Niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisis

ilustraciones, graficas

Autores:
Ramírez Camacho, Oscar Javier
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81421
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81421
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::616 - Enfermedades
Citocinas
Cytokines
Asthma
Asma
TSLP: Lifopoyetina del estroma Timico
CLI: Células linfoides innatas
VEF1/CVF Volumen espiratorio forzado en el primer segundo / capacidad vital funcional
Th2: Linfocitos T helper Tipo 2
TSLP: Thymic stromal lipopoietin
ILC: Innate lymphoid cells
FEV1/FVC Forced expiratory volume in 1 second / functional vital capacity
Th2: Type 2 helper T lymphocytes
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_0a0115a4760481ac66cb7bbe9a256928
oai_identifier_str oai:repositorio.unal.edu.co:unal/81421
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisis
dc.title.translated.eng.fl_str_mv TSLP levels and disease control in patients diagnosed with asthma. Systematic review and meta-analysis
dc.title.translated.none.fl_str_mv TSLP levels and disease control in patients diagnosed with asthma, systematic review and meta-analysis
title Niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisis
spellingShingle Niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisis
610 - Medicina y salud::616 - Enfermedades
Citocinas
Cytokines
Asthma
Asma
TSLP: Lifopoyetina del estroma Timico
CLI: Células linfoides innatas
VEF1/CVF Volumen espiratorio forzado en el primer segundo / capacidad vital funcional
Th2: Linfocitos T helper Tipo 2
TSLP: Thymic stromal lipopoietin
ILC: Innate lymphoid cells
FEV1/FVC Forced expiratory volume in 1 second / functional vital capacity
Th2: Type 2 helper T lymphocytes
title_short Niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisis
title_full Niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisis
title_fullStr Niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisis
title_full_unstemmed Niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisis
title_sort Niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisis
dc.creator.fl_str_mv Ramírez Camacho, Oscar Javier
dc.contributor.advisor.none.fl_str_mv Montilla Velásquez, Maria del Pilar
Henao, Sandra Patricia
dc.contributor.author.none.fl_str_mv Ramírez Camacho, Oscar Javier
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::616 - Enfermedades
topic 610 - Medicina y salud::616 - Enfermedades
Citocinas
Cytokines
Asthma
Asma
TSLP: Lifopoyetina del estroma Timico
CLI: Células linfoides innatas
VEF1/CVF Volumen espiratorio forzado en el primer segundo / capacidad vital funcional
Th2: Linfocitos T helper Tipo 2
TSLP: Thymic stromal lipopoietin
ILC: Innate lymphoid cells
FEV1/FVC Forced expiratory volume in 1 second / functional vital capacity
Th2: Type 2 helper T lymphocytes
dc.subject.other.sp.fl_str_mv Citocinas
dc.subject.other.eng.fl_str_mv Cytokines
Asthma
dc.subject.other.spa.fl_str_mv Asma
dc.subject.proposal.spa.fl_str_mv TSLP: Lifopoyetina del estroma Timico
CLI: Células linfoides innatas
VEF1/CVF Volumen espiratorio forzado en el primer segundo / capacidad vital funcional
Th2: Linfocitos T helper Tipo 2
dc.subject.proposal.eng.fl_str_mv TSLP: Thymic stromal lipopoietin
ILC: Innate lymphoid cells
FEV1/FVC Forced expiratory volume in 1 second / functional vital capacity
Th2: Type 2 helper T lymphocytes
description ilustraciones, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-22
dc.date.accessioned.none.fl_str_mv 2022-03-30T21:47:33Z
dc.date.available.none.fl_str_mv 2022-03-30T21:47:33Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81421
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81421
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Global Initiative for Asthma - GINA. Global Initiative for Asthma [Internet]. 2019 [citado 6 de noviembre de 2019]. Disponible en: https://ginasthma.org/
2. Dennis RJ, Caraballo L, García E, Rojas MX, Rondon MA, Pérez A, et al. Prevalence of asthma and other allergic conditions in Colombia 2009–2010: a cross-sectional study. BMC Pulmonary Medicine. 2 de mayo de 2012;12(1):17.
3. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. mayo de 2012;18(5):716-25.
4. Braido F, Tiotiu A, Kowal K, Mihaicuta S, Novakova P, Oguzulgen I. Phenotypes/endotypes-driven treatment in asthma. Current Opinion in Allergy and Clinical Immunology. junio de 2018;18(3):184-9
5. Chung KF, Adcock IM. Clinical phenotypes of asthma should link up with disease mechanisms. [Miscellaneous Article]. Current Opinion in Allergy & Clinical Immunology. febrero de 2015;15(1):56-62.
6. Bel EH. Clinical phenotypes of asthma. Current Opinion in Pulmonary Medicine. enero de 2004;10(1):44-50.
7. The immunology of asthma | Nature Immunology [Internet]. [citado 12 de noviembre de 2019]. Disponible en: https://www.nature.com/articles/ni.3049
8. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 15 de febrero de 2010;181(4):315-23.
9. Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. diciembre de 2019;46:101333.
10. Brusselle GG, Maes T, Bracke KR. Eosinophils in the Spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nature Medicine. 6 de agosto de 2013;19:977-9.
11. Nakagome K, Nagata M. Involvement and Possible Role of Eosinophils in Asthma Exacerbation. Front Immunol. 28 de septiembre de 2018;9:2220.
12. Amin K. The role of mast cells in allergic inflammation. Respiratory Medicine. 1 de enero de 2012;106(1):9-14.
13. Muto T., Fukuoka A., Matsushita K., Yoshimoto T. The role of basophils and pro-allergic cytokines, TSLP and IL-33, in cutaneously-sensitized food allergy. J Allergy Clin Immunol. 2015;135(2):AB201
14. Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. mayo de 2012;18(5):684-92.
15. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. abril de 2009;15(4):410-6
16. McKenzie ANJ. Type-2 Innate Lymphoid Cells in Asthma and Allergy. Annals ATS. 1 de diciembre de 2014;11(Supplement 5):S263-70.
17. Leonard WJ. TSLP: finally in the limelight. Nature Immunology. julio de 2002;3(7):605-7.
18. Corren J., Ziegler S.F. TSLP: from allergy to cancer. Nat Immunol. 2019;20(12):1603-9.
19. Watson B, Gauvreau GM. Thymic stromal lymphopoietin: a central regulator of allergic asthma. Expert Opinion on Therapeutic Targets. 1 de julio de 2014;18(7):771-85.
20. Ziegler SF. The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Current Opinion in Immunology. 1 de diciembre de 2010;22(6):795-9
21. West EE, Kashyap M, Leonard WJ. TSLP: A Key Regulator of Asthma Pathogenesis. Drug Discov Today Dis Mech. 1 de diciembre de 2012;9(3-4).
22. Matera MG, Rogliani P, Calzetta L, Cazzola M. TSLP Inhibitors for Asthma: Current Status and Future Prospects. Drugs. abril de 2020;80(5):449-58.
23. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLP. Nature Immunology. julio de 2002;3(7):673-80.
24. Medoff BD, Landry AL, Wittbold KA, Sandall BP, Derby MC, Cao Z, et al. CARMA3 Mediates Lysophosphatidic Acid–Stimulated Cytokine Secretion by Bronchial Epithelial Cells. Am J Respir Cell Mol Biol. 1 de marzo de 2009;40(3):286-94.
25. Lee H-C, Ziegler SF. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. PNAS. 16 de enero de 2007;104(3):914-9.
26. Park LS, Martin U, Garka K, Gliniak B, Santo JPD, Muller W, et al. Cloning of the Murine Thymic Stromal Lymphopoietin (Tslp) Receptor: Formation of a Functional Heteromeric Complex Requires Interleukin 7 Receptor. Journal of Experimental Medicine. 5 de septiembre de 2000;192(5):659-70.
27. Nagata Y, Kamijuku H, Taniguchi M, Ziegler S, Seino K. Differential Role of Thymic Stromal Lymphopoietin in the Induction of Airway Hyperreactivity and Th2 Immune Response in Antigen-Induced Asthma with Respect to Natural Killer T Cell Function. IAA. 2007;144(4):305-14.
28. Noti M, Tait Wojno ED, Kim BS, Siracusa MC, Giacomin PR, Nair MG, et al. TSLP-elicited basophil responses can mediate the pathogenesis of eosinophilic esophagitis. Nat Med. agosto de 2013;19(8):1005-13.
29. Allakhverdi Z, Comeau MR, Jessup HK, Yoon B-RP, Brewer A, Chartier S, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. Journal of Experimental Medicine. 19 de febrero de 2007;204(2):253-8.
30. Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA, et al. TSLP promotes IL-3-independent basophil hematopoiesis and type 2 inflammation. Nature. 14 de agosto de 2011;477(7363):229-33.
31. Camelo A, Rosignoli G, Ohne Y, Stewart RA, Overed-Sayer C, Sleeman MA, et al. IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv. 30 de marzo de 2017;1(10):577-89.
32. Kitajima M, Lee H-C, Nakayama T, Ziegler SF. TSLP enhances the function of helper type 2 cells. European Journal of Immunology. 2011;41(7):1862-71.
33. Nguyen KD, Vanichsarn C, Nadeau KC. TSLP directly impairs pulmonary Treg function: association with aberrant tolerogenic immunity in asthmatic airway. Allergy Asthma Clin Immunol. 15 de marzo de 2010;6(1):4.
34. Levin SD, Koelling RM, Friend SL, Isaksen DE, Ziegler SF, Perlmutter RM, et al. Thymic Stromal Lymphopoietin: A Cytokine That Promotes the Development of IgM+ B Cells In Vitro and Signals Via a Novel Mechanism. The Journal of Immunology. 15 de enero de 1999;162(2):677-83
35. Al-Shami A, Spolski R, Kelly J, Keane-Myers A, Leonard WJ. A role for TSLP in the development of inflammation in an asthma model. J Exp Med. 19 de septiembre de 2005;202(6):829-39.
36. Zhou B, Comeau MR, Smedt TD, Liggitt HD, Dahl ME, Lewis DB, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nature Immunology. octubre de 2005;6(10):1047-53.
37. Shi L, Leu S-W, Xu F, Zhou X, Yin H, Cai L, et al. Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clinical Immunology. 1 de noviembre de 2008;129(2):202-10.
38. Chen Z-G, Zhang T-T, Li H-T, Chen F-H, Zou X-L, Ji J-Z, et al. Neutralization of TSLP Inhibits Airway Remodeling in a Murine Model of Allergic Asthma Induced by Chronic Exposure to House Dust Mite. PLoS One [Internet]. 2 de enero de 2013 [citado 25 de noviembre de 2019];8(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534685/
39. Cheng DT, Ma C, Niewoehner J, Dahl M, Tsai A, Zhang J, et al. Thymic stromal lymphopoietin receptor blockade reduces allergic inflammation in a cynomolgus monkey model of asthma. Journal of Allergy and Clinical Immunology. 1 de agosto de 2013;132(2):455-62.
40. Seshasayee D, Lee WP, Zhou M, Shu J, Suto E, Zhang J, et al. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J Clin Invest. 3 de diciembre de 2007;117(12):3868-78.
41. Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, et al. Tezepelumab in Adults with Uncontrolled Asthma. New England Journal of Medicine. 7 de septiembre de 2017;377(10):936-46.
42. Reddel HK, Taylor DR, Bateman ED, Boulet L-P, Boushey HA, Busse WW, et al. An Official American Thoracic Society/European Respiratory Society Statement: Asthma Control and Exacerbations. Am J Respir Crit Care Med. 1 de julio de 2009;180(1):59-99.
43. Schatz M, Sorkness CA, Li JT, Marcus P, Murray JJ, Nathan RA, et al. Asthma Control Test: Reliability, validity, and responsiveness in patients not previously followed by asthma specialists. Journal of Allergy and Clinical Immunology. 1 de marzo de 2006;117(3):549-56
44. Paplińska-Goryca M, Nejman-Gryz P, Proboszcz M, Kwiecień I, Hermanowicz-Salamon J, Grabczak EM, et al. Expression of TSLP and IL-33 receptors on sputum macrophages of asthma patients and healthy subjects. J Asthma. 27 de diciembre de 2018;1-10
45. Bousquet J, Clark TJH, Hurd S, Khaltaev N, Lenfant C, O’byrne P, et al. GINA guidelines on asthma and beyond. Allergy. febrero de 2007;62(2):102-12. 46. Zotero | Your personal research assistant [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://www.zotero.org/
46. Zotero | Your personal research assistant [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://www.zotero.org
47. Rayyan QCRI, the Systematic Reviews web app [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://rayyan.qcri.org/welcome
48. Ottawa Hospital Research Institute [Internet]. [citado 17 de agosto de 2020]. Disponible en: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
49. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ [Internet]. 12 de octubre de 2016 [citado 14 de noviembre de 2019];355. Disponible en: https://www.bmj.com/content/355/bmj.i4919
50. DigitizeIt - Plot Digitizer Software. Digitize graphs, charts and math data. [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://www.digitizeit.de/
51. Cochrane Collaboration. Review manager (RevMan)[computer program]. 2014;
52. Stata: Software for Statistics and Data Science [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://www.stata.com/
53. R: The R Project for Statistical Computing [Internet]. [citado 9 de octubre de 2019]. Disponible en: https://www.r-project.org/
54. Chai R, Liu B, Qi F. The significance of the levels of IL-4, IL-31 and TLSP in patients with asthma and/or rhinitis. Immunotherapy. marzo de 2017;9(4):331-7.
55. Gankovskaya L.V., Namazova-Baranova L.S., Poriadin G.V., Grechenko V.V., Gankovsky V.A., Alekseeva A.A., et al. Changes of innate immunity indexes in severe asthma in children. Med Immunol. 2019;21(1):99-106.
56. Bleck B, Kazeros A, Bakal K, Garcia-Medina L, Adams A, Liu M, et al. Coexpression of type 2 immune targets in sputum-derived epithelial and dendritic cells from asthmatic subjects. J Allergy Clin Immunol. septiembre de 2015;136(3):619-627.e5.
57. Górska K, Nejman-Gryz P, Paplińska-Goryca M, Proboszcz M, Krenke R. Comparison of Thymic Stromal Lymphopoietin Concentration in Various Human Biospecimens from Asthma and COPD Patients Measured with Two Different ELISA Kits. Adv Exp Med Biol. 2017;955:19-27.
58. Chauhan A, Singh M, Agarwal A, Paul N. Correlation of TSLP, IL-33, and CD4 + CD25 + FOXP3 + T regulatory (Treg) in pediatric asthma. J Asthma. 2015;52(9):868-72.
59. Li Y, Wang W, Lv Z, Li Y, Chen Y, Huang K, et al. Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. J Immunol. 1 de abril de 2018;200(7):2253-62.
60. Ma S-L, Zhang L. Elevated serum OX40L is a biomarker for identifying corticosteroid resistance in pediatric asthmatic patients. BMC Pulm Med. 19 de marzo de 2019;19(1):66.
61. Cheng D, Xue Z, Yi L, Shi H, Zhang K, Huo X, et al. Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am J Respir Crit Care Med. 15 de septiembre de 2014;190(6):639-48.
62. Ying S, O’Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 15 de agosto de 2008;181:2790-8.
63. Paplińska-Goryca M, Nejman-Gryz P, Proboszcz M, Kwiecień I, Hermanowicz-Salamon J, Grabczak EM, et al. Expression of TSLP and IL-33 receptors on sputum macrophages of asthma patients and healthy subjects. J Asthma. enero de 2020;57(1):1-10.
64. Lee T-J, Fu C-H, Wang C-H, Huang C-C, Huang C-C, Chang P-H, et al. Impact of chronic rhinosinusitis on severe asthma patients. PLoS One. 2017;12(2):e0171047.
65. Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol. enero de 2012;129(1):104-111.e1-9.
66. Berraïes A, Hamdi B, Ammar J, Hamzaoui K, Hamzaoui A. Increased expression of thymic stromal lymphopoietin in induced sputum from asthmatic children. Immunol Lett. octubre de 2016;178:85-91.
67. Glück J, Rymarczyk B, Kasprzak M, Rogala B. Increased Levels of Interleukin-33 and Thymic Stromal Lymphopoietin in Exhaled Breath Condensate in Chronic Bronchial Asthma. Int Arch Allergy Immunol. 2016;169(1):51-6.
68. Lai T, Wu D, Li W, Chen M, Yi Z, Huang D, et al. Interleukin-31 expression and relation to disease severity in human asthma. Sci Rep. 9 de marzo de 2016;6:22835.
69. Kaur D, Doe C, Woodman L, Heidi Wan W-Y, Sutcliffe A, Hollins F, et al. Mast cell-airway smooth muscle crosstalk: the role of thymic stromal lymphopoietin. Chest. julio de 2012;142(1):76-85.
70. Wang J, Lv H, Luo Z, Mou S, Liu J, Liu C, et al. Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir Res. 27 de marzo de 2018;19(1):47.
71. Koussih L, Ali A, Shan L, Becker A, Gounni AS. Serum level of thymic stromal lymphopoietin in allergic asthmatic children. Clin Immunol. noviembre de 2012;145(2):92-3.
72. Liu S, Verma M, Michalec L, Liu W, Sripada A, Rollins D, et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J Allergy Clin Immunol. enero de 2018;141(1):257-268.e6.
73. Han X-M, Cheng Y-Y, Gong Y-F, Jiang M-M. The correlation between children’s status asthmatics and interstitial lung disease. Eur Rev Med Pharmacol Sci. noviembre de 2016;20(22):4761-5.
74. Ying S, O’Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174(10):8183-90.
75. Semlali A, Jacques E, Koussih L, Gounni AS, Chakir J. Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13-dependent pathway. J Allergy Clin Immunol. abril de 2010;125(4):844-50.
76. Ferreira DS, Annoni R, Silva LFF, Buttignol M, Santos ABG, Medeiros MCR, et al. Toll-like receptors 2, 3 and 4 and thymic stromal lymphopoietin expression in fatal asthma. Clin Exp Allergy. octubre de 2012;42(10):1459-71.
77. Lin S-C, Huang J-J, Wang J-Y, Chuang H-C, Chiang B-L, Ye Y-L. Upregulated thymic stromal lymphopoietin receptor expression in children with asthma. Eur J Clin Invest. junio de 2016;46(6):511-9.
78. Salter BMA, Smith SG, Mukherjee M, Plante S, Krisna S, Nusca G, et al. Human Bronchial Epithelial Cell-derived Factors from Severe Asthmatic Subjects Stimulate Eosinophil Differentiation. Am J Respir Cell Mol Biol. enero de 2018;58(1):99-106.
79. Wang W., Li Y., Lv Z., Chen Y., Li Y., Ying S. Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol. 2018;201(8):2221-31.
80. Bjerregaard A, Laing IA, Poulsen N, Backer V, Sverrild A, Fally M, et al. Characteristics associated with clinical severity and inflammatory phenotype of naturally occurring virus-induced exacerbations of asthma in adults. Respir Med. febrero de 2017;123:34-41.
81. Al-Sajee D., Price E., Yin H., Howie K.J., O’Byrne P.M., Lima H., et al. Expression profile of IL-33/ST2 and TSLP/TSLP-R in the skin of atopic dermatitis post-allergen exposure. J Allergy Clin Immunol. 2018;141(2):AB187.
82. Kalinauskaite-Zukauske V, Janulaityte I, Januskevicius A, Malakauskas K. Serum levels of epithelial-derived mediators and interleukin-4/interleukin-13 signaling after bronchial challenge with Dermatophagoides pteronyssinus in patients with allergic asthma. Scand J Immunol. noviembre de 2019;90(5):e12820.
83. Machida K, Aw M, Salter BM, Ju X, Mukherjee M, Gauvreau GM, et al. Role of TL1A/DR3 Axis in the Activation of ILC2s in Eosinophilic Asthmatics. Am J Respir Crit Care Med. 25 de junio de 2020
84. Tsurikisawa N, Oshikata C, Sato T, Kimura G, Mizuki M, Tsuburai T, et al. Low Variability in Peak Expiratory Flow Predicts Successful Inhaled Corticosteroid Step-Down in Adults with Asthma. J Allergy Clin Immunol Pract. junio de 2018;6(3):972-9.
85. Debley J.S., Cochrane E.S., Ohanian A., Ziegler S.F., Redding G.J. Pro-remodeling and immunoregulatory-associated cytokine production by airway epithelial cells from asthmatic children. Am J Respir Crit Care Med [Internet]. 2010;181(1). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L70838542
86. Reese A., Favoreto S., Quraishi J., Biyasheva A., Shen J., Greiman A., et al. Higher rhinovirus-induced production of TSLP in nasal epithelial cells from asthmatic than healthy subjects. J Allergy Clin Immunol. 2011;127(2):AB22.
87. Kazeros A., Bleck B., Lee R.A., Tse D.B., Chung S., Chiu A., et al. In situ upregulation of thymic stromal lymphopoietin in sputum epithelial cells in asthma. Am J Respir Crit Care Med [Internet]. 2012;185((Kazeros A.; Bleck B.; Lee R.A.; Tse D.B.; Reibman J.) NYU School of Medicine/Bellevue Hospital, New York, NY, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L71987371
88. Bell M.C., Grindle K.A., Tisler C.J., Lemanske R.F., Gern J.E. Serum TSLP and IL-33 levels are lower in young children raised on farms. J Allergy Clin Immunol. 2012;129(2):AB198.
89. Elliott M., Iwanaga K., Hauri M., Aye T., Ziegler S., Debley J. TSLP and IL-33 expression by bronchial epithelial cells from asthmatic children in response to RSV infection. Am J Respir Crit Care Med [Internet]. 2012;185((Elliott M.) Seattle Children’s Hospital, Seattle, WA, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L71988516
90. Iijima H., Kaneko Y., Yamada H., Yatagai Y., Masuko H., Sakamoto T., et al. A distinct sensitization pattern associated with asthma and the thymic stromal lymphopoietin (TSLP) genotype. Allergol Int. 2013;62(1):123-30.
91. Bleck B., Kazeros A., Lymaris G.-M., Adams A., Grunig G., Reibman J. In situ expression of human OX40L/TNFSF4 is up-regulated in sputum-derived myeloid dendritic cells from asthma cases compared to controls. Am J Respir Crit Care Med [Internet]. 2013;187((Bleck B., bertram.bleck@nyumc.org; Lymaris G.-M.; Adams A.) New York University, School of Medicine, New York, NY, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L71983648
92. Kabata H, Moro K, Fukunaga K, Suzuki Y, Miyata J, Masaki K, et al. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun. 2013;4:2675.
93. Froidure A., Shen C., Pilette C. Up-regulation of thymic stromal lymphopoietin receptor on myeloid dendritic cells from atopic asthmatics. Allergy Eur J Allergy Clin Immunol. 2013;68((Froidure A.; Shen C.; Pilette C.) Institut de Recherche Expérimentale et Clinique, Pôle de Pneumologie, Université Catholique de Louvain, Brussels, Belgium):77.
94. Demehri S., Yockey L.J., Visness C.M., Jaffee K.F., Turkoz A., Wood R.A., et al. Circulating TSLP associates with decreased wheezing in non-atopic children. J Invest Dermatol. 2013;133((Demehri S.; Yockey L.J.; Turkoz A.; Kopan R.) Medicine, Division of Dermatology, Washington University, School of Medicine, St. Louis, MO, United States):S173
95. Bleck B., Kazeros A., Bakal K., Reibman J. In situ upregulation of TSLP and TSLP-target genes in simultaneously enriched sputum-derived human bronchial epithelial and dendritic cells in asthma. Am J Respir Crit Care Med [Internet]. 2014;189((Bleck B.; Kazeros A.; Bakal K.; Reibman J.) New York University, Langone Medical Center, New York, NY, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72043204
96. Manthei DM, Schwantes EA, Mathur SK, Guadarrama AG, Kelly EA, Gern JE, et al. Nasal lavage VEGF and TNF-α levels during a natural cold predict asthma exacerbations. Clin Exp Allergy. diciembre de 2014;44(12):1484-93.
97. Nejman-Gryz P., Hermanowicz-Salamon J., Proboszcz M., Paplinska-Goryca M., Rubinsztajn R., Chazan R. Usefulness of exhaled breath condensate as non-invasive method of evaluating of biomarkers in severe asthma patients. Eur Respir J [Internet]. 2014;44((Nejman-Gryz P.; Hermanowicz-Salamon J.; Proboszcz M.; Paplinska-Goryca M.; Rubinsztajn R.; Chazan R.) Department of Internal Diseases, Pneumology and Allergology, Medical University of Warsaw, Warsaw, Poland). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L71850364
98. Matěj R, Vašáková M, Kukal J, Sterclová M, Olejár T. Higher TGF-β with lower CD124 and TSLP, but no difference in PAR-2 expression in bronchial biopsy of bronchial asthma patients in comparison with COPD patients. Appl Immunohistochem Mol Morphol. agosto de 2014;22(7):543-9.
99. Donaldson J.E., Shamji B., Swindle E.J., Edwards M., Davies D.E. Characterization of the thymic stromal lymphopoietin response in co-cultures of human bronchial fibroblasts and epithelial cells. Am J Respir Crit Care Med [Internet]. 2014;189((Donaldson J.E.; Swindle E.J.; Davies D.E.) University of Southampton, Southampton, United Kingdom). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72047669
100. Bellocchia M., Boita M., Solidoro P., Coni F., Bardessono M., Mercante L., et al. IL-25 receptor expression on basophil membrane is related to phenotype and severity of asthma. Eur Respir J [Internet]. 2015;46((Bellocchia M.; Boita M.; Solidoro P.; Coni F.; Bardessono M.; Mercante L.; Rolla G.; Bucca C.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72107196
101. Nejman-Gryz P., Górska K., Paplinska-Goryca M., Proboszcz M. Periostin and TSLP: New markers useful in diagnosis of obstructive lung disease. Eur Respir J [Internet]. 2015;46((Nejman-Gryz P.; Górska K.; Paplinska-Goryca M.; Proboszcz M.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72107255
102. Paplinska-Goryca M., Nejman-Gryz P., Górska K., Bialek-Gosk K., Hermanowicz-Salamon J. The correlation between expression of selected inflammatory mediators in induced sputum and respiratory tests in asthma and COPD. Eur Respir J [Internet]. 2015;46((Paplinska-Goryca M.; Nejman-Gryz P.; Górska K.; Bialek-Gosk K.; Hermanowicz-Salamon J.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72106155
103. Skrgat S., Malovrh M.M., Sarc I., Silar M., Dimitric V., Korosec P. TSLP as biomarker in asthma patients. Eur Respir J [Internet]. 2015;46((Skrgat S.; Malovrh M.M.; Sarc I.; Silar M.; Dimitric V.; Korosec P.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72106136
104. Sverrild A, Bergqvist A, Baines KJ, Porsbjerg C, Andersson CK, Thomsen SF, et al. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation. Clin Exp Allergy. febrero de 2016;46(2):288-97
105. Tworek D., Heroux D., O’Byrne S.N., O’Byrne P.M., Denburg J.A. Allergen inhalation enhances toll-like receptor-induced thymic stromal lymphopoietin receptor expression by hematopoietic progenitor cells in mild asthmatics. Allergy Asthma Clin Immunol [Internet]. 2016;12((Tworek D., damian.tworek@gmail.com; Heroux D.; O’Byrne S.N.; O’Byrne P.M.; Denburg J.A.) Department of Medicine, McMaster University, Hamilton, ON, Canada). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L620924890
106. El-Gammal A, Oliveria J-P, Howie K, Watson R, Mitchell P, Chen R, et al. Allergen-induced Changes in Bone Marrow and Airway Dendritic Cells in Subjects with Asthma. Am J Respir Crit Care Med. 15 de julio de 2016;194(2):169-77.
107. Baos S., Calzada D., Cremades L., Sastre J., Quiralte J., Florido F., et al. Biomarkers associated with disease severity in allergic and nonallergic asthma. Mol Immunol. 2017;82((Baos S.; Calzada D.; Cremades L.; Lahoz C.; Cárdaba B., bcardaba@fjd.es) Immunology Department, IIS-Jiménez Díaz Foundation, UAM, Madrid, Spain):34-45.
108. Carsin A., Dubus J.-C., Mazenq J., Garulli C., De Blic J., De Lagausie P., et al. Differential effect of fluticasone on Poly(I:C) induced TSLP secretion by bronchial epithelial cells from asthmatic children. Eur Respir J [Internet]. 2016;48((Carsin A.; Dubus J.-C.; Mazenq J.; Garulli C.; De Blic J.; De Lagausie P.; Chanez P.; Gras D.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L614779315
109. Wang W., Li Y., Lv Z., Li Y., Chen Y., Edwards M., et al. Expression of IL-33, IL-25 and TSLP in the airways of human asthmatics in vivo and its relationship to airways inflammation and lung function. Eur J Immunol. 2016;46((Wang W.; Lv Z.; Li Y.; Chen Y.; Ying S.) Capital Medical University, Department of Immunology, School of Basic Medical Sciences, Beijing, China):597.
110. Tworek D., Heroux D., O’Byrne S.N., O’Byrne P.M., Denburg J.A. Human hemopoietic progenitor cell toll-like and thymic stromal lymphopoietin receptor expression and function in allergic asthmatic subjects. J Allergy Clin Immunol. 2016;137(2):AB73.
111. Honda K., Wada H., Nakamura M., Nakamoto K., Sada M., Inui T., et al. IL-17a and TNF-α synergistically stimulate IL-8 production in human airway epithelial cells. Am J Respir Crit Care Med [Internet]. 2014;189((Honda K., h-kojiro@beach.ocn.ne.jp; Wada H.; Nakamura M.; Nakamoto K.; Sada M.; Inui T.; Tanaka Y.; Takata S.; Watanabe M.; Yokoyama T.; Kurai D.; Saraya T.; Ishii H.; Goto H.; Takizawa H.) Kyorin University, School of Medicine, Mitaka, Japan). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72046180
112. Wang W., Li Y., Lv Z., Li Y., Chen Y., Edwards M., et al. The TH2 cell-promoting cytokines IL-33 and TSLP, but not IL-25, are potential biomarkers for endotypes of asthma. Chest. 2016;149(4):A34.
113. Bjerregård A., Baltic S., Barrett L., Thompson P., Backer V., Fally M., et al. Thymic stromal lymphopoietin (TSLP) in naturally occurring asthma exacerbations in adults. Eur Respir J [Internet]. 2016;48((Bjerregård A.; Baltic S.; Barrett L.; Thompson P.; Backer V.; Fally M.; Laing I.; Khoo S.-K.; Souëf P.L.; Porsbjerg C.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L614778902
114. Nejman-Gryz P., Górska K., Paplinska-Goryca M., Proboszcz M., Krenke R. TSLP as a potent activator of Th2 response in obstructive lung diseases. Eur Respir J [Internet]. 2016;48((Nejman-Gryz P.; Górska K.; Paplinska-Goryca M.; Proboszcz M.; Krenke R.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L614777915
115. Paplińska-Goryca M, Nejman-Gryz P, Górska K, Białek-Gosk K, Hermanowicz-Salamon J, Krenke R. Expression of Inflammatory Mediators in Induced Sputum: Comparative Study in Asthma and COPD. Adv Exp Med Biol. 2018;1040:101-12.
116. Seys SF, Scheers H, Van den Brande P, Marijsse G, Dilissen E, Van Den Bergh A, et al. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respiratory Research. 23 de febrero de 2017;18(1):39.
117. Chibana K., Watanabe T., Shiobara T., Horigane Y., Arai R., Shimizu Y., et al. Exploring of correlation factors with epithelial cytokines, IL-33, IL-25 and TSLP expressions in asthmatic bronchial epithelial cells. Am J Respir Crit Care Med [Internet]. 2017;195((Chibana K., kchibana@dokkyomed.ac.jp; Watanabe T.; Shiobara T.; Horigane Y.; Arai R.; Shimizu Y.; Takemasa A.; Ishii Y.) Dokkyo University, School of Mdeicine, Mibu Tochigi, Japan). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617706360
118. Al-Sajee D., Sehmi R., Hawke T.J., El-Gammal A., Howie K., Watson R.M., et al. Expression profile of interleukin-33 (IL-33), interleukin-1 receptor family member (IL1RL1, ST2) and thymic stromal lymphopoietin (TSLP) in airway epithelium from asthmatic subjects after allergen challenge. Am J Respir Crit Care Med [Internet]. 2017;195((Al-Sajee D., alsajedm@mcmaster.ca; Sehmi R.; Hawke T.J.; Howie K.; Watson R.M.; Gauvreau G.M.; O’Byrne P.M.) McMaster University, Hamilton, ON, Canada). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617708597
119. Nicolaou G., Parker J., Cookson W., Moffatt M. Functional investigations of the role of thymic stromal lymphopoietin in asthma. Am J Respir Crit Care Med [Internet]. 2017;195((Nicolaou G., g.nicolaou@imperial.ac.uk; Parker J.; Cookson W.; Moffatt M.) National Heart and Lung Institute, London, United Kingdom). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617713036
120. Liu S., Verma M., Michalec L., Rollins D., Good J., Gorska M.M., et al. Glucocorticoids act both antagonistically and protagonistically on type 2 innate lymphoid cells (ILC2s) depending upon the stage of development and the cytokine milieu. J Allergy Clin Immunol. 2017;139(2):AB194.
121. Turi K.N., Shankar J., Anderson L.J., Gaston K., Rajan D., Gebretsadik T., et al. Identification of two novel acute respiratory illness cytokine-response subgroups associated with wheezing phenotype. Am J Respir Crit Care Med [Internet]. 2017;195((Turi K.N., kedir.turi.1@vanderbilt.edu; Gebretsadik T.; Das S.R.; Stone C.; Larkin E.K.; Rosas-Salazar C.; Hartert T.V.) Vanderbilt University, School of Medicine, Nashville, TN, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617706907
122. Wang C.H., Fu C.H., Lee T.J., Sheng T.F., Kuo H.P. Impact of ILC2 cells and Th2 cytokines in chronic rhinosinusitis on patients with severe asthma. Respirology. 2016;21((Wang C.H.; Sheng T.F.; Kuo H.P.) Chang Gung Memorial Hospital, Department of Thoracic Medicine, Taipei, Taiwan):47.
123. García-García ML, Calvo C, Moreira A, Cañas JA, Pozo F, Sastre B, et al. Thymic stromal lymphopoietin, IL-33, and periostin in hospitalized infants with viral bronchiolitis. Medicine (Baltimore). mayo de 2017;96(18):e6787
124. Katoh S., Ikeda M., Shirai R., Abe M., Ohue Y., Kobashi Y., et al. Biomarkers for differentiation of patients with asthma and chronic obstructive pulmonary disease. J Asthma. 2018;55(10):1052-8.
125. Garcia M.L.G., Calvo-Rey C., Quevedo-Teruel S., Sastre-Turrion B., Bellon-Alonso S., Alonso-Lopez P., et al. Differences between innate response in children with bronchiolitis versus recurrent wheezing. Eur Respir J [Internet]. 2018;52((Garcia M.L.G.; Bellon-Alonso S.; Alonso-Lopez P.; Marques-Cabrero A.; Remedios-Mateo L.; Tellez-Manso A.) Pediatrics Department, Universitary Hospital Severo Ochoa, Leganes, Spain). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L626626291
126. Boita M, Heffler E, Omedè P, Bellocchia M, Bussolino C, Solidoro P, et al. Basophil Membrane Expression of Epithelial Cytokine Receptors in Patients with Severe Asthma. Int Arch Allergy Immunol. 2018;175(3):171-6.
127. Sastre B., Rodrigo-Muñoz J.M., Mora I., Cañas J.A., García-Sánchez D.A., García-García M.L., et al. Are there differences in the innate response between bronchiolitis and pediatric recurrent wheeze? Allergy Eur J Allergy Clin Immunol. 2018;73((Sastre B.; Rodrigo-Muñoz J.M.; Cañas J.A.; Del Pozo V.) Immunology Department, IIS-Fundación Jiménez Díaz, CIBERES, Madrid, Spain):132-3.
128. Gorska K, Nejman-Gryz P, Paplinska-Goryca M, Korczynski P, Prochorec-Sobieszek M, Krenke R. Comparative Study of IL-33 and IL-6 Levels in Different Respiratory Samples in Mild-to-Moderate Asthma and COPD. COPD. 2018;15(1):36-45.
129. Pecak M., Korošec P., Kunej T. Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine. OMICS J Integr Biol. 2018;22(6):392-409.
130. Bahmer T., Watz H., Pedersen F., Kirsten A., Waschki B., Von Mutius E., et al. Nasal cytokine patterns in patients with asthma. Am J Respir Crit Care Med [Internet]. 2018;197(MeetingAbstracts). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L622966089
131. Kim J.-H., Lee J.-S., Jang Y.-S., Park J.Y., Hwang Y.I., Park S., et al. The expression of TRPV1 and innate Th2-cytokines in patients with chronic rhinosinusitis and asthma. J Allergy Clin Immunol. 2018;141(2):AB115.
132. Wei Y, Ma R, Zhang J, Wu X, Yu G, Hu X, et al. Excessive periostin expression and Th2 response in patients with nasal polyps: association with asthma. J Thorac Dis. diciembre de 2018;10(12):6585-97.
133. Glaser L, Coulter PJ, Shields M, Touzelet O, Power UF, Broadbent L. Airway Epithelial Derived Cytokines and Chemokines and Their Role in the Immune Response to Respiratory Syncytial Virus Infection. Pathogens [Internet]. 19 de julio de 2019 [citado 14 de agosto de 2020];8(3). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789711/
134. Chorvinsky E., Salka K., Barnawi Z., Alyami A., Naime S., Jackson J.H., et al. Combined immune response based on BAL cytokine profiling in children with severe asthma. Am J Respir Crit Care Med [Internet]. 2019;199(9). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630352376
135. Pham T.-H., Kearley J., Parnes J., Leung D., Goleva E., Griffiths J. Development of a Highly Sensitive Assay to Quantitate Circulating Thymic Stromal Lymphopoietin (TSLP) Levels in Blood. J Allergy Clin Immunol. 2020;145(2):AB30.
136. Moermans C., Damas K., Guiot J., Schleich F., Corhay J.-L., Henket M., et al. Investigation of alarmins, interleukin (IL-)23 and IL-36 sputum levels in chronic airway obstructive diseases. Eur Respir J [Internet]. 2019;54((Moermans C., c.moermans@chuliege.be; Guiot J.; Schleich F.; Corhay J.-L.; Henket M.; Louis R.) CHU-Uliege, Liege, Belgium). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630916773
137. Paplinska-Goryca M., Misiukiewicz P., Proboszcz M., Górska K., Krenke R. The expression of TSLP in monocyte derived dendritic cells in the interactions between respiratory epithelium and macrophages in asthma, COPD and healthy controls. Eur Respir J [Internet]. 2019;54((Paplinska-Goryca M., mpaplinska@wum.edu.pl; Proboszcz M.; Górska K.; Krenke R.) Medical University of Warsaw, Warsaw, Poland). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630918807
138. Paplinska-Goryca M., Misiukiewicz-Stepien P., Proboszcz M., Górska K., Krenke R. The impact of the interactions between airway epithelium, dendritic cells and macrophages on TSLP and IL-33 epithelial expression in asthma and healthy controls. Allergy Eur J Allergy Clin Immunol. 2019;74((Paplinska-Goryca M.; Misiukiewicz-Stepien P.; Proboszcz M.; Górska K.; Krenke R.) Medical University of Warsaw, Warsaw, Poland):136.
139. Kalinauskaite-Zukauske V., Januskevicius A., Janulaityte I., Malakauskas K. Thymic stromal lymphopoietin, but not ezrin, could be an early biomarker of airway epithelial dysfunction in acute allergic asthma. Eur Respir J [Internet]. 2019;54((Kalinauskaite-Zukauske V., Virginija.Kalinauskaite@lsmuni.lt) Lithuanian University of Health Sciences, Department of Pulmonology, Kaunas, Lithuania). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630917834
140. Gordon E.D., Urbanek C., Woodruff P.G., Seibold M.A., Fahy J.V. Characterization of epithelial cytokines IL33, TLSP, IL25 in human asthma. Am J Respir Crit Care Med [Internet]. 2015;191((Gordon E.D., Erin.Gordon@ucsf.edu; Woodruff P.G.; Fahy J.V.) University of California, San Francisco, CA, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72050332
141. Choi Y, Kim Y-M, Lee H-R, Mun J, Sim S, Lee D-H, et al. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy. enero de 2020;75(1):95-103.
142. Paplinska-Goryca M, Misiukiewicz-Stepien P, Nejman-Gryz P, Proboszcz M, Mlacki M, Gorska K, et al. Epithelial-macrophage-dendritic cell interactions impact alarmins expression in asthma and COPD. Clin Immunol. junio de 2020;215:108421.
143. Chorvinsky E., Nino G., Villamil-Osorio M., Restrepo-Gualteros S.M., ZakZuk J., Ramirez-Camacho O., et al. High thymic stromal lymphopoietin bronchoalveolar lavage levels are linked to disease severity in a subset of children with severe asthma (3368300). J Invest Med. 2020;68(4):925.
144. Bingham K., Portelli M., Stewart I., Billington C., Henry A., Hall I., et al. Type 2 cytokines and biomarkers in asthma patient sera show coordinated expression and identify patient subsets. Eur Respir J [Internet]. 2019;54((Bingham K., msxkb9@nottingham.ac.uk; Portelli M.; Stewart I.; Billington C.; Henry A.; Hall I.; Shaw D.; Sayers I.) Division of Respiratory Medicine, National Institute for Health Research, University of Nottingham, Nottingham, United Kingdom). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630918918
145. Kobayashi Y, Kanda A, Yun Y, Dan Van B, Suzuki K, Sawada S, et al. Reduced Local Response to Corticosteroids in Eosinophilic Chronic Rhinosinusitis with Asthma. Biomolecules. 18 de febrero de 2020;10(2).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 60 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Inmunología
dc.publisher.department.spa.fl_str_mv Departamento de Microbiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81421/3/Niveles%20de%20TSLP%20y%20control%20de%20la%20enfermedad%20en%20el%20paciente%20con%20diagno%cc%81stico%20de%20asma%2c%20Revisio%cc%81n%20sistema%cc%81tica%20y%20metaana%cc%81lisis.%20.pdf
https://repositorio.unal.edu.co/bitstream/unal/81421/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81421/5/Niveles%20de%20TSLP%20y%20control%20de%20la%20enfermedad%20en%20el%20paciente%20con%20diagno%cc%81stico%20de%20asma%2c%20Revisio%cc%81n%20sistema%cc%81tica%20y%20metaana%cc%81lisis.%20.pdf.jpg
bitstream.checksum.fl_str_mv 30852aadd499a8845f94c69aa6489c06
8153f7789df02f0a4c9e079953658ab2
42ad61458f368389b17481766a358e7c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089556197113856
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montilla Velásquez, Maria del Pilar5846c236f70edd5990a85de30e5c2532Henao, Sandra Patricia3158fc409917768f4db6aaa898722c2bRamírez Camacho, Oscar Javier655d3ca1eb3ca2bc24c21f1d28554c6c2022-03-30T21:47:33Z2022-03-30T21:47:33Z2021-11-22https://repositorio.unal.edu.co/handle/unal/81421Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasIntroducción: El asma es una enfermedad heterogénea, caracterizada por inflamación crónica de la vía aérea, con síntomas respiratorios variables relacionados con limitación al flujo aérea. En el asma con inflamación tipo 2, las células epiteliales estimulan a las células dendríticas y a otros grupos celulares como las células linfoides innatas (CLI), mediante unas citoquinas denominadas “alarminas”, que polarizan la respuesta inmune hacia este tipo de inflamación en el pulmón, una de estas citoquinas es la linfopoyetina del estroma timico (TSLP) por sus siglas en ingles, la cual esta implicada en la fisiopatología del asma, Se ha evidenciado en varios estudios que altos niveles de esta citoquina se relacionan con pobre control de la enfermedad. Objetivo: Evaluar los niveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma. Métodos de búsqueda: Se realizó una búsqueda con una fecha de corte para el 6 julio de 2020, en las bases de datos MEDLINE/Pubmed, EMBASE, CENTRAL, LILACS, Clinical trials.gov y open grey. Criterios de selección: Se incluyeron estudios observacionales analíticos de tipo casos y controles, prospectivos y retrospectivos y ensayos clínicos controlados aleatorizados. Se incluyeron estudios que compararan los niveles de TSLP en pacientes con asma y personas sanas, y entre los grupos de severidad de la enfermedad en cualquier muestra analizada. Recolección de datos y análisis: Dos revisores identificaron los criterios de inclusión de los estudios de manera independientemente, con revisión por título, resumen y texto completo. Se realizó la extracción de los datos, evaluación de riesgo de sesgo y metaanálisis a través del método de varianza inversa medias estandarizadas con pesos obtenidos a través del métodos de efectos aleatorios. Se realizó un gráfico de albatros para la correlación de los niveles de TSLP y volumen espiratorio forzado en el primer segundo (VEF1). Resultados principales: 31 estudios (2709 participantes) cumplieron los criterios de selección de los cuales 29 se incluyeron en el metaanálisis. Se analizaron los niveles de TSLP en pacientes asmáticos y controles según la muestra obtenida y la severidad de la enfermedad. Se encontró evidencia de mayores niveles de TSLP en pacientes con asma respecto a controles (2.76 SMD IC 95% 1.99-3.53), y mayores niveles en paciente con asma moderada-severa respecto a asma leve (0.81 SMD IC 95% 0.58-1.04). Se encontró correlación negativa entre los niveles de TSLP y el VEF1. Conclusión: Basados en lo hallazgos de los estudios incluidos en esta revisión, se considera que existe evidencia suficiente para afirmar que los niveles de TSLP son mayores en pacientes con asma y que estos se incrementan conforme la severidad de la enfermedad. Se encontró también que los niveles de TSLP se correlacionan de manera negativa con el VEF1. (Texto tomado de la fuente)Introduction: Asthma is a heterogeneous disease, characterized by chronic inflammation of the airway, with variable respiratory symptoms related to airflow limitation. In asthma with type 2 inflammation, epithelial cells stimulate dendritic cells and other cell groups such as innate lymphoid cells (ILC), through cytokines called "alarmins", which polarize the immune response towards this type of inflammation in the lung , one of these cytokines is thymic stromal lymphopoietin (TSLP), which is involved in the pathophysiology of asthma. Several studies have shown that high levels of this cytokine are related to poor disease control. Objective: To evaluate the levels of TSLP and disease control in patients diagnosed with asthma. Search methods: A search was conducted with a cut-off date of July 6, 2020, in the MEDLINE/Pubmed, EMBASE, CENTRAL, LILACS, Clinical trials.gov, and open gray databases. Selection criteria: Prospective and retrospective case-control analytical observational studies and controlled clinical trials were included, randomized. Studies were included that compared TSLP levels in patients with asthma and healthy people, and between disease severity groups in any sample analyzed. Data collection and analysis: Two reviewers independently identified study inclusion criteria, reviewing by title, abstract, and full text. Data extraction, risk of bias assessment, and meta-analysis were performed using the standardized mean inverse variance method with weights obtained using the random effects method. An albatross plot was made for the correlation of TSLP levels and forced expiratory volume in one second (FEV1). Main results: 31 studies (2709 participants) met the selection criteria of which 29 were included in the meta-analysis. TSLP levels were analyzed in asthmatic patients and controls according to the sample obtained and the severity of the disease. Evidence of higher levels of TSLP was found in patients with asthma compared to controls (2.76 SMD CI 95% 1.99-3.53), and higher levels in patients with moderate-severe asthma compared to mild asthma (0.81 SMD CI 95% 0.58-1.04). . A negative correlation was found between TSLP levels and FEV1. Conclusion: Based on the findings of the studies included in this review, it is considered that there is sufficient evidence to affirm that TSLP levels are higher in patients with asthma and that they increase with the severity of the disease. TSLP levels were also found to be negatively correlated with FEV1.MaestríaMagíster en Inmunología60 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en InmunologíaDepartamento de MicrobiologíaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::616 - EnfermedadesCitocinasCytokinesAsthmaAsmaTSLP: Lifopoyetina del estroma TimicoCLI: Células linfoides innatasVEF1/CVF Volumen espiratorio forzado en el primer segundo / capacidad vital funcionalTh2: Linfocitos T helper Tipo 2TSLP: Thymic stromal lipopoietinILC: Innate lymphoid cellsFEV1/FVC Forced expiratory volume in 1 second / functional vital capacityTh2: Type 2 helper T lymphocytesNiveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, revisión sistemática y metaanálisisTSLP levels and disease control in patients diagnosed with asthma. Systematic review and meta-analysisTSLP levels and disease control in patients diagnosed with asthma, systematic review and meta-analysisTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM1. Global Initiative for Asthma - GINA. Global Initiative for Asthma [Internet]. 2019 [citado 6 de noviembre de 2019]. Disponible en: https://ginasthma.org/2. Dennis RJ, Caraballo L, García E, Rojas MX, Rondon MA, Pérez A, et al. Prevalence of asthma and other allergic conditions in Colombia 2009–2010: a cross-sectional study. BMC Pulmonary Medicine. 2 de mayo de 2012;12(1):17.3. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. mayo de 2012;18(5):716-25.4. Braido F, Tiotiu A, Kowal K, Mihaicuta S, Novakova P, Oguzulgen I. Phenotypes/endotypes-driven treatment in asthma. Current Opinion in Allergy and Clinical Immunology. junio de 2018;18(3):184-95. Chung KF, Adcock IM. Clinical phenotypes of asthma should link up with disease mechanisms. [Miscellaneous Article]. Current Opinion in Allergy & Clinical Immunology. febrero de 2015;15(1):56-62.6. Bel EH. Clinical phenotypes of asthma. Current Opinion in Pulmonary Medicine. enero de 2004;10(1):44-50.7. The immunology of asthma | Nature Immunology [Internet]. [citado 12 de noviembre de 2019]. Disponible en: https://www.nature.com/articles/ni.30498. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 15 de febrero de 2010;181(4):315-23.9. Boonpiyathad T, Sözener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. diciembre de 2019;46:101333.10. Brusselle GG, Maes T, Bracke KR. Eosinophils in the Spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nature Medicine. 6 de agosto de 2013;19:977-9.11. Nakagome K, Nagata M. Involvement and Possible Role of Eosinophils in Asthma Exacerbation. Front Immunol. 28 de septiembre de 2018;9:2220.12. Amin K. The role of mast cells in allergic inflammation. Respiratory Medicine. 1 de enero de 2012;106(1):9-14.13. Muto T., Fukuoka A., Matsushita K., Yoshimoto T. The role of basophils and pro-allergic cytokines, TSLP and IL-33, in cutaneously-sensitized food allergy. J Allergy Clin Immunol. 2015;135(2):AB20114. Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. mayo de 2012;18(5):684-92.15. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. abril de 2009;15(4):410-616. McKenzie ANJ. Type-2 Innate Lymphoid Cells in Asthma and Allergy. Annals ATS. 1 de diciembre de 2014;11(Supplement 5):S263-70.17. Leonard WJ. TSLP: finally in the limelight. Nature Immunology. julio de 2002;3(7):605-7.18. Corren J., Ziegler S.F. TSLP: from allergy to cancer. Nat Immunol. 2019;20(12):1603-9.19. Watson B, Gauvreau GM. Thymic stromal lymphopoietin: a central regulator of allergic asthma. Expert Opinion on Therapeutic Targets. 1 de julio de 2014;18(7):771-85.20. Ziegler SF. The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Current Opinion in Immunology. 1 de diciembre de 2010;22(6):795-921. West EE, Kashyap M, Leonard WJ. TSLP: A Key Regulator of Asthma Pathogenesis. Drug Discov Today Dis Mech. 1 de diciembre de 2012;9(3-4).22. Matera MG, Rogliani P, Calzetta L, Cazzola M. TSLP Inhibitors for Asthma: Current Status and Future Prospects. Drugs. abril de 2020;80(5):449-58.23. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLP. Nature Immunology. julio de 2002;3(7):673-80.24. Medoff BD, Landry AL, Wittbold KA, Sandall BP, Derby MC, Cao Z, et al. CARMA3 Mediates Lysophosphatidic Acid–Stimulated Cytokine Secretion by Bronchial Epithelial Cells. Am J Respir Cell Mol Biol. 1 de marzo de 2009;40(3):286-94.25. Lee H-C, Ziegler SF. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. PNAS. 16 de enero de 2007;104(3):914-9.26. Park LS, Martin U, Garka K, Gliniak B, Santo JPD, Muller W, et al. Cloning of the Murine Thymic Stromal Lymphopoietin (Tslp) Receptor: Formation of a Functional Heteromeric Complex Requires Interleukin 7 Receptor. Journal of Experimental Medicine. 5 de septiembre de 2000;192(5):659-70.27. Nagata Y, Kamijuku H, Taniguchi M, Ziegler S, Seino K. Differential Role of Thymic Stromal Lymphopoietin in the Induction of Airway Hyperreactivity and Th2 Immune Response in Antigen-Induced Asthma with Respect to Natural Killer T Cell Function. IAA. 2007;144(4):305-14.28. Noti M, Tait Wojno ED, Kim BS, Siracusa MC, Giacomin PR, Nair MG, et al. TSLP-elicited basophil responses can mediate the pathogenesis of eosinophilic esophagitis. Nat Med. agosto de 2013;19(8):1005-13.29. Allakhverdi Z, Comeau MR, Jessup HK, Yoon B-RP, Brewer A, Chartier S, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. Journal of Experimental Medicine. 19 de febrero de 2007;204(2):253-8.30. Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA, et al. TSLP promotes IL-3-independent basophil hematopoiesis and type 2 inflammation. Nature. 14 de agosto de 2011;477(7363):229-33.31. Camelo A, Rosignoli G, Ohne Y, Stewart RA, Overed-Sayer C, Sleeman MA, et al. IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Adv. 30 de marzo de 2017;1(10):577-89.32. Kitajima M, Lee H-C, Nakayama T, Ziegler SF. TSLP enhances the function of helper type 2 cells. European Journal of Immunology. 2011;41(7):1862-71.33. Nguyen KD, Vanichsarn C, Nadeau KC. TSLP directly impairs pulmonary Treg function: association with aberrant tolerogenic immunity in asthmatic airway. Allergy Asthma Clin Immunol. 15 de marzo de 2010;6(1):4.34. Levin SD, Koelling RM, Friend SL, Isaksen DE, Ziegler SF, Perlmutter RM, et al. Thymic Stromal Lymphopoietin: A Cytokine That Promotes the Development of IgM+ B Cells In Vitro and Signals Via a Novel Mechanism. The Journal of Immunology. 15 de enero de 1999;162(2):677-8335. Al-Shami A, Spolski R, Kelly J, Keane-Myers A, Leonard WJ. A role for TSLP in the development of inflammation in an asthma model. J Exp Med. 19 de septiembre de 2005;202(6):829-39.36. Zhou B, Comeau MR, Smedt TD, Liggitt HD, Dahl ME, Lewis DB, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nature Immunology. octubre de 2005;6(10):1047-53.37. Shi L, Leu S-W, Xu F, Zhou X, Yin H, Cai L, et al. Local blockade of TSLP receptor alleviated allergic disease by regulating airway dendritic cells. Clinical Immunology. 1 de noviembre de 2008;129(2):202-10.38. Chen Z-G, Zhang T-T, Li H-T, Chen F-H, Zou X-L, Ji J-Z, et al. Neutralization of TSLP Inhibits Airway Remodeling in a Murine Model of Allergic Asthma Induced by Chronic Exposure to House Dust Mite. PLoS One [Internet]. 2 de enero de 2013 [citado 25 de noviembre de 2019];8(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534685/39. Cheng DT, Ma C, Niewoehner J, Dahl M, Tsai A, Zhang J, et al. Thymic stromal lymphopoietin receptor blockade reduces allergic inflammation in a cynomolgus monkey model of asthma. Journal of Allergy and Clinical Immunology. 1 de agosto de 2013;132(2):455-62.40. Seshasayee D, Lee WP, Zhou M, Shu J, Suto E, Zhang J, et al. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J Clin Invest. 3 de diciembre de 2007;117(12):3868-78.41. Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, et al. Tezepelumab in Adults with Uncontrolled Asthma. New England Journal of Medicine. 7 de septiembre de 2017;377(10):936-46.42. Reddel HK, Taylor DR, Bateman ED, Boulet L-P, Boushey HA, Busse WW, et al. An Official American Thoracic Society/European Respiratory Society Statement: Asthma Control and Exacerbations. Am J Respir Crit Care Med. 1 de julio de 2009;180(1):59-99.43. Schatz M, Sorkness CA, Li JT, Marcus P, Murray JJ, Nathan RA, et al. Asthma Control Test: Reliability, validity, and responsiveness in patients not previously followed by asthma specialists. Journal of Allergy and Clinical Immunology. 1 de marzo de 2006;117(3):549-5644. Paplińska-Goryca M, Nejman-Gryz P, Proboszcz M, Kwiecień I, Hermanowicz-Salamon J, Grabczak EM, et al. Expression of TSLP and IL-33 receptors on sputum macrophages of asthma patients and healthy subjects. J Asthma. 27 de diciembre de 2018;1-1045. Bousquet J, Clark TJH, Hurd S, Khaltaev N, Lenfant C, O’byrne P, et al. GINA guidelines on asthma and beyond. Allergy. febrero de 2007;62(2):102-12. 46. Zotero | Your personal research assistant [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://www.zotero.org/46. Zotero | Your personal research assistant [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://www.zotero.org47. Rayyan QCRI, the Systematic Reviews web app [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://rayyan.qcri.org/welcome48. Ottawa Hospital Research Institute [Internet]. [citado 17 de agosto de 2020]. Disponible en: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp49. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ [Internet]. 12 de octubre de 2016 [citado 14 de noviembre de 2019];355. Disponible en: https://www.bmj.com/content/355/bmj.i491950. DigitizeIt - Plot Digitizer Software. Digitize graphs, charts and math data. [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://www.digitizeit.de/51. Cochrane Collaboration. Review manager (RevMan)[computer program]. 2014;52. Stata: Software for Statistics and Data Science [Internet]. [citado 17 de agosto de 2020]. Disponible en: https://www.stata.com/53. R: The R Project for Statistical Computing [Internet]. [citado 9 de octubre de 2019]. Disponible en: https://www.r-project.org/54. Chai R, Liu B, Qi F. The significance of the levels of IL-4, IL-31 and TLSP in patients with asthma and/or rhinitis. Immunotherapy. marzo de 2017;9(4):331-7.55. Gankovskaya L.V., Namazova-Baranova L.S., Poriadin G.V., Grechenko V.V., Gankovsky V.A., Alekseeva A.A., et al. Changes of innate immunity indexes in severe asthma in children. Med Immunol. 2019;21(1):99-106.56. Bleck B, Kazeros A, Bakal K, Garcia-Medina L, Adams A, Liu M, et al. Coexpression of type 2 immune targets in sputum-derived epithelial and dendritic cells from asthmatic subjects. J Allergy Clin Immunol. septiembre de 2015;136(3):619-627.e5.57. Górska K, Nejman-Gryz P, Paplińska-Goryca M, Proboszcz M, Krenke R. Comparison of Thymic Stromal Lymphopoietin Concentration in Various Human Biospecimens from Asthma and COPD Patients Measured with Two Different ELISA Kits. Adv Exp Med Biol. 2017;955:19-27.58. Chauhan A, Singh M, Agarwal A, Paul N. Correlation of TSLP, IL-33, and CD4 + CD25 + FOXP3 + T regulatory (Treg) in pediatric asthma. J Asthma. 2015;52(9):868-72.59. Li Y, Wang W, Lv Z, Li Y, Chen Y, Huang K, et al. Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. J Immunol. 1 de abril de 2018;200(7):2253-62.60. Ma S-L, Zhang L. Elevated serum OX40L is a biomarker for identifying corticosteroid resistance in pediatric asthmatic patients. BMC Pulm Med. 19 de marzo de 2019;19(1):66.61. Cheng D, Xue Z, Yi L, Shi H, Zhang K, Huo X, et al. Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am J Respir Crit Care Med. 15 de septiembre de 2014;190(6):639-48.62. Ying S, O’Connor B, Ratoff J, Meng Q, Fang C, Cousins D, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 15 de agosto de 2008;181:2790-8.63. Paplińska-Goryca M, Nejman-Gryz P, Proboszcz M, Kwiecień I, Hermanowicz-Salamon J, Grabczak EM, et al. Expression of TSLP and IL-33 receptors on sputum macrophages of asthma patients and healthy subjects. J Asthma. enero de 2020;57(1):1-10.64. Lee T-J, Fu C-H, Wang C-H, Huang C-C, Huang C-C, Chang P-H, et al. Impact of chronic rhinosinusitis on severe asthma patients. PLoS One. 2017;12(2):e0171047.65. Shikotra A, Choy DF, Ohri CM, Doran E, Butler C, Hargadon B, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol. enero de 2012;129(1):104-111.e1-9.66. Berraïes A, Hamdi B, Ammar J, Hamzaoui K, Hamzaoui A. Increased expression of thymic stromal lymphopoietin in induced sputum from asthmatic children. Immunol Lett. octubre de 2016;178:85-91.67. Glück J, Rymarczyk B, Kasprzak M, Rogala B. Increased Levels of Interleukin-33 and Thymic Stromal Lymphopoietin in Exhaled Breath Condensate in Chronic Bronchial Asthma. Int Arch Allergy Immunol. 2016;169(1):51-6.68. Lai T, Wu D, Li W, Chen M, Yi Z, Huang D, et al. Interleukin-31 expression and relation to disease severity in human asthma. Sci Rep. 9 de marzo de 2016;6:22835.69. Kaur D, Doe C, Woodman L, Heidi Wan W-Y, Sutcliffe A, Hollins F, et al. Mast cell-airway smooth muscle crosstalk: the role of thymic stromal lymphopoietin. Chest. julio de 2012;142(1):76-85.70. Wang J, Lv H, Luo Z, Mou S, Liu J, Liu C, et al. Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir Res. 27 de marzo de 2018;19(1):47.71. Koussih L, Ali A, Shan L, Becker A, Gounni AS. Serum level of thymic stromal lymphopoietin in allergic asthmatic children. Clin Immunol. noviembre de 2012;145(2):92-3.72. Liu S, Verma M, Michalec L, Liu W, Sripada A, Rollins D, et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: The role of thymic stromal lymphopoietin. J Allergy Clin Immunol. enero de 2018;141(1):257-268.e6.73. Han X-M, Cheng Y-Y, Gong Y-F, Jiang M-M. The correlation between children’s status asthmatics and interstitial lung disease. Eur Rev Med Pharmacol Sci. noviembre de 2016;20(22):4761-5.74. Ying S, O’Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174(10):8183-90.75. Semlali A, Jacques E, Koussih L, Gounni AS, Chakir J. Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13-dependent pathway. J Allergy Clin Immunol. abril de 2010;125(4):844-50.76. Ferreira DS, Annoni R, Silva LFF, Buttignol M, Santos ABG, Medeiros MCR, et al. Toll-like receptors 2, 3 and 4 and thymic stromal lymphopoietin expression in fatal asthma. Clin Exp Allergy. octubre de 2012;42(10):1459-71.77. Lin S-C, Huang J-J, Wang J-Y, Chuang H-C, Chiang B-L, Ye Y-L. Upregulated thymic stromal lymphopoietin receptor expression in children with asthma. Eur J Clin Invest. junio de 2016;46(6):511-9.78. Salter BMA, Smith SG, Mukherjee M, Plante S, Krisna S, Nusca G, et al. Human Bronchial Epithelial Cell-derived Factors from Severe Asthmatic Subjects Stimulate Eosinophil Differentiation. Am J Respir Cell Mol Biol. enero de 2018;58(1):99-106.79. Wang W., Li Y., Lv Z., Chen Y., Li Y., Ying S. Bronchial allergen challenge of patients with atopic asthma triggers an alarmin (IL-33, TSLP, and IL-25) response in the airways epithelium and submucosa. J Immunol. 2018;201(8):2221-31.80. Bjerregaard A, Laing IA, Poulsen N, Backer V, Sverrild A, Fally M, et al. Characteristics associated with clinical severity and inflammatory phenotype of naturally occurring virus-induced exacerbations of asthma in adults. Respir Med. febrero de 2017;123:34-41.81. Al-Sajee D., Price E., Yin H., Howie K.J., O’Byrne P.M., Lima H., et al. Expression profile of IL-33/ST2 and TSLP/TSLP-R in the skin of atopic dermatitis post-allergen exposure. J Allergy Clin Immunol. 2018;141(2):AB187.82. Kalinauskaite-Zukauske V, Janulaityte I, Januskevicius A, Malakauskas K. Serum levels of epithelial-derived mediators and interleukin-4/interleukin-13 signaling after bronchial challenge with Dermatophagoides pteronyssinus in patients with allergic asthma. Scand J Immunol. noviembre de 2019;90(5):e12820.83. Machida K, Aw M, Salter BM, Ju X, Mukherjee M, Gauvreau GM, et al. Role of TL1A/DR3 Axis in the Activation of ILC2s in Eosinophilic Asthmatics. Am J Respir Crit Care Med. 25 de junio de 202084. Tsurikisawa N, Oshikata C, Sato T, Kimura G, Mizuki M, Tsuburai T, et al. Low Variability in Peak Expiratory Flow Predicts Successful Inhaled Corticosteroid Step-Down in Adults with Asthma. J Allergy Clin Immunol Pract. junio de 2018;6(3):972-9.85. Debley J.S., Cochrane E.S., Ohanian A., Ziegler S.F., Redding G.J. Pro-remodeling and immunoregulatory-associated cytokine production by airway epithelial cells from asthmatic children. Am J Respir Crit Care Med [Internet]. 2010;181(1). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L7083854286. Reese A., Favoreto S., Quraishi J., Biyasheva A., Shen J., Greiman A., et al. Higher rhinovirus-induced production of TSLP in nasal epithelial cells from asthmatic than healthy subjects. J Allergy Clin Immunol. 2011;127(2):AB22.87. Kazeros A., Bleck B., Lee R.A., Tse D.B., Chung S., Chiu A., et al. In situ upregulation of thymic stromal lymphopoietin in sputum epithelial cells in asthma. Am J Respir Crit Care Med [Internet]. 2012;185((Kazeros A.; Bleck B.; Lee R.A.; Tse D.B.; Reibman J.) NYU School of Medicine/Bellevue Hospital, New York, NY, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L7198737188. Bell M.C., Grindle K.A., Tisler C.J., Lemanske R.F., Gern J.E. Serum TSLP and IL-33 levels are lower in young children raised on farms. J Allergy Clin Immunol. 2012;129(2):AB198.89. Elliott M., Iwanaga K., Hauri M., Aye T., Ziegler S., Debley J. TSLP and IL-33 expression by bronchial epithelial cells from asthmatic children in response to RSV infection. Am J Respir Crit Care Med [Internet]. 2012;185((Elliott M.) Seattle Children’s Hospital, Seattle, WA, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L7198851690. Iijima H., Kaneko Y., Yamada H., Yatagai Y., Masuko H., Sakamoto T., et al. A distinct sensitization pattern associated with asthma and the thymic stromal lymphopoietin (TSLP) genotype. Allergol Int. 2013;62(1):123-30.91. Bleck B., Kazeros A., Lymaris G.-M., Adams A., Grunig G., Reibman J. In situ expression of human OX40L/TNFSF4 is up-regulated in sputum-derived myeloid dendritic cells from asthma cases compared to controls. Am J Respir Crit Care Med [Internet]. 2013;187((Bleck B., bertram.bleck@nyumc.org; Lymaris G.-M.; Adams A.) New York University, School of Medicine, New York, NY, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L7198364892. Kabata H, Moro K, Fukunaga K, Suzuki Y, Miyata J, Masaki K, et al. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun. 2013;4:2675.93. Froidure A., Shen C., Pilette C. Up-regulation of thymic stromal lymphopoietin receptor on myeloid dendritic cells from atopic asthmatics. Allergy Eur J Allergy Clin Immunol. 2013;68((Froidure A.; Shen C.; Pilette C.) Institut de Recherche Expérimentale et Clinique, Pôle de Pneumologie, Université Catholique de Louvain, Brussels, Belgium):77.94. Demehri S., Yockey L.J., Visness C.M., Jaffee K.F., Turkoz A., Wood R.A., et al. Circulating TSLP associates with decreased wheezing in non-atopic children. J Invest Dermatol. 2013;133((Demehri S.; Yockey L.J.; Turkoz A.; Kopan R.) Medicine, Division of Dermatology, Washington University, School of Medicine, St. Louis, MO, United States):S17395. Bleck B., Kazeros A., Bakal K., Reibman J. In situ upregulation of TSLP and TSLP-target genes in simultaneously enriched sputum-derived human bronchial epithelial and dendritic cells in asthma. Am J Respir Crit Care Med [Internet]. 2014;189((Bleck B.; Kazeros A.; Bakal K.; Reibman J.) New York University, Langone Medical Center, New York, NY, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L7204320496. Manthei DM, Schwantes EA, Mathur SK, Guadarrama AG, Kelly EA, Gern JE, et al. Nasal lavage VEGF and TNF-α levels during a natural cold predict asthma exacerbations. Clin Exp Allergy. diciembre de 2014;44(12):1484-93.97. Nejman-Gryz P., Hermanowicz-Salamon J., Proboszcz M., Paplinska-Goryca M., Rubinsztajn R., Chazan R. Usefulness of exhaled breath condensate as non-invasive method of evaluating of biomarkers in severe asthma patients. Eur Respir J [Internet]. 2014;44((Nejman-Gryz P.; Hermanowicz-Salamon J.; Proboszcz M.; Paplinska-Goryca M.; Rubinsztajn R.; Chazan R.) Department of Internal Diseases, Pneumology and Allergology, Medical University of Warsaw, Warsaw, Poland). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L7185036498. Matěj R, Vašáková M, Kukal J, Sterclová M, Olejár T. Higher TGF-β with lower CD124 and TSLP, but no difference in PAR-2 expression in bronchial biopsy of bronchial asthma patients in comparison with COPD patients. Appl Immunohistochem Mol Morphol. agosto de 2014;22(7):543-9.99. Donaldson J.E., Shamji B., Swindle E.J., Edwards M., Davies D.E. Characterization of the thymic stromal lymphopoietin response in co-cultures of human bronchial fibroblasts and epithelial cells. Am J Respir Crit Care Med [Internet]. 2014;189((Donaldson J.E.; Swindle E.J.; Davies D.E.) University of Southampton, Southampton, United Kingdom). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72047669100. Bellocchia M., Boita M., Solidoro P., Coni F., Bardessono M., Mercante L., et al. IL-25 receptor expression on basophil membrane is related to phenotype and severity of asthma. Eur Respir J [Internet]. 2015;46((Bellocchia M.; Boita M.; Solidoro P.; Coni F.; Bardessono M.; Mercante L.; Rolla G.; Bucca C.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72107196101. Nejman-Gryz P., Górska K., Paplinska-Goryca M., Proboszcz M. Periostin and TSLP: New markers useful in diagnosis of obstructive lung disease. Eur Respir J [Internet]. 2015;46((Nejman-Gryz P.; Górska K.; Paplinska-Goryca M.; Proboszcz M.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72107255102. Paplinska-Goryca M., Nejman-Gryz P., Górska K., Bialek-Gosk K., Hermanowicz-Salamon J. The correlation between expression of selected inflammatory mediators in induced sputum and respiratory tests in asthma and COPD. Eur Respir J [Internet]. 2015;46((Paplinska-Goryca M.; Nejman-Gryz P.; Górska K.; Bialek-Gosk K.; Hermanowicz-Salamon J.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72106155103. Skrgat S., Malovrh M.M., Sarc I., Silar M., Dimitric V., Korosec P. TSLP as biomarker in asthma patients. Eur Respir J [Internet]. 2015;46((Skrgat S.; Malovrh M.M.; Sarc I.; Silar M.; Dimitric V.; Korosec P.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72106136104. Sverrild A, Bergqvist A, Baines KJ, Porsbjerg C, Andersson CK, Thomsen SF, et al. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation. Clin Exp Allergy. febrero de 2016;46(2):288-97105. Tworek D., Heroux D., O’Byrne S.N., O’Byrne P.M., Denburg J.A. Allergen inhalation enhances toll-like receptor-induced thymic stromal lymphopoietin receptor expression by hematopoietic progenitor cells in mild asthmatics. Allergy Asthma Clin Immunol [Internet]. 2016;12((Tworek D., damian.tworek@gmail.com; Heroux D.; O’Byrne S.N.; O’Byrne P.M.; Denburg J.A.) Department of Medicine, McMaster University, Hamilton, ON, Canada). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L620924890106. El-Gammal A, Oliveria J-P, Howie K, Watson R, Mitchell P, Chen R, et al. Allergen-induced Changes in Bone Marrow and Airway Dendritic Cells in Subjects with Asthma. Am J Respir Crit Care Med. 15 de julio de 2016;194(2):169-77.107. Baos S., Calzada D., Cremades L., Sastre J., Quiralte J., Florido F., et al. Biomarkers associated with disease severity in allergic and nonallergic asthma. Mol Immunol. 2017;82((Baos S.; Calzada D.; Cremades L.; Lahoz C.; Cárdaba B., bcardaba@fjd.es) Immunology Department, IIS-Jiménez Díaz Foundation, UAM, Madrid, Spain):34-45.108. Carsin A., Dubus J.-C., Mazenq J., Garulli C., De Blic J., De Lagausie P., et al. Differential effect of fluticasone on Poly(I:C) induced TSLP secretion by bronchial epithelial cells from asthmatic children. Eur Respir J [Internet]. 2016;48((Carsin A.; Dubus J.-C.; Mazenq J.; Garulli C.; De Blic J.; De Lagausie P.; Chanez P.; Gras D.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L614779315109. Wang W., Li Y., Lv Z., Li Y., Chen Y., Edwards M., et al. Expression of IL-33, IL-25 and TSLP in the airways of human asthmatics in vivo and its relationship to airways inflammation and lung function. Eur J Immunol. 2016;46((Wang W.; Lv Z.; Li Y.; Chen Y.; Ying S.) Capital Medical University, Department of Immunology, School of Basic Medical Sciences, Beijing, China):597.110. Tworek D., Heroux D., O’Byrne S.N., O’Byrne P.M., Denburg J.A. Human hemopoietic progenitor cell toll-like and thymic stromal lymphopoietin receptor expression and function in allergic asthmatic subjects. J Allergy Clin Immunol. 2016;137(2):AB73.111. Honda K., Wada H., Nakamura M., Nakamoto K., Sada M., Inui T., et al. IL-17a and TNF-α synergistically stimulate IL-8 production in human airway epithelial cells. Am J Respir Crit Care Med [Internet]. 2014;189((Honda K., h-kojiro@beach.ocn.ne.jp; Wada H.; Nakamura M.; Nakamoto K.; Sada M.; Inui T.; Tanaka Y.; Takata S.; Watanabe M.; Yokoyama T.; Kurai D.; Saraya T.; Ishii H.; Goto H.; Takizawa H.) Kyorin University, School of Medicine, Mitaka, Japan). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72046180112. Wang W., Li Y., Lv Z., Li Y., Chen Y., Edwards M., et al. The TH2 cell-promoting cytokines IL-33 and TSLP, but not IL-25, are potential biomarkers for endotypes of asthma. Chest. 2016;149(4):A34.113. Bjerregård A., Baltic S., Barrett L., Thompson P., Backer V., Fally M., et al. Thymic stromal lymphopoietin (TSLP) in naturally occurring asthma exacerbations in adults. Eur Respir J [Internet]. 2016;48((Bjerregård A.; Baltic S.; Barrett L.; Thompson P.; Backer V.; Fally M.; Laing I.; Khoo S.-K.; Souëf P.L.; Porsbjerg C.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L614778902114. Nejman-Gryz P., Górska K., Paplinska-Goryca M., Proboszcz M., Krenke R. TSLP as a potent activator of Th2 response in obstructive lung diseases. Eur Respir J [Internet]. 2016;48((Nejman-Gryz P.; Górska K.; Paplinska-Goryca M.; Proboszcz M.; Krenke R.)). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L614777915115. Paplińska-Goryca M, Nejman-Gryz P, Górska K, Białek-Gosk K, Hermanowicz-Salamon J, Krenke R. Expression of Inflammatory Mediators in Induced Sputum: Comparative Study in Asthma and COPD. Adv Exp Med Biol. 2018;1040:101-12.116. Seys SF, Scheers H, Van den Brande P, Marijsse G, Dilissen E, Van Den Bergh A, et al. Cluster analysis of sputum cytokine-high profiles reveals diversity in T(h)2-high asthma patients. Respiratory Research. 23 de febrero de 2017;18(1):39.117. Chibana K., Watanabe T., Shiobara T., Horigane Y., Arai R., Shimizu Y., et al. Exploring of correlation factors with epithelial cytokines, IL-33, IL-25 and TSLP expressions in asthmatic bronchial epithelial cells. Am J Respir Crit Care Med [Internet]. 2017;195((Chibana K., kchibana@dokkyomed.ac.jp; Watanabe T.; Shiobara T.; Horigane Y.; Arai R.; Shimizu Y.; Takemasa A.; Ishii Y.) Dokkyo University, School of Mdeicine, Mibu Tochigi, Japan). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617706360118. Al-Sajee D., Sehmi R., Hawke T.J., El-Gammal A., Howie K., Watson R.M., et al. Expression profile of interleukin-33 (IL-33), interleukin-1 receptor family member (IL1RL1, ST2) and thymic stromal lymphopoietin (TSLP) in airway epithelium from asthmatic subjects after allergen challenge. Am J Respir Crit Care Med [Internet]. 2017;195((Al-Sajee D., alsajedm@mcmaster.ca; Sehmi R.; Hawke T.J.; Howie K.; Watson R.M.; Gauvreau G.M.; O’Byrne P.M.) McMaster University, Hamilton, ON, Canada). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617708597119. Nicolaou G., Parker J., Cookson W., Moffatt M. Functional investigations of the role of thymic stromal lymphopoietin in asthma. Am J Respir Crit Care Med [Internet]. 2017;195((Nicolaou G., g.nicolaou@imperial.ac.uk; Parker J.; Cookson W.; Moffatt M.) National Heart and Lung Institute, London, United Kingdom). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617713036120. Liu S., Verma M., Michalec L., Rollins D., Good J., Gorska M.M., et al. Glucocorticoids act both antagonistically and protagonistically on type 2 innate lymphoid cells (ILC2s) depending upon the stage of development and the cytokine milieu. J Allergy Clin Immunol. 2017;139(2):AB194.121. Turi K.N., Shankar J., Anderson L.J., Gaston K., Rajan D., Gebretsadik T., et al. Identification of two novel acute respiratory illness cytokine-response subgroups associated with wheezing phenotype. Am J Respir Crit Care Med [Internet]. 2017;195((Turi K.N., kedir.turi.1@vanderbilt.edu; Gebretsadik T.; Das S.R.; Stone C.; Larkin E.K.; Rosas-Salazar C.; Hartert T.V.) Vanderbilt University, School of Medicine, Nashville, TN, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L617706907122. Wang C.H., Fu C.H., Lee T.J., Sheng T.F., Kuo H.P. Impact of ILC2 cells and Th2 cytokines in chronic rhinosinusitis on patients with severe asthma. Respirology. 2016;21((Wang C.H.; Sheng T.F.; Kuo H.P.) Chang Gung Memorial Hospital, Department of Thoracic Medicine, Taipei, Taiwan):47.123. García-García ML, Calvo C, Moreira A, Cañas JA, Pozo F, Sastre B, et al. Thymic stromal lymphopoietin, IL-33, and periostin in hospitalized infants with viral bronchiolitis. Medicine (Baltimore). mayo de 2017;96(18):e6787124. Katoh S., Ikeda M., Shirai R., Abe M., Ohue Y., Kobashi Y., et al. Biomarkers for differentiation of patients with asthma and chronic obstructive pulmonary disease. J Asthma. 2018;55(10):1052-8.125. Garcia M.L.G., Calvo-Rey C., Quevedo-Teruel S., Sastre-Turrion B., Bellon-Alonso S., Alonso-Lopez P., et al. Differences between innate response in children with bronchiolitis versus recurrent wheezing. Eur Respir J [Internet]. 2018;52((Garcia M.L.G.; Bellon-Alonso S.; Alonso-Lopez P.; Marques-Cabrero A.; Remedios-Mateo L.; Tellez-Manso A.) Pediatrics Department, Universitary Hospital Severo Ochoa, Leganes, Spain). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L626626291126. Boita M, Heffler E, Omedè P, Bellocchia M, Bussolino C, Solidoro P, et al. Basophil Membrane Expression of Epithelial Cytokine Receptors in Patients with Severe Asthma. Int Arch Allergy Immunol. 2018;175(3):171-6.127. Sastre B., Rodrigo-Muñoz J.M., Mora I., Cañas J.A., García-Sánchez D.A., García-García M.L., et al. Are there differences in the innate response between bronchiolitis and pediatric recurrent wheeze? Allergy Eur J Allergy Clin Immunol. 2018;73((Sastre B.; Rodrigo-Muñoz J.M.; Cañas J.A.; Del Pozo V.) Immunology Department, IIS-Fundación Jiménez Díaz, CIBERES, Madrid, Spain):132-3.128. Gorska K, Nejman-Gryz P, Paplinska-Goryca M, Korczynski P, Prochorec-Sobieszek M, Krenke R. Comparative Study of IL-33 and IL-6 Levels in Different Respiratory Samples in Mild-to-Moderate Asthma and COPD. COPD. 2018;15(1):36-45.129. Pecak M., Korošec P., Kunej T. Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine. OMICS J Integr Biol. 2018;22(6):392-409.130. Bahmer T., Watz H., Pedersen F., Kirsten A., Waschki B., Von Mutius E., et al. Nasal cytokine patterns in patients with asthma. Am J Respir Crit Care Med [Internet]. 2018;197(MeetingAbstracts). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L622966089131. Kim J.-H., Lee J.-S., Jang Y.-S., Park J.Y., Hwang Y.I., Park S., et al. The expression of TRPV1 and innate Th2-cytokines in patients with chronic rhinosinusitis and asthma. J Allergy Clin Immunol. 2018;141(2):AB115.132. Wei Y, Ma R, Zhang J, Wu X, Yu G, Hu X, et al. Excessive periostin expression and Th2 response in patients with nasal polyps: association with asthma. J Thorac Dis. diciembre de 2018;10(12):6585-97.133. Glaser L, Coulter PJ, Shields M, Touzelet O, Power UF, Broadbent L. Airway Epithelial Derived Cytokines and Chemokines and Their Role in the Immune Response to Respiratory Syncytial Virus Infection. Pathogens [Internet]. 19 de julio de 2019 [citado 14 de agosto de 2020];8(3). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6789711/134. Chorvinsky E., Salka K., Barnawi Z., Alyami A., Naime S., Jackson J.H., et al. Combined immune response based on BAL cytokine profiling in children with severe asthma. Am J Respir Crit Care Med [Internet]. 2019;199(9). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630352376135. Pham T.-H., Kearley J., Parnes J., Leung D., Goleva E., Griffiths J. Development of a Highly Sensitive Assay to Quantitate Circulating Thymic Stromal Lymphopoietin (TSLP) Levels in Blood. J Allergy Clin Immunol. 2020;145(2):AB30.136. Moermans C., Damas K., Guiot J., Schleich F., Corhay J.-L., Henket M., et al. Investigation of alarmins, interleukin (IL-)23 and IL-36 sputum levels in chronic airway obstructive diseases. Eur Respir J [Internet]. 2019;54((Moermans C., c.moermans@chuliege.be; Guiot J.; Schleich F.; Corhay J.-L.; Henket M.; Louis R.) CHU-Uliege, Liege, Belgium). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630916773137. Paplinska-Goryca M., Misiukiewicz P., Proboszcz M., Górska K., Krenke R. The expression of TSLP in monocyte derived dendritic cells in the interactions between respiratory epithelium and macrophages in asthma, COPD and healthy controls. Eur Respir J [Internet]. 2019;54((Paplinska-Goryca M., mpaplinska@wum.edu.pl; Proboszcz M.; Górska K.; Krenke R.) Medical University of Warsaw, Warsaw, Poland). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630918807138. Paplinska-Goryca M., Misiukiewicz-Stepien P., Proboszcz M., Górska K., Krenke R. The impact of the interactions between airway epithelium, dendritic cells and macrophages on TSLP and IL-33 epithelial expression in asthma and healthy controls. Allergy Eur J Allergy Clin Immunol. 2019;74((Paplinska-Goryca M.; Misiukiewicz-Stepien P.; Proboszcz M.; Górska K.; Krenke R.) Medical University of Warsaw, Warsaw, Poland):136.139. Kalinauskaite-Zukauske V., Januskevicius A., Janulaityte I., Malakauskas K. Thymic stromal lymphopoietin, but not ezrin, could be an early biomarker of airway epithelial dysfunction in acute allergic asthma. Eur Respir J [Internet]. 2019;54((Kalinauskaite-Zukauske V., Virginija.Kalinauskaite@lsmuni.lt) Lithuanian University of Health Sciences, Department of Pulmonology, Kaunas, Lithuania). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630917834140. Gordon E.D., Urbanek C., Woodruff P.G., Seibold M.A., Fahy J.V. Characterization of epithelial cytokines IL33, TLSP, IL25 in human asthma. Am J Respir Crit Care Med [Internet]. 2015;191((Gordon E.D., Erin.Gordon@ucsf.edu; Woodruff P.G.; Fahy J.V.) University of California, San Francisco, CA, United States). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L72050332141. Choi Y, Kim Y-M, Lee H-R, Mun J, Sim S, Lee D-H, et al. Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy. enero de 2020;75(1):95-103.142. Paplinska-Goryca M, Misiukiewicz-Stepien P, Nejman-Gryz P, Proboszcz M, Mlacki M, Gorska K, et al. Epithelial-macrophage-dendritic cell interactions impact alarmins expression in asthma and COPD. Clin Immunol. junio de 2020;215:108421.143. Chorvinsky E., Nino G., Villamil-Osorio M., Restrepo-Gualteros S.M., ZakZuk J., Ramirez-Camacho O., et al. High thymic stromal lymphopoietin bronchoalveolar lavage levels are linked to disease severity in a subset of children with severe asthma (3368300). J Invest Med. 2020;68(4):925.144. Bingham K., Portelli M., Stewart I., Billington C., Henry A., Hall I., et al. Type 2 cytokines and biomarkers in asthma patient sera show coordinated expression and identify patient subsets. Eur Respir J [Internet]. 2019;54((Bingham K., msxkb9@nottingham.ac.uk; Portelli M.; Stewart I.; Billington C.; Henry A.; Hall I.; Shaw D.; Sayers I.) Division of Respiratory Medicine, National Institute for Health Research, University of Nottingham, Nottingham, United Kingdom). Disponible en: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L630918918145. Kobayashi Y, Kanda A, Yun Y, Dan Van B, Suzuki K, Sawada S, et al. Reduced Local Response to Corticosteroids in Eosinophilic Chronic Rhinosinusitis with Asthma. Biomolecules. 18 de febrero de 2020;10(2).Público generalORIGINALNiveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, Revisión sistemática y metaanálisis. .pdfNiveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, Revisión sistemática y metaanálisis. .pdfTesis de Maestría en Inmunologíaapplication/pdf861174https://repositorio.unal.edu.co/bitstream/unal/81421/3/Niveles%20de%20TSLP%20y%20control%20de%20la%20enfermedad%20en%20el%20paciente%20con%20diagno%cc%81stico%20de%20asma%2c%20Revisio%cc%81n%20sistema%cc%81tica%20y%20metaana%cc%81lisis.%20.pdf30852aadd499a8845f94c69aa6489c06MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81421/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAILNiveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, Revisión sistemática y metaanálisis. .pdf.jpgNiveles de TSLP y control de la enfermedad en el paciente con diagnóstico de asma, Revisión sistemática y metaanálisis. .pdf.jpgGenerated Thumbnailimage/jpeg4829https://repositorio.unal.edu.co/bitstream/unal/81421/5/Niveles%20de%20TSLP%20y%20control%20de%20la%20enfermedad%20en%20el%20paciente%20con%20diagno%cc%81stico%20de%20asma%2c%20Revisio%cc%81n%20sistema%cc%81tica%20y%20metaana%cc%81lisis.%20.pdf.jpg42ad61458f368389b17481766a358e7cMD55unal/81421oai:repositorio.unal.edu.co:unal/814212023-08-03 23:04:18.338Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK