Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
ilustraciones, fotografías, gráficas, tablas
- Autores:
-
Villamil Bolaños, Fabian
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79642
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas
Transgenic plants
Biopolymers
Plantas transgénicas
Biopolímeros
Biopolímero
Transgénico
β-glucuronidasa
Peroxisoma
Péptido señal
Biopolymer
Transgenic
β-glucuronidase
Peroxisome
Signal peptide
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_0998c8055831c31fa76fcaeb98dba5aa |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79642 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos |
dc.title.translated.eng.fl_str_mv |
Transgenic line of Nicotiana tabacum expressing the phaC gene of Aeromonas caviae for the production of polyhydroxyalkanoates |
title |
Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos |
spellingShingle |
Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos 630 - Agricultura y tecnologías relacionadas Transgenic plants Biopolymers Plantas transgénicas Biopolímeros Biopolímero Transgénico β-glucuronidasa Peroxisoma Péptido señal Biopolymer Transgenic β-glucuronidase Peroxisome Signal peptide |
title_short |
Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos |
title_full |
Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos |
title_fullStr |
Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos |
title_full_unstemmed |
Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos |
title_sort |
Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos |
dc.creator.fl_str_mv |
Villamil Bolaños, Fabian |
dc.contributor.advisor.spa.fl_str_mv |
Sarmiento Salazar, Felipe |
dc.contributor.author.spa.fl_str_mv |
Villamil Bolaños, Fabian |
dc.contributor.researchgroup.spa.fl_str_mv |
Ingeniería Genética de Plantas |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas |
topic |
630 - Agricultura y tecnologías relacionadas Transgenic plants Biopolymers Plantas transgénicas Biopolímeros Biopolímero Transgénico β-glucuronidasa Peroxisoma Péptido señal Biopolymer Transgenic β-glucuronidase Peroxisome Signal peptide |
dc.subject.agrovoc.eng.fl_str_mv |
Transgenic plants Biopolymers |
dc.subject.agrovoc.spa.fl_str_mv |
Plantas transgénicas Biopolímeros |
dc.subject.proposal.spa.fl_str_mv |
Biopolímero Transgénico β-glucuronidasa Peroxisoma Péptido señal |
dc.subject.proposal.eng.fl_str_mv |
Biopolymer Transgenic β-glucuronidase Peroxisome Signal peptide |
description |
ilustraciones, fotografías, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-17T18:45:45Z |
dc.date.available.none.fl_str_mv |
2021-06-17T18:45:45Z |
dc.date.issued.none.fl_str_mv |
2021-07-11 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79642 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79642 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Almasi, M. A., Aghapour-ojaghkandi, M., Bagheri, K., Ghazvini, M., & Hosseyny-dehabadi, S. M. (2015). Comparison and Evaluation of Two Diagnostic Methods for Detection of npt II and GUS Genes in Nicotiana tabacum. Applied Biochemistry and Biotechnology, 175, 3599–3616. https://doi.org/10.1007/s12010-015-1529-y Arai, Y., Nakashita, H., Yoshiharu, D., & Yamaguchi, I. (2001). Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. In Plant Biotechnology (Vol. 18, Issue 4, pp. 289–293). https://doi.org/10.5511/plantbiotechnology.18.289 Arai, Y., Shikanai, T., Doi, Y., Yoshida, S., Yamaguchi, I., & Nakashita, H. (2004). Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant and Cell Physiology, 45(9), 1176–1184. https://doi.org/10.1093/pcp/pch139 Baeg, K., Iwakawa, H. O., & Tomari, Y. (2017). The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. Nature Plants, 3(March). https://doi.org/10.1038/nplants.2017.36 Bakaher, N. (2020). Genetic Markers in Tobacco, Usage 3 for Map Development, Diversity Studies, and Quantitative Trait Loci Analysis. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 43–49). https://doi.org/10.1007/978-3-030-29493-9_2 Bakhsh, A., Anayol, E., & Ozcan, S. F. (2014). Comparison of transformation efficiency of five agrobacterium tumefaciens strains in nicotiana tabacum L. Emirates Journal of Food and Agriculture, 26(3), 259–264. https://doi.org/10.9755/ejfa.v26i3.16437 BANREP. (2021). Banco de la República. Características Del Cultivo Del Tabaco En Santander. https://www.banrep.gov.co/es/caracteristicas-del-cultivo-del-tabaco-santander#:~:text=El cultivo de este producto,la producción de tabaco negro. Barrientos, J. C., Plaza, G. A., & Rojas, J. (2012). Comparative analysis of flue-cured tobacco production costs in Santander and Huila (Colombia). Agronomia Colombiana, 30(2), 289–296. Basso, M. F., Arraes, F. B. M., Grossi-de-Sa, M., Moreira, V. J. V., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2020). Insights Into Genetic and Molecular Elements for Transgenic Crop Development. Frontiers in Plant Science, 11(May), 1–24. https://doi.org/10.3389/fpls.2020.00509 Bohmert-Tatarev, K., McAvoy, S., Daughtry, S., Peoples, O. P., & Snell, K. D. (2011). High Levels of Bioplastic Are Produced in Fertile Transplastomic Tobacco Plants Engineered with a Synthetic Operon for the Production of Polyhydroxybutyrate. Plant Physiology, 155(4), 1690–1708. https://doi.org/10.1104/pp.110.169581 Bohmert, K., Balbo, I., Kopka, J., Mittendorf, V., Nawrath, C., Poirier, Y., Tischendorf, G., Trethewey, R. N., & Willmitzer, L. (2000). Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta, 211(6), 841–845. https://doi.org/10.1007/s004250000350 Bohmert, K., Balbo, I., Steinbüchel, A., Tischendorf, G., & Willmitzer, L. (2002). Constitutive Expression of the β-Ketothiolase Gene in Transgenic Plants. A Major Obstacle for Obtaining Polyhydroxybutyrate-Producing Plants. Plant Physiology, 128(4), 1282–1290. https://doi.org/10.1104/pp.010615.confirming Budar, F., Thia-Toong, L., Van Montagu, M., & Hernalsteens, J. P. (1986). Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics, 114, 303–313. Carlini, D. B., & Stephan, W. (2003). In vivo introduction of unpreferred synonymous codons into the drosophila Adh gene results in reduced levels of ADH protein. Genetics, 163(1), 239–243. https://doi.org/10.1093/genetics/163.1.239 Cascales, E., & Christie, P. J. (2004). Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate. Science, 136(1986), 1–5. Castellanos-Domínguez, Ó. F., Torres-Piñeros, L. M., & Rodríguez-Zárate, D. M. (2009). Desarrollo tecnológico e innovación de la cadena productiva del Tabaco (1st ed.). Chandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnology Letters, 32(9), 1199–1205. https://doi.org/10.1007/s10529-010-0290-0 Chandrika-Sabapathy, P., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H. M., & Qi, X. (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production in the past decade – A Review. Bioresource Technology, 123132. https://doi.org/10.1016/j.biortech.2020.123132 Chaverri, R. (1995). Origen e Historia del Tabaco. In El Cultivo del Tabaco (EUNED, pp. 1–163). Editorial Universidad Estatal a Distancia. Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434–2446. https://doi.org/10.1039/b812677c Chen, G. Q., & Jiang, X. R. (2018). Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 50, 94–100. https://doi.org/10.1016/j.copbio.2017.11.016 Dadami, E., Moser, M., Zwiebel, M., Krczal, G., Wassenegger, M., & Dalakouras, A. (2013). An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Letters, 587(6), 706–710. https://doi.org/10.1016/j.febslet.2013.01.045 Deeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. S. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus, 3(1), 1–7. https://doi.org/10.1186/2193-1801-3-358 Dobrogojski, J., Spychalski, M., Luciński, R., & Borek, S. (2018). Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 40(9), 1–17. https://doi.org/10.1007/s11738-018-2742-4 Dodsworth, S., Kovarik, A., Marie-Angèle, G., Leitch, I. J., & Leitch, A. R. (2020). Repetitive DNA Dynamics 7 and Polyploidization in the Genus Nicotiana (Solanaceae). In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 85–100). https://doi.org/10.1007/978-3-030-29493-9_2 Domínguez, A., Fagoaga, C., Navarro, L., Moreno, P., & Peña, L. (2002). Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Molecular Genetics and Genomics, 267(4), 544–556. https://doi.org/10.1007/s00438-002-0688-z Domínguez, Antonio, Cervera, M., Pérez, R. M., Romero, J., Fagoaga, C., Cubero, J., López, M. M., Juárez, J. A., Navarro, L., & Peña, L. (2004). Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Molecular Breeding, 14(2), 171–183. https://doi.org/10.1023/B:MOLB.0000038005.73265.61 Escobar, M. A., & Dandekar, A. M. (2003). Agrobacterium tumefaciens as an agent of disease. Trends in Plant Science, 8(8), 380–386. https://doi.org/10.1016/S1360-1385(03)00162-6 F. de Felippes, F., McHale, M., Doran, R. L., Roden, S., Eamens, A. L., Finnegan, E. J., & Waterhouse, P. M. (2020). The key role of terminators on the expression and post-transcriptional gene silencing of transgenes. Plant Journal, 104(1), 96–112. https://doi.org/10.1111/tpj.14907 Fagard, M., & Vaucheret, H. (2000). (Trans)Gene Silencing in Plants: How Many Mechanisms? Annual Review of Plant Physiology and Plant Molecular Biology, 51, 167–194. Finagro. (2018). Ficha de inteligencia-Tabaco. In Finagro. http://www.aguadas-caldas.gov.co/ Francis, K. E., & Spiker, S. (2005). Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant Journal, 41(3), 464–477. https://doi.org/10.1111/j.1365-313X.2004.02312.x Ganapathi, T. R., Suprasanna, P., Rao, P. S., & Bapat, V. A. (2004). Tobacco (Nicotiana tabacum L.) - A model system for tissue culture interventions and genetic engineering. Indian Journal of Biotechnology, 3(2), 171–184. Gelvin, S. B. (2017). Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics, 51(August), 195–217. https://doi.org/10.1146/annurev-genet-120215-035320 Gumel, A. M., Annuar, M. S. M., & Chisti, Y. (2012). Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates. Journal of Polymers and the Environment, 21(2), 580–605. https://doi.org/10.1007/s10924-012-0527-1 Hahn, J. J., Eschenlauer, A. C., Narrol, M. H., Somers, D. A., & Srienc, F. (1997). Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(β-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures. Biotechnology Progress, 13(4), 347–354. https://doi.org/10.1021/bp970033r Hunt, A. G. (2008). Messenger RNA 3′ end formation in plants. Current Topics in Microbiology and Immunology, 326, 151–177. https://doi.org/10.1007/978-3-540-76776-3_9 Japelaghi, R. H., Haddad, R., Valizadeh, M., Uliaie, E. D., & Javaran, M. J. (2019). High-Efficiency Agrobacterium -Mediated Transformation of Tobacco ( Nicotiana tabacum ). Plant Molecular Breeding, 6(August 2018), 38–50. https://doi.org/10.22058/JPMB.2019.92266.1170 Kamo, K., & Blowers, A. (1999). Tissue specificity and expression level of gusA under rolD , mannopine synthase and translation elongation factor 1 subunit α promoters in transgenic Gladiolus plants. Plant Cell Reports, 18, 809–815. Kim, S. I., Veena, & Gelvin, S. B. (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant Journal, 51(5), 779–791. https://doi.org/10.1111/j.1365-313X.2007.03183.x Konwar, B. K. (1994). Agrobacterium tumefaciens-Mediated Genetic Transformation of Sugar Beet (Beta vulgaris L.). Journal of Plant Biochemistry and Biotechnology, 3(1), 37–41. https://doi.org/10.1007/BF03321946 Kumar, R., Mamrutha, H. M., Kaur, A., & Grewal, A. (2017). Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium over growth in wheat (Triticum aestivum L.) transformation. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(4), 961–967. Kutty, P. C., Parveez, G. K. A., & Huyop, F. (2011). Agrobacterium tumefaciens-infection Strategies for Greater Transgenic Recovery in Nicotiana tabacum cv. TAPM26. International Journal of Agricultural Research, 6(2), 119–133. https://doi.org/10.1097/mrm.0b013e3283642449 Lacorte, C. (1998). β-Glucuronidase (GUS). In A. Brasileiro & V. Carneiro (Eds.), Manual de Transformação Genética de Plantas. (pp. 128–129). EMBRAPASPI/EMBRAPA-Cenagen. Lacroix, B., & Citovsky, V. (2019). Pathways of DNA transfer to plants from agrobacterium tumefaciens and related bacterial species. Annual Review of Phytopathology, 57, 231–251. https://doi.org/10.1146/annurev-phyto-082718-100101 Li, B., Xie, C., & Qiu, H. (2009). Production of selectable marker-free transgenic tobacco plants using a non-selection approach: Chimerism or escape, transgene inheritance, and efficiency. Plant Cell Reports, 28(3), 373–386. https://doi.org/10.1007/s00299-008-0640-8 Li, M., & Wilkins, M. R. (2020). Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. International Journal of Biological Macromolecules, 156, 691–703. https://doi.org/10.1016/j.ijbiomac.2020.04.082 Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., & Li, Y. (2017). Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8(February), 1–15. https://doi.org/10.3389/fpls.2017.00246 Li, X., & Pan, S. Q. (2017). Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Science Advances, 3, 1–12. Lin, J. J., Assad-Garcia, N., & Kuo, J. (1995). Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Science, 109(2), 171–177. https://doi.org/10.1016/0168-9452(95)04168-T Lu, H., Yuan, G., Strauss, S. H., Tschaplinski, T. J., Tuskan, G. A., Chen, J.-G., & Yang, X. (2020). Reconfiguring Plant Metabolism for Biodegradable Plastic Production. BioDesign Research, 2020, 1–13. https://doi.org/10.34133/2020/9078303 MADR. (2020). Cadena de Tabaco-Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Tabaco/Documentos/2019-12-30 Cifras Sectoriales.pdf Manickavasagam, M., Ganapathi, A., Anbazhagan, V. R., Sudhakar, B., Selvaraj, N., Vasudevan, A., & Kasthurirengan, S. (2004). Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids ) using axillary buds. Genetic Transformation and Hybridization, 23, 134–143. https://doi.org/10.1007/s00299-004-0794-y Matsumoto, K., Morimoto, K., Gohda, A., Shimada, H., & Taguchi, S. (2011). Improved polyhydroxybutyrate (PHB) production in transgenic tobacco by enhancing translation efficiency of bacterial PHB biosynthetic genes. Journal of Bioscience and Bioengineering, 111(4), 485–488. https://doi.org/10.1016/j.jbiosc.2010.11.020 Matzke, M., Matzke, A. J. M., & Kooter, J. M. (2001). RNA: Guiding gene silencing. Science, 293(5532), 1080–1083. https://doi.org/10.1126/science.1063051 Matzke, Marjori, & Matzke, A. J. M. (1993). Genomic imprinting in plants: Parental effects and trans-inactivation phenomena. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 53–76. https://doi.org/10.1146/annurev.pp.44.060193.000413 Mcqualter, R. B., Petrasovits, L. A., Gebbie, L. K., Schweitzer, D., Blackman, D. M., Chrysanthopoulos, P., Hodson, M. P., Plan, M. R., Riches, J. D., Snell, K. D., Brumbley, S. M., & Nielsen, L. K. (2015). The use of an acetoacetyl-CoA synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnology Journal, 13(5), 700–707. https://doi.org/10.1111/pbi.12298 Mette, M. F., Aufsatz, W., Van der Winden, J., Matzke, M. A., & Matzke, A. J. M. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO Journal, 19(19), 5194–5201. https://doi.org/10.1093/emboj/19.19.5194 MinAgricultura. (2015). Bullets Cadena de Tabaco-Marzo de 2015. Mittendorf, V., Bongcam, V., Allenbach, L., Coullerez, G., Martini, N., & Poirier, Y. (1999). Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through β-oxidation. Plant Journal, 20(1), 45–55. https://doi.org/10.1046/j.1365-313X.1999.00572.x Mittendorf, V., Robertson, E. J., Leech, R. M., Kruger, N., Steinbuchel, A., & Poirier, Y. (1998). Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proceedings of the National Academy of Sciences, 95(23), 13397–13402. https://doi.org/10.1073/pnas.95.23.13397 Moazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389–394. https://doi.org/10.1038/327389a0 Moire, L., Rezzonico, E., & Poirier, Y. (2003b). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831–839. https://doi.org/10.1078/0176-1617-01030 Mooney, B. P. (2009). The second green revolution? Production of plant-based biodegradable plastics. Biochemical Journal, 418(2), 219–232. https://doi.org/10.1042/bj20081769 Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 474–497. Nagaya, S., Kawamura, K., Shinmyo, A., & Kato, K. (2010). The HSP terminator of arabidopsis thaliana increases gene expression in plant cells. In Plant and Cell Physiology (Vol. 51, Issue 2, pp. 328–332). https://doi.org/10.1093/pcp/pcp188 Nakashita, H., Arai, Y., Shikanai, T., Doi, Y., & Yamaguchi, I. (2001). Introduction of Bacterial Metabolism into Higher Plants by Polycistronic Transgene Expression. Bioscience, Biotechnology, and Biochemistry, 65(7), 1688–1691. https://doi.org/10.1271/bbb.65.1688 Nakashita, H., Arai, Y., Yoshioka, K., Fukui, T., Doi, Y., Usami, R., Horikoshi, K., & Yamaguchi, I. (1999). Production of Biodegradable Polyester By Tobbaco. Bioscience, Biotechnology, and Biochemistry, 63(5), 870–874. https://doi.org/10.1271/bbb.63.870 Nauerby, B., Billing, K., & Wyndaele, R. (1997). Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacteriurn tumefaciens. Plant Science, 123(1–2), 169–177. https://doi.org/10.1016/S0168-9452(96)04569-4 Nawrath, C., Poirier, Y., & Somerville, C. (1994). Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proceedings of the National Academy of Sciences, 91(26), 12760–12764. https://doi.org/10.1073/pnas.91.26.12760 Nawrath, Christiane, Poirier, Y., & Somerville, C. (1995). Plant polymers for biodegradable plastics: Cellulose, starch and polyhydroxyalkanoates. In Molecular Breeding. https://doi.org/10.1007/BF01249696 Okamura, E., Tomita, T., Sawa, R., Nishiyama, M., & Kuzuyama, T. (2010). Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11265–11270. https://doi.org/10.1073/pnas.1000532107 Pachchigar, K., Khunt, A., & Hetal, B. (2016). Dna quantification. In ICAR Sponsored summer school on Allele mining in crops: Methods and Utility (pp. 5–9). Patton, D. A., & Meinke, D. W. (1988). High-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Reports, 7(4), 233–237. https://doi.org/10.1007/BF00272531 Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206–213. https://doi.org/10.1007/s00299-005-0048-7 Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Transformation, 136, 167–179. Pérez-González, A., & Caro, E. (2018). Effect of transcription terminator usage on the establishment of transgene transcriptional gene silencing. BMC Research Notes, 11(1), 1–8. https://doi.org/10.1186/s13104-018-3649-2 Petrasovits, L. A., Purnell, M. P., Nielsen, L. K., & Brumbley, S. M. (2007). Production of polyhydroxybutyrate in sugarcane. Plant Biotechnology Journal, 5(1), 162–172. https://doi.org/10.1111/j.1467-7652.2006.00229.x Petrasovits, L. A., Zhao, L., McQualter, R. B., Snell, K. D., Somleva, M. N., Patterson, N. A., Nielsen, L. K., & Brumbley, S. M. (2012). Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnology Journal, 10(5), 569–578. https://doi.org/10.1111/j.1467-7652.2012.00686.x Poirier, Y., E. Dennis, D., Klomparens, K., & Somerville, C. (1992). PHB, a biodegradable thermoplastic, produced in transgenic plants. Science, 256(April). Poltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70 Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(January 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001 Roberts, R. J. (1985). Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research, 5, 1–49. Rodríguez-García, C., Vilaine, F., & Robaglia, C. (2002). Transfer of the yeast gene SKI2 to Tobacco. Agrociencia, 36(6), 675–681. Romano, A. (2002). Production of Polyhydroxyalkanoates (PHAs) in Transgenic Potato [Wageningen Universiteit]. In Biopolymers Online. https://doi.org/10.1002/3527600035.bpol3a15 Rossi, L., Hohn, B., & Tinland, B. (1996). Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci, 93(January), 126–130. Saruul, P., Srienc, F., Somers, D. A., & Samac, D. A. (2002). Production of a Biodegradable Plastic Polymer, Poly-β-Hydroxybutyrate, in Transgenic Alfalfa. Crop Science, 42(3), 919–927. Schmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283(3), 233–241. https://doi.org/10.1007/s00438-010-0511-1 Sharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer, 212, 123161. https://doi.org/10.1016/j.polymer.2020.123161 Sierro, N., Battey, J. N. D., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M. C., & Ivanov, N. V. (2014). The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 5(May), 1–9. https://doi.org/10.1038/ncomms4833 Sierro, N., & Ivanov, N. (2020). Background and History of Tobacco Genome Resources. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 21–41). https://doi.org/10.1007/978-3-030-29493-9_2 Sijen, T., Vijn, I., Rebocho, A., Van Blokland, R., Roelofs, D., Mol, J. N. M., & Kooter, J. M. (2001). Transcriptional and posttranscriptional gene silencing are mechanistically related. Current Biology, 11(6), 436–440. https://doi.org/10.1016/S0960-9822(01)00116-6 SIOC. (2021). Tabaco-Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. Boletín de Precios de Insumos Agropecuarios No. 1 de 2021. https://sioc.minagricultura.gov.co/Tabaco/Pages/default.aspx Snell, K. D., Singh, V., & Brumbley, S. M. (2015). Production of novel biopolymers in plants: Recent technological advances and future prospects. Current Opinion in Biotechnology, 32, 68–75. https://doi.org/10.1016/j.copbio.2014.11.005 Somleva, M. N., Peoples, O. P., & Snell, K. D. (2013). PHA Bioplastics, Biochemicals, and Energy from Crops. Plant Biotechnology Journal, 11, 233–252. https://doi.org/10.1111/pbi.12039 Song, Z. yue, Tian, J. luan, Fu, W. zhe, Li, L., Lu, L. hong, Zhou, L., Shan, Z. hui, Tang, G. xiang, & Shou, H. xia. (2013). Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Journal of Zhejiang University. Science. B, 14(4), 289–298. https://doi.org/10.1631/jzus.B1200278 Stefanov, I., Fekete, S., Bögre, L., Pauk, J., Fehér, A., & Dudits, D. (1994). Differential activity of the mannopine synthase and the CaMV 35S promoters during development of transgenic rapeseed plants. Plant Science, 95, 175–186. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnology Advances, 25(2), 148–175. https://doi.org/10.1016/j.biotechadv.2006.11.007 Tan, D., Wang, Y., Tong, Y., & Chen, G. Q. (2021). Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends in Biotechnology, 1–11. https://doi.org/10.1016/j.tibtech.2020.11.010 Teixeira, J. A. (2005). Simple multiplication and effective genetic transformation ( four methods ) of in vitro-grown tobacco by stem thin cell layers. Plant Science, 169, 1046–1058. https://doi.org/10.1016/j.plantsci.2005.07.012 Tilbrook, K., Gebbie, L., Schenk, P. M., Poirier, Y., & Brumbley, S. M. (2011). Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnology Journal, 9, 958–969. https://doi.org/10.1111/j.1467-7652.2011.00600.x Trick, H., & Finer, J. (1997). SAAT : sonication-assisted Agrobacterium -mediated transformation. Transgenic Research, 6, 329–336. Valderrama-Fonseca, A. M., Arango-Isaza, R., & Afanador-Kafuri, L. (2005). Transformación de plantas mediada por Agrobacterium: “Ingeniería Genética natural aplicada.” Rev.Fac.Nal.Agr.Medellín, 58(1), 2569–2585. http://www.scielo.org.co/pdf/rfnam/v58n1/a01v58n1.pdf Valentin, H. E., Broyles, D. L., Casagrande, L. A., Colburn, S. M., Creely, W. L., Delaquil, P. A., Felton, H. M., Gonzalez, K. A., Houmiel, K. L., Lutke, K., Mahadeo, D. A., Mitsky, T. A., Padgette, S. R., Reiser, S. E., Slater, S., Stark, D. M., Stock, R. T., Stone, D. A., Taylor, N. B., … Gruys, K. J. (1999). PHA production, from bacteria to plants. International Journal of Biological Macromolecules, 25(1–3), 303–306. https://doi.org/10.1016/S0141-8130(99)00045-8 Weselake, R. J. (2005). Storage lipids. In D. J. Murphy (Ed.), Plant lipids — biology, utilization and manipulation (pp. 162–225). Blackwell Publishing. Yu, L. P., Wu, F. Q., & Chen, G. Q. (2019). Next-Generation Industrial Biotechnology-Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnology Journal, 14(9). https://doi.org/10.1002/biot.201800437 Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., & Schell, J. (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. The EMBO Journal, 2(12), 2143–2150. https://doi.org/10.1002/j.1460-2075.1983.tb01715.x Zhang, B., Carlson, R., & Srienc, F. (2006). Engineering the Monomer Composition of Polyhydroxyalkanoates Synthesized in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72(1), 536–543. https://doi.org/10.1128/AEM.72.1.536 Zhao, H., Jia, Y., Cao, Y., & Wang, Y. (2020). Improving T-DNA Transfer to Tamarix hispida by Adding Chemical Compounds During Agrobacterium tumefaciens Culture. Frontiers in Plant Science, 11(September), 1–8. https://doi.org/10.3389/fpls.2020.501358 Zhu, L., Zhang, J., Yang, J., Jiang, Y., & Yang, S. (2021). Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends in Biotechnology, 1–17. https://doi.org/10.1016/j.tibtech.2021.04.004 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 74 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79642/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79642/2/L%c3%adnea%20transg%c3%a9nica%20de%20Nicotiana%20tabacum%20expresando%20el%20gen%20phaC%20de%20Aeromonas%20caviae%20para%20la%20producci%c3%b3n%20de%20polihidroxialcanoatos.pdf https://repositorio.unal.edu.co/bitstream/unal/79642/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79642/4/L%c3%adnea%20transg%c3%a9nica%20de%20Nicotiana%20tabacum%20expresando%20el%20gen%20phaC%20de%20Aeromonas%20caviae%20para%20la%20producci%c3%b3n%20de%20polihidroxialcanoatos.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 48f15b21546b16881836987d43dd6f74 4460e5956bc1d1639be9ae6146a50347 ac05c50f320aab632927932aab1addfd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090234017611776 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarmiento Salazar, Felipe97400f5ef687d1b92cbb7c10c002339cVillamil Bolaños, Fabiane0274278862f3e61bdadeae8b2b2e806Ingeniería Genética de Plantas2021-06-17T18:45:45Z2021-06-17T18:45:45Z2021-07-11https://repositorio.unal.edu.co/handle/unal/79642Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasLos polihidroxialcanoatos (PHAs) son poliésteres producidos y degradados naturalmente por bacterias, cuyas propiedades los hacen similares a los plásticos derivados del petróleo. La producción en masa de PHAs es costosa, por ello la transferencia genética de genes clave y su producción en plantas se ha considerado como alternativa, dado que estos organismos tienen un bajo costo de mantenimiento y por qué pueden generar mayor biomasa. Sin embargo, uno de los problemas principales que han limitado su obtención, es que generalmente las plantas presentan problemas de desarrollo y crecimiento asociados al secuestro de sustancias claves para el metabolismo y dirigidas hacia la síntesis de PHAs. Hallazgos recientes han identificado que su biosíntesis en peroxisomas reduce los efectos negativos debido a la presencia y abundancia de compuestos intermediarios en la ruta de biosíntesis de estos biopolímeros. Por esta razón, nuestros objetivos se centraron en obtener líneas genéticamente modificadas de Nicotiana tabacum var. Samsun 10, transformadas mediante la infección con Agrobacterium tumefaciens cepa LBA4404 y en evaluar la expresión del casete que dirige la síntesis del gen phaCAC de Aeromonas caviae hacia peroxisomas. Los resultados de la extracción del ADN indicaron una eficiencia de transformación del 2,6%, la síntesis de ADNc y la evaluación de la actividad de la β-glucuronidasa, detectaron dos líneas transgénicas que expresaron el gen phaCAC sin efectos negativos aparentes. (Texto tomado de la fuente)Polyhydroxyalcanoates (PHAs) are polyesters naturally produced and degraded by bacteria, whose properties make them like plastics derived from petroleum. Mass production of PHAs by bacteria is expensive, so genetic transfer of key genes and production in plants has been considered as an alternative given the low maintenance cost and larger biomass than plants can generate. However, one of the main problems that have limited plant production is that plants generally present developmental and growth problems associated with capture of key substances for metabolism and directed towards PHA synthesis. Recent findings have identified that PHAs biosynthesis in peroxisomes reduces negative effects due to the presence and abundance of intermediate compounds in the biosynthesis path of these biopolymers. For this reason, our objectives focused on obtaining genetically modified lines of Nicotiana tabacum var. Samsun 10, transformed by infection with Agrobacterium tumefaciens strain LBA4404, and in to evaluate the expression of the construct that directs the synthesis of the phaCAC gene from Aeromonas caviae towards plant peroxisomes. DNA extraction results indicated 2.6% transformation efficiency and DNAc synthesis and evaluation of β-glucuronidase activity, detected two transgenic lines expressing the gene without apparent negative effects.Jóvenes Investigadores e Innovadores 812-2018MaestríaMagíster en Ciencias AgrariasGenética y fitomejoramientoxvii, 74 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadasTransgenic plantsBiopolymersPlantas transgénicasBiopolímerosBiopolímeroTransgénicoβ-glucuronidasaPeroxisomaPéptido señalBiopolymerTransgenicβ-glucuronidasePeroxisomeSignal peptideLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatosTransgenic line of Nicotiana tabacum expressing the phaC gene of Aeromonas caviae for the production of polyhydroxyalkanoatesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlmasi, M. A., Aghapour-ojaghkandi, M., Bagheri, K., Ghazvini, M., & Hosseyny-dehabadi, S. M. (2015). Comparison and Evaluation of Two Diagnostic Methods for Detection of npt II and GUS Genes in Nicotiana tabacum. Applied Biochemistry and Biotechnology, 175, 3599–3616. https://doi.org/10.1007/s12010-015-1529-yArai, Y., Nakashita, H., Yoshiharu, D., & Yamaguchi, I. (2001). Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. In Plant Biotechnology (Vol. 18, Issue 4, pp. 289–293). https://doi.org/10.5511/plantbiotechnology.18.289Arai, Y., Shikanai, T., Doi, Y., Yoshida, S., Yamaguchi, I., & Nakashita, H. (2004). Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant and Cell Physiology, 45(9), 1176–1184. https://doi.org/10.1093/pcp/pch139Baeg, K., Iwakawa, H. O., & Tomari, Y. (2017). The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. Nature Plants, 3(March). https://doi.org/10.1038/nplants.2017.36Bakaher, N. (2020). Genetic Markers in Tobacco, Usage 3 for Map Development, Diversity Studies, and Quantitative Trait Loci Analysis. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 43–49). https://doi.org/10.1007/978-3-030-29493-9_2Bakhsh, A., Anayol, E., & Ozcan, S. F. (2014). Comparison of transformation efficiency of five agrobacterium tumefaciens strains in nicotiana tabacum L. Emirates Journal of Food and Agriculture, 26(3), 259–264. https://doi.org/10.9755/ejfa.v26i3.16437BANREP. (2021). Banco de la República. Características Del Cultivo Del Tabaco En Santander. https://www.banrep.gov.co/es/caracteristicas-del-cultivo-del-tabaco-santander#:~:text=El cultivo de este producto,la producción de tabaco negro.Barrientos, J. C., Plaza, G. A., & Rojas, J. (2012). Comparative analysis of flue-cured tobacco production costs in Santander and Huila (Colombia). Agronomia Colombiana, 30(2), 289–296.Basso, M. F., Arraes, F. B. M., Grossi-de-Sa, M., Moreira, V. J. V., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2020). Insights Into Genetic and Molecular Elements for Transgenic Crop Development. Frontiers in Plant Science, 11(May), 1–24. https://doi.org/10.3389/fpls.2020.00509Bohmert-Tatarev, K., McAvoy, S., Daughtry, S., Peoples, O. P., & Snell, K. D. (2011). High Levels of Bioplastic Are Produced in Fertile Transplastomic Tobacco Plants Engineered with a Synthetic Operon for the Production of Polyhydroxybutyrate. Plant Physiology, 155(4), 1690–1708. https://doi.org/10.1104/pp.110.169581Bohmert, K., Balbo, I., Kopka, J., Mittendorf, V., Nawrath, C., Poirier, Y., Tischendorf, G., Trethewey, R. N., & Willmitzer, L. (2000). Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta, 211(6), 841–845. https://doi.org/10.1007/s004250000350Bohmert, K., Balbo, I., Steinbüchel, A., Tischendorf, G., & Willmitzer, L. (2002). Constitutive Expression of the β-Ketothiolase Gene in Transgenic Plants. A Major Obstacle for Obtaining Polyhydroxybutyrate-Producing Plants. Plant Physiology, 128(4), 1282–1290. https://doi.org/10.1104/pp.010615.confirmingBudar, F., Thia-Toong, L., Van Montagu, M., & Hernalsteens, J. P. (1986). Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics, 114, 303–313.Carlini, D. B., & Stephan, W. (2003). In vivo introduction of unpreferred synonymous codons into the drosophila Adh gene results in reduced levels of ADH protein. Genetics, 163(1), 239–243. https://doi.org/10.1093/genetics/163.1.239 Cascales, E., & Christie, P. J. (2004). Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate. Science, 136(1986), 1–5.Castellanos-Domínguez, Ó. F., Torres-Piñeros, L. M., & Rodríguez-Zárate, D. M. (2009). Desarrollo tecnológico e innovación de la cadena productiva del Tabaco (1st ed.).Chandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnology Letters, 32(9), 1199–1205. https://doi.org/10.1007/s10529-010-0290-0Chandrika-Sabapathy, P., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H. M., & Qi, X. (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production in the past decade – A Review. Bioresource Technology, 123132. https://doi.org/10.1016/j.biortech.2020.123132Chaverri, R. (1995). Origen e Historia del Tabaco. In El Cultivo del Tabaco (EUNED, pp. 1–163). Editorial Universidad Estatal a Distancia.Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434–2446. https://doi.org/10.1039/b812677cChen, G. Q., & Jiang, X. R. (2018). Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 50, 94–100. https://doi.org/10.1016/j.copbio.2017.11.016Dadami, E., Moser, M., Zwiebel, M., Krczal, G., Wassenegger, M., & Dalakouras, A. (2013). An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Letters, 587(6), 706–710. https://doi.org/10.1016/j.febslet.2013.01.045Deeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. S. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus, 3(1), 1–7. https://doi.org/10.1186/2193-1801-3-358Dobrogojski, J., Spychalski, M., Luciński, R., & Borek, S. (2018). Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 40(9), 1–17. https://doi.org/10.1007/s11738-018-2742-4Dodsworth, S., Kovarik, A., Marie-Angèle, G., Leitch, I. J., & Leitch, A. R. (2020). Repetitive DNA Dynamics 7 and Polyploidization in the Genus Nicotiana (Solanaceae). In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 85–100). https://doi.org/10.1007/978-3-030-29493-9_2Domínguez, A., Fagoaga, C., Navarro, L., Moreno, P., & Peña, L. (2002). Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Molecular Genetics and Genomics, 267(4), 544–556. https://doi.org/10.1007/s00438-002-0688-zDomínguez, Antonio, Cervera, M., Pérez, R. M., Romero, J., Fagoaga, C., Cubero, J., López, M. M., Juárez, J. A., Navarro, L., &Peña, L. (2004). Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Molecular Breeding, 14(2), 171–183. https://doi.org/10.1023/B:MOLB.0000038005.73265.61Escobar, M. A., & Dandekar, A. M. (2003). Agrobacterium tumefaciens as an agent of disease. Trends in Plant Science, 8(8), 380–386. https://doi.org/10.1016/S1360-1385(03)00162-6F. de Felippes, F., McHale, M., Doran, R. L., Roden, S., Eamens, A. L., Finnegan, E. J., & Waterhouse, P. M. (2020). The key role of terminators on the expression and post-transcriptional gene silencing of transgenes. Plant Journal, 104(1), 96–112. https://doi.org/10.1111/tpj.14907Fagard, M., & Vaucheret, H. (2000). (Trans)Gene Silencing in Plants: How Many Mechanisms? Annual Review of Plant Physiology and Plant Molecular Biology, 51, 167–194.Finagro. (2018). Ficha de inteligencia-Tabaco. In Finagro. http://www.aguadas-caldas.gov.co/Francis, K. E., & Spiker, S. (2005). Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant Journal, 41(3), 464–477. https://doi.org/10.1111/j.1365-313X.2004.02312.xGanapathi, T. R., Suprasanna, P., Rao, P. S., & Bapat, V. A. (2004). Tobacco (Nicotiana tabacum L.) - A model system for tissue culture interventions and genetic engineering. Indian Journal of Biotechnology, 3(2), 171–184.Gelvin, S. B. (2017). Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics, 51(August), 195–217. https://doi.org/10.1146/annurev-genet-120215-035320Gumel, A. M., Annuar, M. S. M., & Chisti, Y. (2012). Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates. Journal of Polymers and the Environment, 21(2), 580–605. https://doi.org/10.1007/s10924-012-0527-1Hahn, J. J., Eschenlauer, A. C., Narrol, M. H., Somers, D. A., & Srienc, F. (1997). Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(β-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures. Biotechnology Progress, 13(4), 347–354. https://doi.org/10.1021/bp970033rHunt, A. G. (2008). Messenger RNA 3′ end formation in plants. Current Topics in Microbiology and Immunology, 326, 151–177. https://doi.org/10.1007/978-3-540-76776-3_9Japelaghi, R. H., Haddad, R., Valizadeh, M., Uliaie, E. D., & Javaran, M. J. (2019). High-Efficiency Agrobacterium -Mediated Transformation of Tobacco ( Nicotiana tabacum ). Plant Molecular Breeding, 6(August 2018), 38–50. https://doi.org/10.22058/JPMB.2019.92266.1170Kamo, K., & Blowers, A. (1999). Tissue specificity and expression level of gusA under rolD , mannopine synthase and translation elongation factor 1 subunit α promoters in transgenic Gladiolus plants. Plant Cell Reports, 18, 809–815.Kim, S. I., Veena, & Gelvin, S. B. (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant Journal, 51(5), 779–791. https://doi.org/10.1111/j.1365-313X.2007.03183.xKonwar, B. K. (1994). Agrobacterium tumefaciens-Mediated Genetic Transformation of Sugar Beet (Beta vulgaris L.). Journal of Plant Biochemistry and Biotechnology, 3(1), 37–41. https://doi.org/10.1007/BF03321946Kumar, R., Mamrutha, H. M., Kaur, A., & Grewal, A. (2017). Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium over growth in wheat (Triticum aestivum L.) transformation. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(4), 961–967.Kutty, P. C., Parveez, G. K. A., & Huyop, F. (2011). Agrobacterium tumefaciens-infection Strategies for Greater Transgenic Recovery in Nicotiana tabacum cv. TAPM26. International Journal of Agricultural Research, 6(2), 119–133. https://doi.org/10.1097/mrm.0b013e3283642449Lacorte, C. (1998). β-Glucuronidase (GUS). In A. Brasileiro & V. Carneiro (Eds.), Manual de Transformação Genética de Plantas. (pp. 128–129). EMBRAPASPI/EMBRAPA-Cenagen.Lacroix, B., & Citovsky, V. (2019). Pathways of DNA transfer to plants from agrobacterium tumefaciens and related bacterial species. Annual Review of Phytopathology, 57, 231–251. https://doi.org/10.1146/annurev-phyto-082718-100101Li, B., Xie, C., & Qiu, H. (2009). Production of selectable marker-free transgenic tobacco plants using a non-selection approach: Chimerism or escape, transgene inheritance, and efficiency. Plant Cell Reports, 28(3), 373–386. https://doi.org/10.1007/s00299-008-0640-8Li, M., & Wilkins, M. R. (2020). Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. International Journal of Biological Macromolecules, 156, 691–703. https://doi.org/10.1016/j.ijbiomac.2020.04.082Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., & Li, Y. (2017). Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8(February), 1–15. https://doi.org/10.3389/fpls.2017.00246Li, X., & Pan, S. Q. (2017). Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Science Advances, 3, 1–12.Lin, J. J., Assad-Garcia, N., & Kuo, J. (1995). Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Science, 109(2), 171–177. https://doi.org/10.1016/0168-9452(95)04168-TLu, H., Yuan, G., Strauss, S. H., Tschaplinski, T. J., Tuskan, G. A., Chen, J.-G., & Yang, X. (2020). Reconfiguring Plant Metabolism for Biodegradable Plastic Production. BioDesign Research, 2020, 1–13. https://doi.org/10.34133/2020/9078303MADR. (2020). Cadena de Tabaco-Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Tabaco/Documentos/2019-12-30 Cifras Sectoriales.pdfManickavasagam, M., Ganapathi, A., Anbazhagan, V. R., Sudhakar, B., Selvaraj, N., Vasudevan, A., & Kasthurirengan, S. (2004). Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids ) using axillary buds. Genetic Transformation and Hybridization, 23, 134–143. https://doi.org/10.1007/s00299-004-0794-yMatsumoto, K., Morimoto, K., Gohda, A., Shimada, H., & Taguchi, S. (2011). Improved polyhydroxybutyrate (PHB) production in transgenic tobacco by enhancing translation efficiency of bacterial PHB biosynthetic genes. Journal of Bioscience and Bioengineering, 111(4), 485–488. https://doi.org/10.1016/j.jbiosc.2010.11.020Matzke, M., Matzke, A. J. M., & Kooter, J. M. (2001). RNA: Guiding gene silencing. Science, 293(5532), 1080–1083. https://doi.org/10.1126/science.1063051Matzke, Marjori, & Matzke, A. J. M. (1993). Genomic imprinting in plants: Parental effects and trans-inactivation phenomena. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 53–76. https://doi.org/10.1146/annurev.pp.44.060193.000413Mcqualter, R. B., Petrasovits, L. A., Gebbie, L. K., Schweitzer, D., Blackman, D. M., Chrysanthopoulos, P., Hodson, M. P., Plan, M. R., Riches, J. D., Snell, K. D., Brumbley, S. M., & Nielsen, L. K. (2015). The use of an acetoacetyl-CoA synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnology Journal, 13(5), 700–707. https://doi.org/10.1111/pbi.12298Mette, M. F., Aufsatz, W., Van der Winden, J., Matzke, M. A., & Matzke, A. J. M. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO Journal, 19(19), 5194–5201. https://doi.org/10.1093/emboj/19.19.5194MinAgricultura. (2015). Bullets Cadena de Tabaco-Marzo de 2015.Mittendorf, V., Bongcam, V., Allenbach, L., Coullerez, G., Martini, N., & Poirier, Y. (1999). Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through β-oxidation. Plant Journal, 20(1), 45–55. https://doi.org/10.1046/j.1365-313X.1999.00572.xMittendorf, V., Robertson, E. J., Leech, R. M., Kruger, N., Steinbuchel, A., & Poirier, Y. (1998). Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proceedings of the National Academy of Sciences, 95(23), 13397–13402. https://doi.org/10.1073/pnas.95.23.13397Moazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389–394. https://doi.org/10.1038/327389a0Moire, L., Rezzonico, E., & Poirier, Y. (2003b). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831–839. https://doi.org/10.1078/0176-1617-01030Mooney, B. P. (2009). The second green revolution? Production of plant-based biodegradable plastics. Biochemical Journal, 418(2), 219–232. https://doi.org/10.1042/bj20081769Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 474–497.Nagaya, S., Kawamura, K., Shinmyo, A., & Kato, K. (2010). The HSP terminator of arabidopsis thaliana increases gene expression in plant cells. In Plant and Cell Physiology (Vol. 51, Issue 2, pp. 328–332). https://doi.org/10.1093/pcp/pcp188Nakashita, H., Arai, Y., Shikanai, T., Doi, Y., & Yamaguchi, I. (2001). Introduction of Bacterial Metabolism into Higher Plants by Polycistronic Transgene Expression. Bioscience, Biotechnology, and Biochemistry, 65(7), 1688–1691. https://doi.org/10.1271/bbb.65.1688Nakashita, H., Arai, Y., Yoshioka, K., Fukui, T., Doi, Y., Usami, R., Horikoshi, K., & Yamaguchi, I. (1999). Production of Biodegradable Polyester By Tobbaco. Bioscience, Biotechnology, and Biochemistry, 63(5), 870–874. https://doi.org/10.1271/bbb.63.870Nauerby, B., Billing, K., & Wyndaele, R. (1997). Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacteriurn tumefaciens. Plant Science, 123(1–2), 169–177. https://doi.org/10.1016/S0168-9452(96)04569-4Nawrath, C., Poirier, Y., & Somerville, C. (1994). Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proceedings of the National Academy of Sciences, 91(26), 12760–12764. https://doi.org/10.1073/pnas.91.26.12760Nawrath, Christiane, Poirier, Y., & Somerville, C. (1995). Plant polymers for biodegradable plastics: Cellulose, starch and polyhydroxyalkanoates. In Molecular Breeding. https://doi.org/10.1007/BF01249696Okamura, E., Tomita, T., Sawa, R., Nishiyama, M., & Kuzuyama, T. (2010). Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11265–11270. https://doi.org/10.1073/pnas.1000532107Pachchigar, K., Khunt, A., & Hetal, B. (2016). Dna quantification. In ICAR Sponsored summer school on Allele mining in crops: Methods and Utility (pp. 5–9).Patton, D. A., & Meinke, D. W. (1988). High-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Reports, 7(4), 233–237. https://doi.org/10.1007/BF00272531Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206–213. https://doi.org/10.1007/s00299-005-0048-7Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Transformation, 136, 167–179.Pérez-González, A., & Caro, E. (2018). Effect of transcription terminator usage on the establishment of transgene transcriptional gene silencing. BMC Research Notes, 11(1), 1–8. https://doi.org/10.1186/s13104-018-3649-2Petrasovits, L. A., Purnell, M. P., Nielsen, L. K., & Brumbley, S. M. (2007). Production of polyhydroxybutyrate in sugarcane. Plant Biotechnology Journal, 5(1), 162–172. https://doi.org/10.1111/j.1467-7652.2006.00229.xPetrasovits, L. A., Zhao, L., McQualter, R. B., Snell, K. D., Somleva, M. N., Patterson, N. A., Nielsen, L. K., & Brumbley, S. M. (2012). Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnology Journal, 10(5), 569–578. https://doi.org/10.1111/j.1467-7652.2012.00686.xPoirier, Y., E. Dennis, D., Klomparens, K., & Somerville, C. (1992). PHB, a biodegradable thermoplastic, produced in transgenic plants. Science, 256(April).Poltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(January 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001Roberts, R. J. (1985). Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research, 5, 1–49.Rodríguez-García, C., Vilaine, F., & Robaglia, C. (2002). Transfer of the yeast gene SKI2 to Tobacco. Agrociencia, 36(6), 675–681.Romano, A. (2002). Production of Polyhydroxyalkanoates (PHAs) in Transgenic Potato [Wageningen Universiteit]. In Biopolymers Online. https://doi.org/10.1002/3527600035.bpol3a15Rossi, L., Hohn, B., & Tinland, B. (1996). Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci, 93(January), 126–130.Saruul, P., Srienc, F., Somers, D. A., & Samac, D. A. (2002). Production of a Biodegradable Plastic Polymer, Poly-β-Hydroxybutyrate, in Transgenic Alfalfa. Crop Science, 42(3), 919–927.Schmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283(3), 233–241. https://doi.org/10.1007/s00438-010-0511-1Sharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer, 212, 123161. https://doi.org/10.1016/j.polymer.2020.123161Sierro, N., Battey, J. N. D., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M. C., & Ivanov, N. V. (2014). The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 5(May), 1–9. https://doi.org/10.1038/ncomms4833Sierro, N., & Ivanov, N. (2020). Background and History of Tobacco Genome Resources. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 21–41). https://doi.org/10.1007/978-3-030-29493-9_2Sijen, T., Vijn, I., Rebocho, A., Van Blokland, R., Roelofs, D., Mol, J. N. M., & Kooter, J. M. (2001). Transcriptional and posttranscriptional gene silencing are mechanistically related. Current Biology, 11(6), 436–440. https://doi.org/10.1016/S0960-9822(01)00116-6 SIOC. (2021). Tabaco-Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. Boletín de Precios de Insumos Agropecuarios No. 1 de 2021. https://sioc.minagricultura.gov.co/Tabaco/Pages/default.aspxSnell, K. D., Singh, V., & Brumbley, S. M. (2015). Production of novel biopolymers in plants: Recent technological advances and future prospects. Current Opinion in Biotechnology, 32, 68–75. https://doi.org/10.1016/j.copbio.2014.11.005Somleva, M. N., Peoples, O. P., & Snell, K. D. (2013). PHA Bioplastics, Biochemicals, and Energy from Crops. Plant Biotechnology Journal, 11, 233–252. https://doi.org/10.1111/pbi.12039Song, Z. yue, Tian, J. luan, Fu, W. zhe, Li, L., Lu, L. hong, Zhou, L., Shan, Z. hui, Tang, G. xiang, & Shou, H. xia. (2013). Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Journal of Zhejiang University. Science. B, 14(4), 289–298. https://doi.org/10.1631/jzus.B1200278Stefanov, I., Fekete, S., Bögre, L., Pauk, J., Fehér, A., & Dudits, D. (1994). Differential activity of the mannopine synthase and the CaMV 35S promoters during development of transgenic rapeseed plants. Plant Science, 95, 175–186. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnology Advances, 25(2), 148–175. https://doi.org/10.1016/j.biotechadv.2006.11.007Tan, D., Wang, Y., Tong, Y., & Chen, G. Q. (2021). Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends in Biotechnology, 1–11. https://doi.org/10.1016/j.tibtech.2020.11.010Teixeira, J. A. (2005). Simple multiplication and effective genetic transformation ( four methods ) of in vitro-grown tobacco by stem thin cell layers. Plant Science, 169, 1046–1058. https://doi.org/10.1016/j.plantsci.2005.07.012Tilbrook, K., Gebbie, L., Schenk, P. M., Poirier, Y., & Brumbley, S. M. (2011). Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnology Journal, 9, 958–969. https://doi.org/10.1111/j.1467-7652.2011.00600.xTrick, H., & Finer, J. (1997). SAAT : sonication-assisted Agrobacterium -mediated transformation. Transgenic Research, 6, 329–336.Valderrama-Fonseca, A. M., Arango-Isaza, R., & Afanador-Kafuri, L. (2005). Transformación de plantas mediada por Agrobacterium: “Ingeniería Genética natural aplicada.” Rev.Fac.Nal.Agr.Medellín, 58(1), 2569–2585. http://www.scielo.org.co/pdf/rfnam/v58n1/a01v58n1.pdfValentin, H. E., Broyles, D. L., Casagrande, L. A., Colburn, S. M., Creely, W. L., Delaquil, P. A., Felton, H. M., Gonzalez, K. A., Houmiel, K. L., Lutke, K., Mahadeo, D. A., Mitsky, T. A., Padgette, S. R., Reiser, S. E., Slater, S., Stark, D. M., Stock, R. T., Stone, D. A., Taylor, N. B., … Gruys, K. J. (1999). PHA production, from bacteria to plants. International Journal of Biological Macromolecules, 25(1–3), 303–306. https://doi.org/10.1016/S0141-8130(99)00045-8Weselake, R. J. (2005). Storage lipids. In D. J. Murphy (Ed.), Plant lipids — biology, utilization and manipulation (pp. 162–225). Blackwell Publishing.Yu, L. P., Wu, F. Q., & Chen, G. Q. (2019). Next-Generation Industrial Biotechnology-Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnology Journal, 14(9). https://doi.org/10.1002/biot.201800437Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., & Schell, J. (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. The EMBO Journal, 2(12), 2143–2150. https://doi.org/10.1002/j.1460-2075.1983.tb01715.xZhang, B., Carlson, R., & Srienc, F. (2006). Engineering the Monomer Composition of Polyhydroxyalkanoates Synthesized in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72(1), 536–543. https://doi.org/10.1128/AEM.72.1.536Zhao, H., Jia, Y., Cao, Y., & Wang, Y. (2020). Improving T-DNA Transfer to Tamarix hispida by Adding Chemical Compounds During Agrobacterium tumefaciens Culture. Frontiers in Plant Science, 11(September), 1–8. https://doi.org/10.3389/fpls.2020.501358Zhu, L., Zhang, J., Yang, J., Jiang, Y., & Yang, S. (2021). Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends in Biotechnology, 1–17. https://doi.org/10.1016/j.tibtech.2021.04.004GeneralInvestigadoresEstudiantesPúblico generalMinicienciasLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79642/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos.pdfLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf1531157https://repositorio.unal.edu.co/bitstream/unal/79642/2/L%c3%adnea%20transg%c3%a9nica%20de%20Nicotiana%20tabacum%20expresando%20el%20gen%20phaC%20de%20Aeromonas%20caviae%20para%20la%20producci%c3%b3n%20de%20polihidroxialcanoatos.pdf48f15b21546b16881836987d43dd6f74MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79642/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAILLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos.pdf.jpgLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos.pdf.jpgGenerated Thumbnailimage/jpeg4016https://repositorio.unal.edu.co/bitstream/unal/79642/4/L%c3%adnea%20transg%c3%a9nica%20de%20Nicotiana%20tabacum%20expresando%20el%20gen%20phaC%20de%20Aeromonas%20caviae%20para%20la%20producci%c3%b3n%20de%20polihidroxialcanoatos.pdf.jpgac05c50f320aab632927932aab1addfdMD54unal/79642oai:repositorio.unal.edu.co:unal/796422023-07-21 23:04:06.586Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |