Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos

ilustraciones, fotografías, gráficas, tablas

Autores:
Villamil Bolaños, Fabian
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79642
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79642
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Transgenic plants
Biopolymers
Plantas transgénicas
Biopolímeros
Biopolímero
Transgénico
β-glucuronidasa
Peroxisoma
Péptido señal
Biopolymer
Transgenic
β-glucuronidase
Peroxisome
Signal peptide
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_0998c8055831c31fa76fcaeb98dba5aa
oai_identifier_str oai:repositorio.unal.edu.co:unal/79642
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
dc.title.translated.eng.fl_str_mv Transgenic line of Nicotiana tabacum expressing the phaC gene of Aeromonas caviae for the production of polyhydroxyalkanoates
title Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
spellingShingle Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
630 - Agricultura y tecnologías relacionadas
Transgenic plants
Biopolymers
Plantas transgénicas
Biopolímeros
Biopolímero
Transgénico
β-glucuronidasa
Peroxisoma
Péptido señal
Biopolymer
Transgenic
β-glucuronidase
Peroxisome
Signal peptide
title_short Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
title_full Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
title_fullStr Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
title_full_unstemmed Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
title_sort Línea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos
dc.creator.fl_str_mv Villamil Bolaños, Fabian
dc.contributor.advisor.spa.fl_str_mv Sarmiento Salazar, Felipe
dc.contributor.author.spa.fl_str_mv Villamil Bolaños, Fabian
dc.contributor.researchgroup.spa.fl_str_mv Ingeniería Genética de Plantas
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Transgenic plants
Biopolymers
Plantas transgénicas
Biopolímeros
Biopolímero
Transgénico
β-glucuronidasa
Peroxisoma
Péptido señal
Biopolymer
Transgenic
β-glucuronidase
Peroxisome
Signal peptide
dc.subject.agrovoc.eng.fl_str_mv Transgenic plants
Biopolymers
dc.subject.agrovoc.spa.fl_str_mv Plantas transgénicas
Biopolímeros
dc.subject.proposal.spa.fl_str_mv Biopolímero
Transgénico
β-glucuronidasa
Peroxisoma
Péptido señal
dc.subject.proposal.eng.fl_str_mv Biopolymer
Transgenic
β-glucuronidase
Peroxisome
Signal peptide
description ilustraciones, fotografías, gráficas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-17T18:45:45Z
dc.date.available.none.fl_str_mv 2021-06-17T18:45:45Z
dc.date.issued.none.fl_str_mv 2021-07-11
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79642
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79642
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Almasi, M. A., Aghapour-ojaghkandi, M., Bagheri, K., Ghazvini, M., & Hosseyny-dehabadi, S. M. (2015). Comparison and Evaluation of Two Diagnostic Methods for Detection of npt II and GUS Genes in Nicotiana tabacum. Applied Biochemistry and Biotechnology, 175, 3599–3616. https://doi.org/10.1007/s12010-015-1529-y
Arai, Y., Nakashita, H., Yoshiharu, D., & Yamaguchi, I. (2001). Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. In Plant Biotechnology (Vol. 18, Issue 4, pp. 289–293). https://doi.org/10.5511/plantbiotechnology.18.289
Arai, Y., Shikanai, T., Doi, Y., Yoshida, S., Yamaguchi, I., & Nakashita, H. (2004). Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant and Cell Physiology, 45(9), 1176–1184. https://doi.org/10.1093/pcp/pch139
Baeg, K., Iwakawa, H. O., & Tomari, Y. (2017). The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. Nature Plants, 3(March). https://doi.org/10.1038/nplants.2017.36
Bakaher, N. (2020). Genetic Markers in Tobacco, Usage 3 for Map Development, Diversity Studies, and Quantitative Trait Loci Analysis. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 43–49). https://doi.org/10.1007/978-3-030-29493-9_2
Bakhsh, A., Anayol, E., & Ozcan, S. F. (2014). Comparison of transformation efficiency of five agrobacterium tumefaciens strains in nicotiana tabacum L. Emirates Journal of Food and Agriculture, 26(3), 259–264. https://doi.org/10.9755/ejfa.v26i3.16437
BANREP. (2021). Banco de la República. Características Del Cultivo Del Tabaco En Santander. https://www.banrep.gov.co/es/caracteristicas-del-cultivo-del-tabaco-santander#:~:text=El cultivo de este producto,la producción de tabaco negro.
Barrientos, J. C., Plaza, G. A., & Rojas, J. (2012). Comparative analysis of flue-cured tobacco production costs in Santander and Huila (Colombia). Agronomia Colombiana, 30(2), 289–296.
Basso, M. F., Arraes, F. B. M., Grossi-de-Sa, M., Moreira, V. J. V., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2020). Insights Into Genetic and Molecular Elements for Transgenic Crop Development. Frontiers in Plant Science, 11(May), 1–24. https://doi.org/10.3389/fpls.2020.00509
Bohmert-Tatarev, K., McAvoy, S., Daughtry, S., Peoples, O. P., & Snell, K. D. (2011). High Levels of Bioplastic Are Produced in Fertile Transplastomic Tobacco Plants Engineered with a Synthetic Operon for the Production of Polyhydroxybutyrate. Plant Physiology, 155(4), 1690–1708. https://doi.org/10.1104/pp.110.169581
Bohmert, K., Balbo, I., Kopka, J., Mittendorf, V., Nawrath, C., Poirier, Y., Tischendorf, G., Trethewey, R. N., & Willmitzer, L. (2000). Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta, 211(6), 841–845. https://doi.org/10.1007/s004250000350
Bohmert, K., Balbo, I., Steinbüchel, A., Tischendorf, G., & Willmitzer, L. (2002). Constitutive Expression of the β-Ketothiolase Gene in Transgenic Plants. A Major Obstacle for Obtaining Polyhydroxybutyrate-Producing Plants. Plant Physiology, 128(4), 1282–1290. https://doi.org/10.1104/pp.010615.confirming
Budar, F., Thia-Toong, L., Van Montagu, M., & Hernalsteens, J. P. (1986). Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics, 114, 303–313.
Carlini, D. B., & Stephan, W. (2003). In vivo introduction of unpreferred synonymous codons into the drosophila Adh gene results in reduced levels of ADH protein. Genetics, 163(1), 239–243. https://doi.org/10.1093/genetics/163.1.239 Cascales, E., & Christie, P. J. (2004). Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate. Science, 136(1986), 1–5.
Castellanos-Domínguez, Ó. F., Torres-Piñeros, L. M., & Rodríguez-Zárate, D. M. (2009). Desarrollo tecnológico e innovación de la cadena productiva del Tabaco (1st ed.).
Chandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnology Letters, 32(9), 1199–1205. https://doi.org/10.1007/s10529-010-0290-0
Chandrika-Sabapathy, P., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H. M., & Qi, X. (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production in the past decade – A Review. Bioresource Technology, 123132. https://doi.org/10.1016/j.biortech.2020.123132
Chaverri, R. (1995). Origen e Historia del Tabaco. In El Cultivo del Tabaco (EUNED, pp. 1–163). Editorial Universidad Estatal a Distancia.
Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434–2446. https://doi.org/10.1039/b812677c
Chen, G. Q., & Jiang, X. R. (2018). Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 50, 94–100. https://doi.org/10.1016/j.copbio.2017.11.016
Dadami, E., Moser, M., Zwiebel, M., Krczal, G., Wassenegger, M., & Dalakouras, A. (2013). An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Letters, 587(6), 706–710. https://doi.org/10.1016/j.febslet.2013.01.045
Deeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. S. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus, 3(1), 1–7. https://doi.org/10.1186/2193-1801-3-358
Dobrogojski, J., Spychalski, M., Luciński, R., & Borek, S. (2018). Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 40(9), 1–17. https://doi.org/10.1007/s11738-018-2742-4
Dodsworth, S., Kovarik, A., Marie-Angèle, G., Leitch, I. J., & Leitch, A. R. (2020). Repetitive DNA Dynamics 7 and Polyploidization in the Genus Nicotiana (Solanaceae). In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 85–100). https://doi.org/10.1007/978-3-030-29493-9_2
Domínguez, A., Fagoaga, C., Navarro, L., Moreno, P., & Peña, L. (2002). Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Molecular Genetics and Genomics, 267(4), 544–556. https://doi.org/10.1007/s00438-002-0688-z
Domínguez, Antonio, Cervera, M., Pérez, R. M., Romero, J., Fagoaga, C., Cubero, J., López, M. M., Juárez, J. A., Navarro, L., &
Peña, L. (2004). Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Molecular Breeding, 14(2), 171–183. https://doi.org/10.1023/B:MOLB.0000038005.73265.61
Escobar, M. A., & Dandekar, A. M. (2003). Agrobacterium tumefaciens as an agent of disease. Trends in Plant Science, 8(8), 380–386. https://doi.org/10.1016/S1360-1385(03)00162-6
F. de Felippes, F., McHale, M., Doran, R. L., Roden, S., Eamens, A. L., Finnegan, E. J., & Waterhouse, P. M. (2020). The key role of terminators on the expression and post-transcriptional gene silencing of transgenes. Plant Journal, 104(1), 96–112. https://doi.org/10.1111/tpj.14907
Fagard, M., & Vaucheret, H. (2000). (Trans)Gene Silencing in Plants: How Many Mechanisms? Annual Review of Plant Physiology and Plant Molecular Biology, 51, 167–194.
Finagro. (2018). Ficha de inteligencia-Tabaco. In Finagro. http://www.aguadas-caldas.gov.co/
Francis, K. E., & Spiker, S. (2005). Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant Journal, 41(3), 464–477. https://doi.org/10.1111/j.1365-313X.2004.02312.x
Ganapathi, T. R., Suprasanna, P., Rao, P. S., & Bapat, V. A. (2004). Tobacco (Nicotiana tabacum L.) - A model system for tissue culture interventions and genetic engineering. Indian Journal of Biotechnology, 3(2), 171–184.
Gelvin, S. B. (2017). Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics, 51(August), 195–217. https://doi.org/10.1146/annurev-genet-120215-035320
Gumel, A. M., Annuar, M. S. M., & Chisti, Y. (2012). Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates. Journal of Polymers and the Environment, 21(2), 580–605. https://doi.org/10.1007/s10924-012-0527-1
Hahn, J. J., Eschenlauer, A. C., Narrol, M. H., Somers, D. A., & Srienc, F. (1997). Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(β-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures. Biotechnology Progress, 13(4), 347–354. https://doi.org/10.1021/bp970033r
Hunt, A. G. (2008). Messenger RNA 3′ end formation in plants. Current Topics in Microbiology and Immunology, 326, 151–177. https://doi.org/10.1007/978-3-540-76776-3_9
Japelaghi, R. H., Haddad, R., Valizadeh, M., Uliaie, E. D., & Javaran, M. J. (2019). High-Efficiency Agrobacterium -Mediated Transformation of Tobacco ( Nicotiana tabacum ). Plant Molecular Breeding, 6(August 2018), 38–50. https://doi.org/10.22058/JPMB.2019.92266.1170
Kamo, K., & Blowers, A. (1999). Tissue specificity and expression level of gusA under rolD , mannopine synthase and translation elongation factor 1 subunit α promoters in transgenic Gladiolus plants. Plant Cell Reports, 18, 809–815.
Kim, S. I., Veena, & Gelvin, S. B. (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant Journal, 51(5), 779–791. https://doi.org/10.1111/j.1365-313X.2007.03183.x
Konwar, B. K. (1994). Agrobacterium tumefaciens-Mediated Genetic Transformation of Sugar Beet (Beta vulgaris L.). Journal of Plant Biochemistry and Biotechnology, 3(1), 37–41. https://doi.org/10.1007/BF03321946
Kumar, R., Mamrutha, H. M., Kaur, A., & Grewal, A. (2017). Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium over growth in wheat (Triticum aestivum L.) transformation. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(4), 961–967.
Kutty, P. C., Parveez, G. K. A., & Huyop, F. (2011). Agrobacterium tumefaciens-infection Strategies for Greater Transgenic Recovery in Nicotiana tabacum cv. TAPM26. International Journal of Agricultural Research, 6(2), 119–133. https://doi.org/10.1097/mrm.0b013e3283642449
Lacorte, C. (1998). β-Glucuronidase (GUS). In A. Brasileiro & V. Carneiro (Eds.), Manual de Transformação Genética de Plantas. (pp. 128–129). EMBRAPASPI/EMBRAPA-Cenagen.
Lacroix, B., & Citovsky, V. (2019). Pathways of DNA transfer to plants from agrobacterium tumefaciens and related bacterial species. Annual Review of Phytopathology, 57, 231–251. https://doi.org/10.1146/annurev-phyto-082718-100101
Li, B., Xie, C., & Qiu, H. (2009). Production of selectable marker-free transgenic tobacco plants using a non-selection approach: Chimerism or escape, transgene inheritance, and efficiency. Plant Cell Reports, 28(3), 373–386. https://doi.org/10.1007/s00299-008-0640-8
Li, M., & Wilkins, M. R. (2020). Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. International Journal of Biological Macromolecules, 156, 691–703. https://doi.org/10.1016/j.ijbiomac.2020.04.082
Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., & Li, Y. (2017). Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8(February), 1–15. https://doi.org/10.3389/fpls.2017.00246
Li, X., & Pan, S. Q. (2017). Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Science Advances, 3, 1–12.
Lin, J. J., Assad-Garcia, N., & Kuo, J. (1995). Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Science, 109(2), 171–177. https://doi.org/10.1016/0168-9452(95)04168-T
Lu, H., Yuan, G., Strauss, S. H., Tschaplinski, T. J., Tuskan, G. A., Chen, J.-G., & Yang, X. (2020). Reconfiguring Plant Metabolism for Biodegradable Plastic Production. BioDesign Research, 2020, 1–13. https://doi.org/10.34133/2020/9078303
MADR. (2020). Cadena de Tabaco-Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Tabaco/Documentos/2019-12-30 Cifras Sectoriales.pdf
Manickavasagam, M., Ganapathi, A., Anbazhagan, V. R., Sudhakar, B., Selvaraj, N., Vasudevan, A., & Kasthurirengan, S. (2004). Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids ) using axillary buds. Genetic Transformation and Hybridization, 23, 134–143. https://doi.org/10.1007/s00299-004-0794-y
Matsumoto, K., Morimoto, K., Gohda, A., Shimada, H., & Taguchi, S. (2011). Improved polyhydroxybutyrate (PHB) production in transgenic tobacco by enhancing translation efficiency of bacterial PHB biosynthetic genes. Journal of Bioscience and Bioengineering, 111(4), 485–488. https://doi.org/10.1016/j.jbiosc.2010.11.020
Matzke, M., Matzke, A. J. M., & Kooter, J. M. (2001). RNA: Guiding gene silencing. Science, 293(5532), 1080–1083. https://doi.org/10.1126/science.1063051
Matzke, Marjori, & Matzke, A. J. M. (1993). Genomic imprinting in plants: Parental effects and trans-inactivation phenomena. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 53–76. https://doi.org/10.1146/annurev.pp.44.060193.000413
Mcqualter, R. B., Petrasovits, L. A., Gebbie, L. K., Schweitzer, D., Blackman, D. M., Chrysanthopoulos, P., Hodson, M. P., Plan, M. R., Riches, J. D., Snell, K. D., Brumbley, S. M., & Nielsen, L. K. (2015). The use of an acetoacetyl-CoA synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnology Journal, 13(5), 700–707. https://doi.org/10.1111/pbi.12298
Mette, M. F., Aufsatz, W., Van der Winden, J., Matzke, M. A., & Matzke, A. J. M. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO Journal, 19(19), 5194–5201. https://doi.org/10.1093/emboj/19.19.5194
MinAgricultura. (2015). Bullets Cadena de Tabaco-Marzo de 2015.
Mittendorf, V., Bongcam, V., Allenbach, L., Coullerez, G., Martini, N., & Poirier, Y. (1999). Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through β-oxidation. Plant Journal, 20(1), 45–55. https://doi.org/10.1046/j.1365-313X.1999.00572.x
Mittendorf, V., Robertson, E. J., Leech, R. M., Kruger, N., Steinbuchel, A., & Poirier, Y. (1998). Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proceedings of the National Academy of Sciences, 95(23), 13397–13402. https://doi.org/10.1073/pnas.95.23.13397
Moazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389–394. https://doi.org/10.1038/327389a0
Moire, L., Rezzonico, E., & Poirier, Y. (2003b). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831–839. https://doi.org/10.1078/0176-1617-01030
Mooney, B. P. (2009). The second green revolution? Production of plant-based biodegradable plastics. Biochemical Journal, 418(2), 219–232. https://doi.org/10.1042/bj20081769
Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 474–497.
Nagaya, S., Kawamura, K., Shinmyo, A., & Kato, K. (2010). The HSP terminator of arabidopsis thaliana increases gene expression in plant cells. In Plant and Cell Physiology (Vol. 51, Issue 2, pp. 328–332). https://doi.org/10.1093/pcp/pcp188
Nakashita, H., Arai, Y., Shikanai, T., Doi, Y., & Yamaguchi, I. (2001). Introduction of Bacterial Metabolism into Higher Plants by Polycistronic Transgene Expression. Bioscience, Biotechnology, and Biochemistry, 65(7), 1688–1691. https://doi.org/10.1271/bbb.65.1688
Nakashita, H., Arai, Y., Yoshioka, K., Fukui, T., Doi, Y., Usami, R., Horikoshi, K., & Yamaguchi, I. (1999). Production of Biodegradable Polyester By Tobbaco. Bioscience, Biotechnology, and Biochemistry, 63(5), 870–874. https://doi.org/10.1271/bbb.63.870
Nauerby, B., Billing, K., & Wyndaele, R. (1997). Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacteriurn tumefaciens. Plant Science, 123(1–2), 169–177. https://doi.org/10.1016/S0168-9452(96)04569-4
Nawrath, C., Poirier, Y., & Somerville, C. (1994). Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proceedings of the National Academy of Sciences, 91(26), 12760–12764. https://doi.org/10.1073/pnas.91.26.12760
Nawrath, Christiane, Poirier, Y., & Somerville, C. (1995). Plant polymers for biodegradable plastics: Cellulose, starch and polyhydroxyalkanoates. In Molecular Breeding. https://doi.org/10.1007/BF01249696
Okamura, E., Tomita, T., Sawa, R., Nishiyama, M., & Kuzuyama, T. (2010). Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11265–11270. https://doi.org/10.1073/pnas.1000532107
Pachchigar, K., Khunt, A., & Hetal, B. (2016). Dna quantification. In ICAR Sponsored summer school on Allele mining in crops: Methods and Utility (pp. 5–9).
Patton, D. A., & Meinke, D. W. (1988). High-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Reports, 7(4), 233–237. https://doi.org/10.1007/BF00272531
Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206–213. https://doi.org/10.1007/s00299-005-0048-7
Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Transformation, 136, 167–179.
Pérez-González, A., & Caro, E. (2018). Effect of transcription terminator usage on the establishment of transgene transcriptional gene silencing. BMC Research Notes, 11(1), 1–8. https://doi.org/10.1186/s13104-018-3649-2
Petrasovits, L. A., Purnell, M. P., Nielsen, L. K., & Brumbley, S. M. (2007). Production of polyhydroxybutyrate in sugarcane. Plant Biotechnology Journal, 5(1), 162–172. https://doi.org/10.1111/j.1467-7652.2006.00229.x
Petrasovits, L. A., Zhao, L., McQualter, R. B., Snell, K. D., Somleva, M. N., Patterson, N. A., Nielsen, L. K., & Brumbley, S. M. (2012). Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnology Journal, 10(5), 569–578. https://doi.org/10.1111/j.1467-7652.2012.00686.x
Poirier, Y., E. Dennis, D., Klomparens, K., & Somerville, C. (1992). PHB, a biodegradable thermoplastic, produced in transgenic plants. Science, 256(April).
Poltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70
Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(January 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001
Roberts, R. J. (1985). Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research, 5, 1–49.
Rodríguez-García, C., Vilaine, F., & Robaglia, C. (2002). Transfer of the yeast gene SKI2 to Tobacco. Agrociencia, 36(6), 675–681.
Romano, A. (2002). Production of Polyhydroxyalkanoates (PHAs) in Transgenic Potato [Wageningen Universiteit]. In Biopolymers Online. https://doi.org/10.1002/3527600035.bpol3a15
Rossi, L., Hohn, B., & Tinland, B. (1996). Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci, 93(January), 126–130.
Saruul, P., Srienc, F., Somers, D. A., & Samac, D. A. (2002). Production of a Biodegradable Plastic Polymer, Poly-β-Hydroxybutyrate, in Transgenic Alfalfa. Crop Science, 42(3), 919–927.
Schmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283(3), 233–241. https://doi.org/10.1007/s00438-010-0511-1
Sharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer, 212, 123161. https://doi.org/10.1016/j.polymer.2020.123161
Sierro, N., Battey, J. N. D., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M. C., & Ivanov, N. V. (2014). The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 5(May), 1–9. https://doi.org/10.1038/ncomms4833
Sierro, N., & Ivanov, N. (2020). Background and History of Tobacco Genome Resources. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 21–41). https://doi.org/10.1007/978-3-030-29493-9_2
Sijen, T., Vijn, I., Rebocho, A., Van Blokland, R., Roelofs, D., Mol, J. N. M., & Kooter, J. M. (2001). Transcriptional and posttranscriptional gene silencing are mechanistically related. Current Biology, 11(6), 436–440. https://doi.org/10.1016/S0960-9822(01)00116-6 SIOC. (2021). Tabaco-Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. Boletín de Precios de Insumos Agropecuarios No. 1 de 2021. https://sioc.minagricultura.gov.co/Tabaco/Pages/default.aspx
Snell, K. D., Singh, V., & Brumbley, S. M. (2015). Production of novel biopolymers in plants: Recent technological advances and future prospects. Current Opinion in Biotechnology, 32, 68–75. https://doi.org/10.1016/j.copbio.2014.11.005
Somleva, M. N., Peoples, O. P., & Snell, K. D. (2013). PHA Bioplastics, Biochemicals, and Energy from Crops. Plant Biotechnology Journal, 11, 233–252. https://doi.org/10.1111/pbi.12039
Song, Z. yue, Tian, J. luan, Fu, W. zhe, Li, L., Lu, L. hong, Zhou, L., Shan, Z. hui, Tang, G. xiang, & Shou, H. xia. (2013). Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Journal of Zhejiang University. Science. B, 14(4), 289–298. https://doi.org/10.1631/jzus.B1200278
Stefanov, I., Fekete, S., Bögre, L., Pauk, J., Fehér, A., & Dudits, D. (1994). Differential activity of the mannopine synthase and the CaMV 35S promoters during development of transgenic rapeseed plants. Plant Science, 95, 175–186. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnology Advances, 25(2), 148–175. https://doi.org/10.1016/j.biotechadv.2006.11.007
Tan, D., Wang, Y., Tong, Y., & Chen, G. Q. (2021). Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends in Biotechnology, 1–11. https://doi.org/10.1016/j.tibtech.2020.11.010
Teixeira, J. A. (2005). Simple multiplication and effective genetic transformation ( four methods ) of in vitro-grown tobacco by stem thin cell layers. Plant Science, 169, 1046–1058. https://doi.org/10.1016/j.plantsci.2005.07.012
Tilbrook, K., Gebbie, L., Schenk, P. M., Poirier, Y., & Brumbley, S. M. (2011). Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnology Journal, 9, 958–969. https://doi.org/10.1111/j.1467-7652.2011.00600.x
Trick, H., & Finer, J. (1997). SAAT : sonication-assisted Agrobacterium -mediated transformation. Transgenic Research, 6, 329–336.
Valderrama-Fonseca, A. M., Arango-Isaza, R., & Afanador-Kafuri, L. (2005). Transformación de plantas mediada por Agrobacterium: “Ingeniería Genética natural aplicada.” Rev.Fac.Nal.Agr.Medellín, 58(1), 2569–2585. http://www.scielo.org.co/pdf/rfnam/v58n1/a01v58n1.pdf
Valentin, H. E., Broyles, D. L., Casagrande, L. A., Colburn, S. M., Creely, W. L., Delaquil, P. A., Felton, H. M., Gonzalez, K. A., Houmiel, K. L., Lutke, K., Mahadeo, D. A., Mitsky, T. A., Padgette, S. R., Reiser, S. E., Slater, S., Stark, D. M., Stock, R. T., Stone, D. A., Taylor, N. B., … Gruys, K. J. (1999). PHA production, from bacteria to plants. International Journal of Biological Macromolecules, 25(1–3), 303–306. https://doi.org/10.1016/S0141-8130(99)00045-8
Weselake, R. J. (2005). Storage lipids. In D. J. Murphy (Ed.), Plant lipids — biology, utilization and manipulation (pp. 162–225). Blackwell Publishing.
Yu, L. P., Wu, F. Q., & Chen, G. Q. (2019). Next-Generation Industrial Biotechnology-Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnology Journal, 14(9). https://doi.org/10.1002/biot.201800437
Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., & Schell, J. (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. The EMBO Journal, 2(12), 2143–2150. https://doi.org/10.1002/j.1460-2075.1983.tb01715.x
Zhang, B., Carlson, R., & Srienc, F. (2006). Engineering the Monomer Composition of Polyhydroxyalkanoates Synthesized in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72(1), 536–543. https://doi.org/10.1128/AEM.72.1.536
Zhao, H., Jia, Y., Cao, Y., & Wang, Y. (2020). Improving T-DNA Transfer to Tamarix hispida by Adding Chemical Compounds During Agrobacterium tumefaciens Culture. Frontiers in Plant Science, 11(September), 1–8. https://doi.org/10.3389/fpls.2020.501358
Zhu, L., Zhang, J., Yang, J., Jiang, Y., & Yang, S. (2021). Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends in Biotechnology, 1–17. https://doi.org/10.1016/j.tibtech.2021.04.004
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 74 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Escuela de posgrados
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79642/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79642/2/L%c3%adnea%20transg%c3%a9nica%20de%20Nicotiana%20tabacum%20expresando%20el%20gen%20phaC%20de%20Aeromonas%20caviae%20para%20la%20producci%c3%b3n%20de%20polihidroxialcanoatos.pdf
https://repositorio.unal.edu.co/bitstream/unal/79642/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79642/4/L%c3%adnea%20transg%c3%a9nica%20de%20Nicotiana%20tabacum%20expresando%20el%20gen%20phaC%20de%20Aeromonas%20caviae%20para%20la%20producci%c3%b3n%20de%20polihidroxialcanoatos.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
48f15b21546b16881836987d43dd6f74
4460e5956bc1d1639be9ae6146a50347
ac05c50f320aab632927932aab1addfd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090234017611776
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarmiento Salazar, Felipe97400f5ef687d1b92cbb7c10c002339cVillamil Bolaños, Fabiane0274278862f3e61bdadeae8b2b2e806Ingeniería Genética de Plantas2021-06-17T18:45:45Z2021-06-17T18:45:45Z2021-07-11https://repositorio.unal.edu.co/handle/unal/79642Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasLos polihidroxialcanoatos (PHAs) son poliésteres producidos y degradados naturalmente por bacterias, cuyas propiedades los hacen similares a los plásticos derivados del petróleo. La producción en masa de PHAs es costosa, por ello la transferencia genética de genes clave y su producción en plantas se ha considerado como alternativa, dado que estos organismos tienen un bajo costo de mantenimiento y por qué pueden generar mayor biomasa. Sin embargo, uno de los problemas principales que han limitado su obtención, es que generalmente las plantas presentan problemas de desarrollo y crecimiento asociados al secuestro de sustancias claves para el metabolismo y dirigidas hacia la síntesis de PHAs. Hallazgos recientes han identificado que su biosíntesis en peroxisomas reduce los efectos negativos debido a la presencia y abundancia de compuestos intermediarios en la ruta de biosíntesis de estos biopolímeros. Por esta razón, nuestros objetivos se centraron en obtener líneas genéticamente modificadas de Nicotiana tabacum var. Samsun 10, transformadas mediante la infección con Agrobacterium tumefaciens cepa LBA4404 y en evaluar la expresión del casete que dirige la síntesis del gen phaCAC de Aeromonas caviae hacia peroxisomas. Los resultados de la extracción del ADN indicaron una eficiencia de transformación del 2,6%, la síntesis de ADNc y la evaluación de la actividad de la β-glucuronidasa, detectaron dos líneas transgénicas que expresaron el gen phaCAC sin efectos negativos aparentes. (Texto tomado de la fuente)Polyhydroxyalcanoates (PHAs) are polyesters naturally produced and degraded by bacteria, whose properties make them like plastics derived from petroleum. Mass production of PHAs by bacteria is expensive, so genetic transfer of key genes and production in plants has been considered as an alternative given the low maintenance cost and larger biomass than plants can generate. However, one of the main problems that have limited plant production is that plants generally present developmental and growth problems associated with capture of key substances for metabolism and directed towards PHA synthesis. Recent findings have identified that PHAs biosynthesis in peroxisomes reduces negative effects due to the presence and abundance of intermediate compounds in the biosynthesis path of these biopolymers. For this reason, our objectives focused on obtaining genetically modified lines of Nicotiana tabacum var. Samsun 10, transformed by infection with Agrobacterium tumefaciens strain LBA4404, and in to evaluate the expression of the construct that directs the synthesis of the phaCAC gene from Aeromonas caviae towards plant peroxisomes. DNA extraction results indicated 2.6% transformation efficiency and DNAc synthesis and evaluation of β-glucuronidase activity, detected two transgenic lines expressing the gene without apparent negative effects.Jóvenes Investigadores e Innovadores 812-2018MaestríaMagíster en Ciencias AgrariasGenética y fitomejoramientoxvii, 74 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadasTransgenic plantsBiopolymersPlantas transgénicasBiopolímerosBiopolímeroTransgénicoβ-glucuronidasaPeroxisomaPéptido señalBiopolymerTransgenicβ-glucuronidasePeroxisomeSignal peptideLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatosTransgenic line of Nicotiana tabacum expressing the phaC gene of Aeromonas caviae for the production of polyhydroxyalkanoatesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlmasi, M. A., Aghapour-ojaghkandi, M., Bagheri, K., Ghazvini, M., & Hosseyny-dehabadi, S. M. (2015). Comparison and Evaluation of Two Diagnostic Methods for Detection of npt II and GUS Genes in Nicotiana tabacum. Applied Biochemistry and Biotechnology, 175, 3599–3616. https://doi.org/10.1007/s12010-015-1529-yArai, Y., Nakashita, H., Yoshiharu, D., & Yamaguchi, I. (2001). Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. In Plant Biotechnology (Vol. 18, Issue 4, pp. 289–293). https://doi.org/10.5511/plantbiotechnology.18.289Arai, Y., Shikanai, T., Doi, Y., Yoshida, S., Yamaguchi, I., & Nakashita, H. (2004). Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant and Cell Physiology, 45(9), 1176–1184. https://doi.org/10.1093/pcp/pch139Baeg, K., Iwakawa, H. O., & Tomari, Y. (2017). The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. Nature Plants, 3(March). https://doi.org/10.1038/nplants.2017.36Bakaher, N. (2020). Genetic Markers in Tobacco, Usage 3 for Map Development, Diversity Studies, and Quantitative Trait Loci Analysis. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 43–49). https://doi.org/10.1007/978-3-030-29493-9_2Bakhsh, A., Anayol, E., & Ozcan, S. F. (2014). Comparison of transformation efficiency of five agrobacterium tumefaciens strains in nicotiana tabacum L. Emirates Journal of Food and Agriculture, 26(3), 259–264. https://doi.org/10.9755/ejfa.v26i3.16437BANREP. (2021). Banco de la República. Características Del Cultivo Del Tabaco En Santander. https://www.banrep.gov.co/es/caracteristicas-del-cultivo-del-tabaco-santander#:~:text=El cultivo de este producto,la producción de tabaco negro.Barrientos, J. C., Plaza, G. A., & Rojas, J. (2012). Comparative analysis of flue-cured tobacco production costs in Santander and Huila (Colombia). Agronomia Colombiana, 30(2), 289–296.Basso, M. F., Arraes, F. B. M., Grossi-de-Sa, M., Moreira, V. J. V., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2020). Insights Into Genetic and Molecular Elements for Transgenic Crop Development. Frontiers in Plant Science, 11(May), 1–24. https://doi.org/10.3389/fpls.2020.00509Bohmert-Tatarev, K., McAvoy, S., Daughtry, S., Peoples, O. P., & Snell, K. D. (2011). High Levels of Bioplastic Are Produced in Fertile Transplastomic Tobacco Plants Engineered with a Synthetic Operon for the Production of Polyhydroxybutyrate. Plant Physiology, 155(4), 1690–1708. https://doi.org/10.1104/pp.110.169581Bohmert, K., Balbo, I., Kopka, J., Mittendorf, V., Nawrath, C., Poirier, Y., Tischendorf, G., Trethewey, R. N., & Willmitzer, L. (2000). Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta, 211(6), 841–845. https://doi.org/10.1007/s004250000350Bohmert, K., Balbo, I., Steinbüchel, A., Tischendorf, G., & Willmitzer, L. (2002). Constitutive Expression of the β-Ketothiolase Gene in Transgenic Plants. A Major Obstacle for Obtaining Polyhydroxybutyrate-Producing Plants. Plant Physiology, 128(4), 1282–1290. https://doi.org/10.1104/pp.010615.confirmingBudar, F., Thia-Toong, L., Van Montagu, M., & Hernalsteens, J. P. (1986). Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single Mendelian factor. Genetics, 114, 303–313.Carlini, D. B., & Stephan, W. (2003). In vivo introduction of unpreferred synonymous codons into the drosophila Adh gene results in reduced levels of ADH protein. Genetics, 163(1), 239–243. https://doi.org/10.1093/genetics/163.1.239 Cascales, E., & Christie, P. J. (2004). Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate. Science, 136(1986), 1–5.Castellanos-Domínguez, Ó. F., Torres-Piñeros, L. M., & Rodríguez-Zárate, D. M. (2009). Desarrollo tecnológico e innovación de la cadena productiva del Tabaco (1st ed.).Chandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnology Letters, 32(9), 1199–1205. https://doi.org/10.1007/s10529-010-0290-0Chandrika-Sabapathy, P., Devaraj, S., Meixner, K., Anburajan, P., Kathirvel, P., Ravikumar, Y., Zabed, H. M., & Qi, X. (2020). Recent developments in Polyhydroxyalkanoates (PHAs) production in the past decade – A Review. Bioresource Technology, 123132. https://doi.org/10.1016/j.biortech.2020.123132Chaverri, R. (1995). Origen e Historia del Tabaco. In El Cultivo del Tabaco (EUNED, pp. 1–163). Editorial Universidad Estatal a Distancia.Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434–2446. https://doi.org/10.1039/b812677cChen, G. Q., & Jiang, X. R. (2018). Next generation industrial biotechnology based on extremophilic bacteria. Current Opinion in Biotechnology, 50, 94–100. https://doi.org/10.1016/j.copbio.2017.11.016Dadami, E., Moser, M., Zwiebel, M., Krczal, G., Wassenegger, M., & Dalakouras, A. (2013). An endogene-resembling transgene delays the onset of silencing and limits siRNA accumulation. FEBS Letters, 587(6), 706–710. https://doi.org/10.1016/j.febslet.2013.01.045Deeba, F., Hyder, M. Z., Shah, S. H., & Naqvi, S. M. S. (2014). Multiplex PCR assay for identification of commonly used disarmed Agrobacterium tumefaciens strains. SpringerPlus, 3(1), 1–7. https://doi.org/10.1186/2193-1801-3-358Dobrogojski, J., Spychalski, M., Luciński, R., & Borek, S. (2018). Transgenic plants as a source of polyhydroxyalkanoates. Acta Physiologiae Plantarum, 40(9), 1–17. https://doi.org/10.1007/s11738-018-2742-4Dodsworth, S., Kovarik, A., Marie-Angèle, G., Leitch, I. J., & Leitch, A. R. (2020). Repetitive DNA Dynamics 7 and Polyploidization in the Genus Nicotiana (Solanaceae). In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 85–100). https://doi.org/10.1007/978-3-030-29493-9_2Domínguez, A., Fagoaga, C., Navarro, L., Moreno, P., & Peña, L. (2002). Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Molecular Genetics and Genomics, 267(4), 544–556. https://doi.org/10.1007/s00438-002-0688-zDomínguez, Antonio, Cervera, M., Pérez, R. M., Romero, J., Fagoaga, C., Cubero, J., López, M. M., Juárez, J. A., Navarro, L., &Peña, L. (2004). Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Molecular Breeding, 14(2), 171–183. https://doi.org/10.1023/B:MOLB.0000038005.73265.61Escobar, M. A., & Dandekar, A. M. (2003). Agrobacterium tumefaciens as an agent of disease. Trends in Plant Science, 8(8), 380–386. https://doi.org/10.1016/S1360-1385(03)00162-6F. de Felippes, F., McHale, M., Doran, R. L., Roden, S., Eamens, A. L., Finnegan, E. J., & Waterhouse, P. M. (2020). The key role of terminators on the expression and post-transcriptional gene silencing of transgenes. Plant Journal, 104(1), 96–112. https://doi.org/10.1111/tpj.14907Fagard, M., & Vaucheret, H. (2000). (Trans)Gene Silencing in Plants: How Many Mechanisms? Annual Review of Plant Physiology and Plant Molecular Biology, 51, 167–194.Finagro. (2018). Ficha de inteligencia-Tabaco. In Finagro. http://www.aguadas-caldas.gov.co/Francis, K. E., & Spiker, S. (2005). Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant Journal, 41(3), 464–477. https://doi.org/10.1111/j.1365-313X.2004.02312.xGanapathi, T. R., Suprasanna, P., Rao, P. S., & Bapat, V. A. (2004). Tobacco (Nicotiana tabacum L.) - A model system for tissue culture interventions and genetic engineering. Indian Journal of Biotechnology, 3(2), 171–184.Gelvin, S. B. (2017). Integration of Agrobacterium T-DNA into the Plant Genome. Annual Review of Genetics, 51(August), 195–217. https://doi.org/10.1146/annurev-genet-120215-035320Gumel, A. M., Annuar, M. S. M., & Chisti, Y. (2012). Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates. Journal of Polymers and the Environment, 21(2), 580–605. https://doi.org/10.1007/s10924-012-0527-1Hahn, J. J., Eschenlauer, A. C., Narrol, M. H., Somers, D. A., & Srienc, F. (1997). Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(β-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures. Biotechnology Progress, 13(4), 347–354. https://doi.org/10.1021/bp970033rHunt, A. G. (2008). Messenger RNA 3′ end formation in plants. Current Topics in Microbiology and Immunology, 326, 151–177. https://doi.org/10.1007/978-3-540-76776-3_9Japelaghi, R. H., Haddad, R., Valizadeh, M., Uliaie, E. D., & Javaran, M. J. (2019). High-Efficiency Agrobacterium -Mediated Transformation of Tobacco ( Nicotiana tabacum ). Plant Molecular Breeding, 6(August 2018), 38–50. https://doi.org/10.22058/JPMB.2019.92266.1170Kamo, K., & Blowers, A. (1999). Tissue specificity and expression level of gusA under rolD , mannopine synthase and translation elongation factor 1 subunit α promoters in transgenic Gladiolus plants. Plant Cell Reports, 18, 809–815.Kim, S. I., Veena, & Gelvin, S. B. (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant Journal, 51(5), 779–791. https://doi.org/10.1111/j.1365-313X.2007.03183.xKonwar, B. K. (1994). Agrobacterium tumefaciens-Mediated Genetic Transformation of Sugar Beet (Beta vulgaris L.). Journal of Plant Biochemistry and Biotechnology, 3(1), 37–41. https://doi.org/10.1007/BF03321946Kumar, R., Mamrutha, H. M., Kaur, A., & Grewal, A. (2017). Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium over growth in wheat (Triticum aestivum L.) transformation. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(4), 961–967.Kutty, P. C., Parveez, G. K. A., & Huyop, F. (2011). Agrobacterium tumefaciens-infection Strategies for Greater Transgenic Recovery in Nicotiana tabacum cv. TAPM26. International Journal of Agricultural Research, 6(2), 119–133. https://doi.org/10.1097/mrm.0b013e3283642449Lacorte, C. (1998). β-Glucuronidase (GUS). In A. Brasileiro & V. Carneiro (Eds.), Manual de Transformação Genética de Plantas. (pp. 128–129). EMBRAPASPI/EMBRAPA-Cenagen.Lacroix, B., & Citovsky, V. (2019). Pathways of DNA transfer to plants from agrobacterium tumefaciens and related bacterial species. Annual Review of Phytopathology, 57, 231–251. https://doi.org/10.1146/annurev-phyto-082718-100101Li, B., Xie, C., & Qiu, H. (2009). Production of selectable marker-free transgenic tobacco plants using a non-selection approach: Chimerism or escape, transgene inheritance, and efficiency. Plant Cell Reports, 28(3), 373–386. https://doi.org/10.1007/s00299-008-0640-8Li, M., & Wilkins, M. R. (2020). Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. International Journal of Biological Macromolecules, 156, 691–703. https://doi.org/10.1016/j.ijbiomac.2020.04.082Li, S., Cong, Y., Liu, Y., Wang, T., Shuai, Q., Chen, N., Gai, J., & Li, Y. (2017). Optimization of agrobacterium-mediated transformation in soybean. Frontiers in Plant Science, 8(February), 1–15. https://doi.org/10.3389/fpls.2017.00246Li, X., & Pan, S. Q. (2017). Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Science Advances, 3, 1–12.Lin, J. J., Assad-Garcia, N., & Kuo, J. (1995). Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Science, 109(2), 171–177. https://doi.org/10.1016/0168-9452(95)04168-TLu, H., Yuan, G., Strauss, S. H., Tschaplinski, T. J., Tuskan, G. A., Chen, J.-G., & Yang, X. (2020). Reconfiguring Plant Metabolism for Biodegradable Plastic Production. BioDesign Research, 2020, 1–13. https://doi.org/10.34133/2020/9078303MADR. (2020). Cadena de Tabaco-Ministerio de Agricultura y Desarrollo Rural. https://sioc.minagricultura.gov.co/Tabaco/Documentos/2019-12-30 Cifras Sectoriales.pdfManickavasagam, M., Ganapathi, A., Anbazhagan, V. R., Sudhakar, B., Selvaraj, N., Vasudevan, A., & Kasthurirengan, S. (2004). Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids ) using axillary buds. Genetic Transformation and Hybridization, 23, 134–143. https://doi.org/10.1007/s00299-004-0794-yMatsumoto, K., Morimoto, K., Gohda, A., Shimada, H., & Taguchi, S. (2011). Improved polyhydroxybutyrate (PHB) production in transgenic tobacco by enhancing translation efficiency of bacterial PHB biosynthetic genes. Journal of Bioscience and Bioengineering, 111(4), 485–488. https://doi.org/10.1016/j.jbiosc.2010.11.020Matzke, M., Matzke, A. J. M., & Kooter, J. M. (2001). RNA: Guiding gene silencing. Science, 293(5532), 1080–1083. https://doi.org/10.1126/science.1063051Matzke, Marjori, & Matzke, A. J. M. (1993). Genomic imprinting in plants: Parental effects and trans-inactivation phenomena. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 53–76. https://doi.org/10.1146/annurev.pp.44.060193.000413Mcqualter, R. B., Petrasovits, L. A., Gebbie, L. K., Schweitzer, D., Blackman, D. M., Chrysanthopoulos, P., Hodson, M. P., Plan, M. R., Riches, J. D., Snell, K. D., Brumbley, S. M., & Nielsen, L. K. (2015). The use of an acetoacetyl-CoA synthase in place of a β-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnology Journal, 13(5), 700–707. https://doi.org/10.1111/pbi.12298Mette, M. F., Aufsatz, W., Van der Winden, J., Matzke, M. A., & Matzke, A. J. M. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO Journal, 19(19), 5194–5201. https://doi.org/10.1093/emboj/19.19.5194MinAgricultura. (2015). Bullets Cadena de Tabaco-Marzo de 2015.Mittendorf, V., Bongcam, V., Allenbach, L., Coullerez, G., Martini, N., & Poirier, Y. (1999). Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through β-oxidation. Plant Journal, 20(1), 45–55. https://doi.org/10.1046/j.1365-313X.1999.00572.xMittendorf, V., Robertson, E. J., Leech, R. M., Kruger, N., Steinbuchel, A., & Poirier, Y. (1998). Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid β-oxidation. Proceedings of the National Academy of Sciences, 95(23), 13397–13402. https://doi.org/10.1073/pnas.95.23.13397Moazed, D., & Noller, H. F. (1987). Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 327(6121), 389–394. https://doi.org/10.1038/327389a0Moire, L., Rezzonico, E., & Poirier, Y. (2003b). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831–839. https://doi.org/10.1078/0176-1617-01030Mooney, B. P. (2009). The second green revolution? Production of plant-based biodegradable plastics. Biochemical Journal, 418(2), 219–232. https://doi.org/10.1042/bj20081769Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 474–497.Nagaya, S., Kawamura, K., Shinmyo, A., & Kato, K. (2010). The HSP terminator of arabidopsis thaliana increases gene expression in plant cells. In Plant and Cell Physiology (Vol. 51, Issue 2, pp. 328–332). https://doi.org/10.1093/pcp/pcp188Nakashita, H., Arai, Y., Shikanai, T., Doi, Y., & Yamaguchi, I. (2001). Introduction of Bacterial Metabolism into Higher Plants by Polycistronic Transgene Expression. Bioscience, Biotechnology, and Biochemistry, 65(7), 1688–1691. https://doi.org/10.1271/bbb.65.1688Nakashita, H., Arai, Y., Yoshioka, K., Fukui, T., Doi, Y., Usami, R., Horikoshi, K., & Yamaguchi, I. (1999). Production of Biodegradable Polyester By Tobbaco. Bioscience, Biotechnology, and Biochemistry, 63(5), 870–874. https://doi.org/10.1271/bbb.63.870Nauerby, B., Billing, K., & Wyndaele, R. (1997). Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacteriurn tumefaciens. Plant Science, 123(1–2), 169–177. https://doi.org/10.1016/S0168-9452(96)04569-4Nawrath, C., Poirier, Y., & Somerville, C. (1994). Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proceedings of the National Academy of Sciences, 91(26), 12760–12764. https://doi.org/10.1073/pnas.91.26.12760Nawrath, Christiane, Poirier, Y., & Somerville, C. (1995). Plant polymers for biodegradable plastics: Cellulose, starch and polyhydroxyalkanoates. In Molecular Breeding. https://doi.org/10.1007/BF01249696Okamura, E., Tomita, T., Sawa, R., Nishiyama, M., & Kuzuyama, T. (2010). Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11265–11270. https://doi.org/10.1073/pnas.1000532107Pachchigar, K., Khunt, A., & Hetal, B. (2016). Dna quantification. In ICAR Sponsored summer school on Allele mining in crops: Methods and Utility (pp. 5–9).Patton, D. A., & Meinke, D. W. (1988). High-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Reports, 7(4), 233–237. https://doi.org/10.1007/BF00272531Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 25(3), 206–213. https://doi.org/10.1007/s00299-005-0048-7Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Transformation, 136, 167–179.Pérez-González, A., & Caro, E. (2018). Effect of transcription terminator usage on the establishment of transgene transcriptional gene silencing. BMC Research Notes, 11(1), 1–8. https://doi.org/10.1186/s13104-018-3649-2Petrasovits, L. A., Purnell, M. P., Nielsen, L. K., & Brumbley, S. M. (2007). Production of polyhydroxybutyrate in sugarcane. Plant Biotechnology Journal, 5(1), 162–172. https://doi.org/10.1111/j.1467-7652.2006.00229.xPetrasovits, L. A., Zhao, L., McQualter, R. B., Snell, K. D., Somleva, M. N., Patterson, N. A., Nielsen, L. K., & Brumbley, S. M. (2012). Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnology Journal, 10(5), 569–578. https://doi.org/10.1111/j.1467-7652.2012.00686.xPoirier, Y., E. Dennis, D., Klomparens, K., & Somerville, C. (1992). PHB, a biodegradable thermoplastic, produced in transgenic plants. Science, 256(April).Poltronieri, P., & Kumar, P. (2019). Polyhydroxyalkanoates (PHAs) in industrial applications. Handbook of Ecomaterials, 4, 2843–2872. https://doi.org/10.1007/978-3-319-68255-6_70Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation, 126(January 2017), 45–56. https://doi.org/10.1016/j.ibiod.2017.10.001Roberts, R. J. (1985). Restriction and modification enzymes and their recognition sequences. Nucleic Acids Research, 5, 1–49.Rodríguez-García, C., Vilaine, F., & Robaglia, C. (2002). Transfer of the yeast gene SKI2 to Tobacco. Agrociencia, 36(6), 675–681.Romano, A. (2002). Production of Polyhydroxyalkanoates (PHAs) in Transgenic Potato [Wageningen Universiteit]. In Biopolymers Online. https://doi.org/10.1002/3527600035.bpol3a15Rossi, L., Hohn, B., & Tinland, B. (1996). Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci, 93(January), 126–130.Saruul, P., Srienc, F., Somers, D. A., & Samac, D. A. (2002). Production of a Biodegradable Plastic Polymer, Poly-β-Hydroxybutyrate, in Transgenic Alfalfa. Crop Science, 42(3), 919–927.Schmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283(3), 233–241. https://doi.org/10.1007/s00438-010-0511-1Sharma, V., Sehgal, R., & Gupta, R. (2021). Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer, 212, 123161. https://doi.org/10.1016/j.polymer.2020.123161Sierro, N., Battey, J. N. D., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M. C., & Ivanov, N. V. (2014). The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 5(May), 1–9. https://doi.org/10.1038/ncomms4833Sierro, N., & Ivanov, N. (2020). Background and History of Tobacco Genome Resources. In N. Ivanov, N. Sierro, & M. Peitsch (Eds.), The Tobacco Plant Genome (pp. 21–41). https://doi.org/10.1007/978-3-030-29493-9_2Sijen, T., Vijn, I., Rebocho, A., Van Blokland, R., Roelofs, D., Mol, J. N. M., & Kooter, J. M. (2001). Transcriptional and posttranscriptional gene silencing are mechanistically related. Current Biology, 11(6), 436–440. https://doi.org/10.1016/S0960-9822(01)00116-6 SIOC. (2021). Tabaco-Sistema de Información de Gestión y Desempeño de Organizaciones de Cadenas. Boletín de Precios de Insumos Agropecuarios No. 1 de 2021. https://sioc.minagricultura.gov.co/Tabaco/Pages/default.aspxSnell, K. D., Singh, V., & Brumbley, S. M. (2015). Production of novel biopolymers in plants: Recent technological advances and future prospects. Current Opinion in Biotechnology, 32, 68–75. https://doi.org/10.1016/j.copbio.2014.11.005Somleva, M. N., Peoples, O. P., & Snell, K. D. (2013). PHA Bioplastics, Biochemicals, and Energy from Crops. Plant Biotechnology Journal, 11, 233–252. https://doi.org/10.1111/pbi.12039Song, Z. yue, Tian, J. luan, Fu, W. zhe, Li, L., Lu, L. hong, Zhou, L., Shan, Z. hui, Tang, G. xiang, & Shou, H. xia. (2013). Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. Journal of Zhejiang University. Science. B, 14(4), 289–298. https://doi.org/10.1631/jzus.B1200278Stefanov, I., Fekete, S., Bögre, L., Pauk, J., Fehér, A., & Dudits, D. (1994). Differential activity of the mannopine synthase and the CaMV 35S promoters during development of transgenic rapeseed plants. Plant Science, 95, 175–186. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnology Advances, 25(2), 148–175. https://doi.org/10.1016/j.biotechadv.2006.11.007Tan, D., Wang, Y., Tong, Y., & Chen, G. Q. (2021). Grand Challenges for Industrializing Polyhydroxyalkanoates (PHAs). Trends in Biotechnology, 1–11. https://doi.org/10.1016/j.tibtech.2020.11.010Teixeira, J. A. (2005). Simple multiplication and effective genetic transformation ( four methods ) of in vitro-grown tobacco by stem thin cell layers. Plant Science, 169, 1046–1058. https://doi.org/10.1016/j.plantsci.2005.07.012Tilbrook, K., Gebbie, L., Schenk, P. M., Poirier, Y., & Brumbley, S. M. (2011). Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnology Journal, 9, 958–969. https://doi.org/10.1111/j.1467-7652.2011.00600.xTrick, H., & Finer, J. (1997). SAAT : sonication-assisted Agrobacterium -mediated transformation. Transgenic Research, 6, 329–336.Valderrama-Fonseca, A. M., Arango-Isaza, R., & Afanador-Kafuri, L. (2005). Transformación de plantas mediada por Agrobacterium: “Ingeniería Genética natural aplicada.” Rev.Fac.Nal.Agr.Medellín, 58(1), 2569–2585. http://www.scielo.org.co/pdf/rfnam/v58n1/a01v58n1.pdfValentin, H. E., Broyles, D. L., Casagrande, L. A., Colburn, S. M., Creely, W. L., Delaquil, P. A., Felton, H. M., Gonzalez, K. A., Houmiel, K. L., Lutke, K., Mahadeo, D. A., Mitsky, T. A., Padgette, S. R., Reiser, S. E., Slater, S., Stark, D. M., Stock, R. T., Stone, D. A., Taylor, N. B., … Gruys, K. J. (1999). PHA production, from bacteria to plants. International Journal of Biological Macromolecules, 25(1–3), 303–306. https://doi.org/10.1016/S0141-8130(99)00045-8Weselake, R. J. (2005). Storage lipids. In D. J. Murphy (Ed.), Plant lipids — biology, utilization and manipulation (pp. 162–225). Blackwell Publishing.Yu, L. P., Wu, F. Q., & Chen, G. Q. (2019). Next-Generation Industrial Biotechnology-Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnology Journal, 14(9). https://doi.org/10.1002/biot.201800437Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., & Schell, J. (1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. The EMBO Journal, 2(12), 2143–2150. https://doi.org/10.1002/j.1460-2075.1983.tb01715.xZhang, B., Carlson, R., & Srienc, F. (2006). Engineering the Monomer Composition of Polyhydroxyalkanoates Synthesized in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 72(1), 536–543. https://doi.org/10.1128/AEM.72.1.536Zhao, H., Jia, Y., Cao, Y., & Wang, Y. (2020). Improving T-DNA Transfer to Tamarix hispida by Adding Chemical Compounds During Agrobacterium tumefaciens Culture. Frontiers in Plant Science, 11(September), 1–8. https://doi.org/10.3389/fpls.2020.501358Zhu, L., Zhang, J., Yang, J., Jiang, Y., & Yang, S. (2021). Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends in Biotechnology, 1–17. https://doi.org/10.1016/j.tibtech.2021.04.004GeneralInvestigadoresEstudiantesPúblico generalMinicienciasLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79642/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos.pdfLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf1531157https://repositorio.unal.edu.co/bitstream/unal/79642/2/L%c3%adnea%20transg%c3%a9nica%20de%20Nicotiana%20tabacum%20expresando%20el%20gen%20phaC%20de%20Aeromonas%20caviae%20para%20la%20producci%c3%b3n%20de%20polihidroxialcanoatos.pdf48f15b21546b16881836987d43dd6f74MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79642/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAILLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos.pdf.jpgLínea transgénica de Nicotiana tabacum expresando el gen phaC de Aeromonas caviae para la producción de polihidroxialcanoatos.pdf.jpgGenerated Thumbnailimage/jpeg4016https://repositorio.unal.edu.co/bitstream/unal/79642/4/L%c3%adnea%20transg%c3%a9nica%20de%20Nicotiana%20tabacum%20expresando%20el%20gen%20phaC%20de%20Aeromonas%20caviae%20para%20la%20producci%c3%b3n%20de%20polihidroxialcanoatos.pdf.jpgac05c50f320aab632927932aab1addfdMD54unal/79642oai:repositorio.unal.edu.co:unal/796422023-07-21 23:04:06.586Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==