, 350(1–2), 38–43. https://doi.org/10.1007/BF00326250Sumner, E. R., Shanmuganathan, A., Sideri, T. C., Willetts, S. A., Houghton, J. E., & Avery, S. V. (2005). Oxidative protein damage causes chromium toxicity in yeast. Microbiology, 151(6), 1939–1948. https://doi.org/10.1099/mic.0.27945-0Tait, K., Sayer, J. A., Gharieb, M. M., & Gadd, G. M. (1999). Fungal production of calcium oxalate in leaf litter microcosms. Soil Biology and Biochemistry, 31(8), 1189–1192. https://doi.org/10.1016/S0038-0717(99)00008-5Tejeda-Benitez, L., Flegal, R., Odigie, K., & Olivero-Verbel, J. (2016). Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environmental Pollution, 212, 238–250. https://doi.org/10.1016/j.envpol.2016.01.057Telles-Mosquera, J. , Carvajal, R., Gaitan, A. (2004). Aspectos toxicológicos relacionados con la utilización del cromo en el proceso productivo de curtiembres. Retrieved March 3, 2018, from http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo=29604&id_seccion=1979&id_ejemplar=3035&id_revista=121Tenenbaum, D. (1997). The beauty of biosolids. Environmental Health Perspectives, 105(1), 32–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9074877Tewari, N., Vasudevan, P., & Guha, B. K. (2005). Study on biosorption of Cr(VI) by Mucor hiemalis. Biochemical Engineering Journal, 23(2), 185–192. https://doi.org/10.1016/J.BEJ.2005.01.011Thatoi, H., Das, S., Mishra, J., Rath, B. P., & Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. Journal of Environmental Management, 146, 383–399. https://doi.org/10.1016/j.jenvman.2014.07.014Tigini, V., Bevione, F., Prigione, V., Poli, A., Ranieri, L., Spennati, F., … Varese, G. C. (2018). Tannery mixed liquors from an ecotoxicological and mycological point of view: Risks vs potential biodegradation application. Science of The Total Environment, 627, 835–843. https://doi.org/10.1016/J.SCITOTENV.2018.01.240Torres, P. L., Parra, C. A. M., & Puentes, G. V. M. (2008). Estabilización alcalina de biosólidos compostados de plantas de tratamiento de aguas residuales domésticas para aprovechamiento agrícola. Revista Facultad Nacional de Agronomía - Medellín, 61(1), 4432–4444. Retrieved from http://www.redalyc.org/exportarcita.oa?id=179914077019Tortorelli, M. ; H. D. (n.d.). Descripción de un protocolo estandarizado de toxicidad aguda para cladóceros (página 2) - Monografias.com. Retrieved February 23, 2018, from http://www.monografias.com/trabajos11/clado/clado2.shtmlTrottier, S., Blaise, C., Kusui, T., & Johnson, E. M. (1997). Acute toxicity assessment of aqueous samples using a microplate-basedHydra attenuata assay. Environmental Toxicology and Water Quality, 12(3), 265–271. https://doi.org/10.1002/(SICI)1098-2256(1997)12:3<265::AID-TOX10>3.0.CO;2-9Turdean, G. (2011) Design and Development of Biosensors for the Detection of Heavy Metal Toxicity. International Journal of Electrochemistry Physical. Chemistry Department Babes Bolyai, University Napoca, Romania.Troung, P. (2005). Application of the Vetiver system phytoremediation of mercury pollution in the lake and Yolo counties, northern California.US Environmental Protection Agency (EPA) (1993) A Guide to the Biosolids. Risk Assessments for the EPA Part 503 Rule.US Environmental Protection Agency EPA (2002) Nomination guidance biosolids exemplary. Management awards programs for operating projects, Technology Development Research and Public Acceptance.US Environmental Protection Agency EPA (2003) Progress Report. Metal biosensors. Development and environmental testing.US Environmental Protection Agency (EPA) (2012) Leyes y Normas: el proceso de reglamentación: EPA en español.Verce, M. F., Stiles, A. R., Chong, K. C., & Terry, N. (2012). Isolation of an extremely boron-tolerant strain of Bacillus firmus.: EBSCOhost. https://doi.org/10.1139/W2012-049Verma, J. P., Yadav, J., Tiwari, K. N., . L., & Singh, V. (2010). Impact of Plant Growth Promoting Rhizobacteria on Crop Production. International Journal of Agricultural Research, 5(11), 954–983. https://doi.org/10.3923/ijar.2010.954.983Verma, T., Garg, S. K., & Ramteke, P. W. (2009). Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. Journal of Applied Microbiology, 107(5), 1425–1432. https://doi.org/10.1111/j.1365-2672.2009.04326.xVillegas, L. B., Fernández, P. M., Amoroso, M. J., & de Figueroa, L. I. C. (2008). Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina. BioMetals, 21(5), 591–600. https://doi.org/10.1007/s10534-008-9145-8Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. ., & Pigna, M. (2010). Mobility and Bioavailability of Heavy Metals and Metalloids in Soil Environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292. https://doi.org/10.4067/S0718-95162010000100005Viti, C., Pace, A., & Giovannetti, L. (2003). Characterization of Cr(VI)-Resistant Bacteria Isolated from Chromium-Contaminated Soil by Tannery Activity. Current Microbiology, 46(1), 1–5. https://doi.org/10.1007/s00284-002-3800-zViti, C., Pace, A., & Giovannetti, L. (2003). Characterization of Cr(VI)-Resistant Bacteria Isolated from Chromium-Contaminated Soil by Tannery Activity. Current Microbiology, 46(1), 1–5.Xu, W., Liu, Y., Zeng, G., Zhou, M., Fan, T., Wang, X., & Xia, W. (2009). Speciation of chromium in soil inoculated with Cr(VI)-reducing strain, Bacillus sp. XW-4. Journal of Central South University of Technology, 16(2), 253–257. https://doi.org/10.1007/s11771-009-0043-1Yang, H., & Wang, H. Z. (2013). Adsorption of Nickel and Cobalt Ions on Magnesium Silicate. Advanced Materials Research, 726–731, 2855–2858. https://doi.org/10.4028/www.scientific.net/AMR.726-731.2855Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2016.06.059Zhang, K., Chen, Q., Luo, H. B., & Li, X. T. (2014). Accumulation of Chromium in Vetiveria zizanioides Assisted by Earthworm in Contaminated Soil. Advanced Materials Research, 989–994, 1313–1318. https://doi.org/10.4028/www.scientific.net/AMR.989-994.1313Generación de Biosólidos SegurosEmpresas Públicas de Medellín EPMORIGINALTesis Doctorado en EcologíaTesis Doctorado en Ecologíaapplication/pdf39831422https://repositorio.unal.edu.co/bitstream/unal/79588/4/Tesis%20Doctorado%20en%20Ecolog%c3%ada31c166af30af25d3eae4c03153629a26MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79588/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAILTesis Doctorado en Ecología.jpgTesis Doctorado en Ecología.jpgGenerated Thumbnailimage/jpeg4124https://repositorio.unal.edu.co/bitstream/unal/79588/5/Tesis%20Doctorado%20en%20Ecolog%c3%ada.jpg0cb3f186c3415dcc678919eec33d7337MD55unal/79588oai:repositorio.unal.edu.co:unal/795882024-07-20 23:10:49.96Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==