Análisis de causalidad para series de tiempo multivariadas funcionales

ilustraciones, diagramas

Autores:
Maya Orozco, Jhon Eduwin
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84489
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84489
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Series temporales
Datos funcionales
Causalidad de Granger
Modelos Autorregresivos Funcionales (FAR)
Modelos Autorregresivos Funcionales con variables exógenas (FARX)
Time series
Functional data
Granger causality
Functional Autorregresive Models (FAR)
Functional Autorregresive Models with exogenous variables (FARX)
data analysis
time series
análisis de datos
serie temporal
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_098fe50ce1dc893458ecad9c67f04be6
oai_identifier_str oai:repositorio.unal.edu.co:unal/84489
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis de causalidad para series de tiempo multivariadas funcionales
dc.title.translated.eng.fl_str_mv Causal analysis for multivariate functional time series
title Análisis de causalidad para series de tiempo multivariadas funcionales
spellingShingle Análisis de causalidad para series de tiempo multivariadas funcionales
510 - Matemáticas
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Series temporales
Datos funcionales
Causalidad de Granger
Modelos Autorregresivos Funcionales (FAR)
Modelos Autorregresivos Funcionales con variables exógenas (FARX)
Time series
Functional data
Granger causality
Functional Autorregresive Models (FAR)
Functional Autorregresive Models with exogenous variables (FARX)
data analysis
time series
análisis de datos
serie temporal
title_short Análisis de causalidad para series de tiempo multivariadas funcionales
title_full Análisis de causalidad para series de tiempo multivariadas funcionales
title_fullStr Análisis de causalidad para series de tiempo multivariadas funcionales
title_full_unstemmed Análisis de causalidad para series de tiempo multivariadas funcionales
title_sort Análisis de causalidad para series de tiempo multivariadas funcionales
dc.creator.fl_str_mv Maya Orozco, Jhon Eduwin
dc.contributor.advisor.none.fl_str_mv Calderón Villanueva, Sergio Alejandro
Guevara González, Rubén Darío
dc.contributor.author.none.fl_str_mv Maya Orozco, Jhon Eduwin
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 510 - Matemáticas
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Series temporales
Datos funcionales
Causalidad de Granger
Modelos Autorregresivos Funcionales (FAR)
Modelos Autorregresivos Funcionales con variables exógenas (FARX)
Time series
Functional data
Granger causality
Functional Autorregresive Models (FAR)
Functional Autorregresive Models with exogenous variables (FARX)
data analysis
time series
análisis de datos
serie temporal
dc.subject.proposal.spa.fl_str_mv Series temporales
Datos funcionales
Causalidad de Granger
Modelos Autorregresivos Funcionales (FAR)
Modelos Autorregresivos Funcionales con variables exógenas (FARX)
dc.subject.proposal.eng.fl_str_mv Time series
Functional data
Granger causality
Functional Autorregresive Models (FAR)
Functional Autorregresive Models with exogenous variables (FARX)
dc.subject.wikidata.spa.fl_str_mv data analysis
time series
dc.subject.wikidata.eng.fl_str_mv análisis de datos
serie temporal
description ilustraciones, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-08-08T17:00:18Z
dc.date.available.none.fl_str_mv 2023-08-08T17:00:18Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84489
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84489
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Bosq, D. (2000). Linear processes in function spaces: theory and applications (Vol. 149). Springer Science & Business Media
Boudjellaba, H., Dufour, J.-M., & Roy, R. (1992). Testing causality between two vectors in multivariate autoregressive moving average models. Journal of the American Statis- tical Association, 87 (420), 1082-1090.
Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. Springer.
Cabassi, A., & Kashlak, A. B. (2017). fdcov: Analysis of Covariance Operators [R package version 1.1.0]. https://CRAN.R-project.org/package=fdcov
Chen, Y., Chua, W. S., & Härdle, W. K. (2019). Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics. Quantitative Finan ce, 19 (9), 1473-1489
Chen, Y., Koch, T., Lim, K. G., Xu, X., & Zakiyeva, N. (2021). A review study of functional autoregressive models with application to energy forecasting. Wiley Interdisciplinary Reviews: Computational Statistics, 13 (3), e1525.
Conway, J. B. (2019). A course in functional analysis (Vol. 96). Springer.
Cuevas, A. (2014). A partial overview of the theory of statistics with functional data. Journal of Statistical Planning and Inference, 147, 1-23.
Damon, J., & Guillas, S. (2005). Estimation and simulation of autoregressive hilbertian pro cesses with exogenous variables. Statistical Inference for Stochastic Processes, 8 (2), 185-204.
Elmezouar, Z. C. (2020). Functional causality between oil prices and GDP Based on Big Data. Computers, Materials & Continua, 63 (2), 593-604.
Ferraty, F., & Romain, Y. (2011). The Oxford handbook of functional data analaysis. Oxford University Press.
Fremdt, S., Steinebach, J. G., Horváth, L., & Kokoszka, P. (2013). Testing the equality of covariance operators in functional samples. Scandinavian Journal of Statistics, 40 (1), 138-152.
Granger, C. W. (1969). Investigating causal relations by econometric models and cross spectral methods. Econometrica: journal of the Econometric Society, 424-438.
Hörmann, S., Kidziński, Ł., & Hallin, M. (2015). Dynamic functional principal components. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77 (2), 319-348.
Hörmann, S., & Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics, 38 (3), 1845-1884.
Horváth, L., & Kokoszka, P. (2012). Inference for functional data with applications (Vol. 200). Springer Science & Business Media.
Julio-Román, J. M., & Gamboa-Estrada, F. (2019). The Exchange Rate and Oil Prices in Colombia: A High Frequency Analysis. Borradores de Economía; No. 1091.
Julio-Román, J. M., Rincón-Torres, A. D., & Rojas-Silva, K. (2021). The Interdependence of FX and Treasury Bonds Markets: The Case of Colombia. Borradores de Economía; No. 1171.
Kidzinski, L., Jouzdani, N., & Kokoszka, P. (2017). pcdpca: Dynamic Principal Components for Periodically Correlated Functional Time Series [R package version 0.4]. https: //CRAN.R-project.org/package=pcdpca
Kokoszka, P., & Reimherr, M. (2017). Introduction to functional data analysis. Chapman; Hall/CRC.
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media.
Panaretos, V. M., Kraus, D., & Maddocks, J. H. (2010). Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles. Journal of the Ame rican Statistical Association, 105 (490), 670-682. https://doi.org/10.1198/jasa.2010.tm09239
Panaretos, V. M., & Tavakoli, S. (2013). Fourier analysis of stationary time series in function space. The Annals of Statistics, 41 (2), 568-603.
Pfaff, B. (2008). VAR, SVAR and SVEC Models: Implementation Within R Package vars. Journal of Statistical Software, 27 (4). https://www.jstatsoft.org/v27/i04/
Pindyck, R. S., Rubinfeld, D. L., & Rabasco, E. (2013). Microeconomia. Pearson Educación.
Ramsay, J. O., Graves, S., & Hooker, G. (2022). fda: Functional Data Analysis [R package version 6.0.5]. https://CRAN.R-project.org/package=fda
Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. Springer. https://doi. org/https://doi.org/10.1007/b98888
Ramsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis: methods and case studies (Vol. 77). Springer.
S., H., & L., K. (2022a). freqdom: Frequency Domain Based Analysis: Dynamic PCA [R package version 2.0.3]. https://CRAN.R-project.org/package=freqdom
S., H., & L., K. (2022b). freqdom.fda: Functional Time Series: Dynamic Functional Principal Components [R package version 1.0.1]. https: / / CRAN. R - project. org / package = freqdom.fda
Sancetta, A. (2019). Intraday end-of-day volume prediction. Journal of Financial Econometrics.
Saumard, M. (2017). Linear causality in the sense of Granger with stationary functional time series. En Functional Statistics and Related Fields (pp. 225-231). Springer.
Saumard, M., & Hadjadji, B. (2021). Dynamic Functional Principal Components for Testing Causality. Signals, 2 (2), 353-365.
Sen, R., Majumdar, A., & Sikaria, S. (2022). Bayesian Testing Of Granger Causality In Functional Time Series. Journal of Quantitative Economics, 1-20.
Serge, D. J. G. (2022). far: Modelization for Functional AutoRegressive Processes [R package version 0.6-6]. https://CRAN.R-project.org/package=far
Seth, A. (2007). Granger causality. Scholarpedia, 2 (7), 1667.
Shojaie, A., & Fox, E. B. (2022). Granger causality: A review and recent advances. Annual Review of Statistics and Its Application, 9, 289-319.
Sims, C. A. (1972). Money, income, and causality. The American economic review, 62 (4), 540-552.
Skoog, G. R., et al. (1976). Causality Characterizations: Bivariate, Trivariate, and Multivariate Propositions (inf. téc.). Federal Reserve Bank of Minneapolis.
Sonmez, O., Aue, A., & Rice, G. (2019). fChange: Change Point Analysis in Functional Data [R package version 0.2.1]. https://CRAN.R-project.org/package=fChange
Srivastava, A., & Klassen, E. P. (2016). Functional and shape data analysis (Vol. 1). Springer.
Virta, J., Li, B., Nordhausen, K., & Oja, H. (2020). Independent component analysis for multivariate functional data. Journal of Multivariate Analysis, 176, 104568.
Wiener, N. (1956). The theory of prediction. Modern mathematics for engineers.
Williams, D., Goodhart, C. A., & Gowland, D. H. (1976). Money, income, and causality: The UK experience. The American Economic Review, 66 (3), 417-423.
Zhang, J. (2014). Analysis of variance for functional data. Monographs on statistics and applied probability, 127, 127.
Zhang, X., & Shao, X. (2015). Two sample inference for the second-order property of temporally dependent functional data. Bernoulli, 21 (2), 909-929
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 103 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84489/2/1094949022.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84489/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84489/3/1094949022.2023.pdf.jpg
bitstream.checksum.fl_str_mv 9f83e357b26e6c4096c61f879d52c400
eb34b1cf90b7e1103fc9dfd26be24b4a
18d8a9a7815fadaa5608c562c2e4c229
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089745891852288
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Calderón Villanueva, Sergio Alejandro4435821363acfcc5a0b97c50464db9d4Guevara González, Rubén Darío1576c12a39d4ac35f1f710837eff755bMaya Orozco, Jhon Eduwinfa0e65bca46f6936bbbca53a876c4b402023-08-08T17:00:18Z2023-08-08T17:00:18Z2022https://repositorio.unal.edu.co/handle/unal/84489Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa causalidad de Granger es una prueba creada hace casi medio siglo que permite saber si una serie temporal ayuda en la predicción de otra. Para el caso de series temporales fun- cionales el tema ha sido explorado por autores como Saumard y Hadjadji (2021) o Sen et al. (2022), sin embargo el tema posee aún muchas lineas de investigación abiertas que han sido poco exploradas. Este trabajo se concentra en estudiar una extensión de las pruebas de causalidad de Granger para series de tiempo funcionales multivariadas de dimensiones mayores a 2 (específicamente 3 y 4), basada en los procedimientos propuestos por Saumard y Hadjadji (2021). Para este fin se simulan procesos bivariados, tri-variados y tetra-variados a partir de modelos FAR(1) y FARX(1). Se realizan las pruebas de causalidad de Granger a través de tres procedimientos (DFPCA, F-causalidad y G-causalidad). Se encuentra que la prueba que presenta mejores resultados a través del estudio de simulación es la que hace uso de los componentes principales dinámicos DFPCA y que la variabilidad explicada por el número de componentes afecta de manera sensible la potencia de la prueba. Se realiza un ejemplo de aplicación para ilustrar los procedimientos propuestos en el que se verifica si existe causalidad entre el precio del dólar (Yt), el precio del petróleo Brent (Xt1 ) y la tasa de interés de los bonos colombianos a 10 años (Xt2 ). Se confirma la causalidad de las variables Xti sobre la variable Yt tal y como la teoría económica parece predecir. (Texto tomado de la fuente)Granger causality is a test created almost half a century ago that allows us to know if one time series helps in the prediction of another. In the case of functional time series, the topic has been explored by authors such as Saumard y Hadjadji (2021) or Sen et al. (2022), however the topic still has many open lines of research that have been little explored. This work focuses on studying an extension of the Granger causality tests for multivariate functio- nal time series of dimensions greater than 2 (specifically 3 and 4), based on the procedures proposed by Saumard y Hadjadji (2021). For this purpose, bivariate, trivariate and tetra- variate processes are simulated using FAR(1) and FARX(1) models. Granger causality tests are carried out through three procedures (DFPCA, F-causality and G-causality). It is found that the test that presents the best results through the simulation study is the one that ma- kes use of the DFPCA dynamic principal components and that it will have been explained by the number of components that significantly affects the power of the test. An application example is carried out to illustrate the proposed procedures in which it is verified if there is causality between the price of the dollar (Yt), the price of Brent oil (Xt1 ) and the interest rate of the Colombian 10-year bonds (Xt2 ). The causality of the variables Xti on the variable Yt is confirmed, as economic theory seems to predict.MaestríaMagíster en Ciencias - EstadísticaSeries Temporales y Datos Funcionalesxvi, 103 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasSeries temporalesDatos funcionalesCausalidad de GrangerModelos Autorregresivos Funcionales (FAR)Modelos Autorregresivos Funcionales con variables exógenas (FARX)Time seriesFunctional dataGranger causalityFunctional Autorregresive Models (FAR)Functional Autorregresive Models with exogenous variables (FARX)data analysistime seriesanálisis de datosserie temporalAnálisis de causalidad para series de tiempo multivariadas funcionalesCausal analysis for multivariate functional time seriesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBosq, D. (2000). Linear processes in function spaces: theory and applications (Vol. 149). Springer Science & Business MediaBoudjellaba, H., Dufour, J.-M., & Roy, R. (1992). Testing causality between two vectors in multivariate autoregressive moving average models. Journal of the American Statis- tical Association, 87 (420), 1082-1090.Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. Springer.Cabassi, A., & Kashlak, A. B. (2017). fdcov: Analysis of Covariance Operators [R package version 1.1.0]. https://CRAN.R-project.org/package=fdcovChen, Y., Chua, W. S., & Härdle, W. K. (2019). Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics. Quantitative Finan ce, 19 (9), 1473-1489Chen, Y., Koch, T., Lim, K. G., Xu, X., & Zakiyeva, N. (2021). A review study of functional autoregressive models with application to energy forecasting. Wiley Interdisciplinary Reviews: Computational Statistics, 13 (3), e1525.Conway, J. B. (2019). A course in functional analysis (Vol. 96). Springer.Cuevas, A. (2014). A partial overview of the theory of statistics with functional data. Journal of Statistical Planning and Inference, 147, 1-23.Damon, J., & Guillas, S. (2005). Estimation and simulation of autoregressive hilbertian pro cesses with exogenous variables. Statistical Inference for Stochastic Processes, 8 (2), 185-204.Elmezouar, Z. C. (2020). Functional causality between oil prices and GDP Based on Big Data. Computers, Materials & Continua, 63 (2), 593-604.Ferraty, F., & Romain, Y. (2011). The Oxford handbook of functional data analaysis. Oxford University Press.Fremdt, S., Steinebach, J. G., Horváth, L., & Kokoszka, P. (2013). Testing the equality of covariance operators in functional samples. Scandinavian Journal of Statistics, 40 (1), 138-152.Granger, C. W. (1969). Investigating causal relations by econometric models and cross spectral methods. Econometrica: journal of the Econometric Society, 424-438.Hörmann, S., Kidziński, Ł., & Hallin, M. (2015). Dynamic functional principal components. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77 (2), 319-348.Hörmann, S., & Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics, 38 (3), 1845-1884.Horváth, L., & Kokoszka, P. (2012). Inference for functional data with applications (Vol. 200). Springer Science & Business Media.Julio-Román, J. M., & Gamboa-Estrada, F. (2019). The Exchange Rate and Oil Prices in Colombia: A High Frequency Analysis. Borradores de Economía; No. 1091.Julio-Román, J. M., Rincón-Torres, A. D., & Rojas-Silva, K. (2021). The Interdependence of FX and Treasury Bonds Markets: The Case of Colombia. Borradores de Economía; No. 1171.Kidzinski, L., Jouzdani, N., & Kokoszka, P. (2017). pcdpca: Dynamic Principal Components for Periodically Correlated Functional Time Series [R package version 0.4]. https: //CRAN.R-project.org/package=pcdpcaKokoszka, P., & Reimherr, M. (2017). Introduction to functional data analysis. Chapman; Hall/CRC.Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media.Panaretos, V. M., Kraus, D., & Maddocks, J. H. (2010). Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles. Journal of the Ame rican Statistical Association, 105 (490), 670-682. https://doi.org/10.1198/jasa.2010.tm09239Panaretos, V. M., & Tavakoli, S. (2013). Fourier analysis of stationary time series in function space. The Annals of Statistics, 41 (2), 568-603.Pfaff, B. (2008). VAR, SVAR and SVEC Models: Implementation Within R Package vars. Journal of Statistical Software, 27 (4). https://www.jstatsoft.org/v27/i04/Pindyck, R. S., Rubinfeld, D. L., & Rabasco, E. (2013). Microeconomia. Pearson Educación.Ramsay, J. O., Graves, S., & Hooker, G. (2022). fda: Functional Data Analysis [R package version 6.0.5]. https://CRAN.R-project.org/package=fdaRamsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. Springer. https://doi. org/https://doi.org/10.1007/b98888Ramsay, J. O., & Silverman, B. W. (2002). Applied functional data analysis: methods and case studies (Vol. 77). Springer.S., H., & L., K. (2022a). freqdom: Frequency Domain Based Analysis: Dynamic PCA [R package version 2.0.3]. https://CRAN.R-project.org/package=freqdomS., H., & L., K. (2022b). freqdom.fda: Functional Time Series: Dynamic Functional Principal Components [R package version 1.0.1]. https: / / CRAN. R - project. org / package = freqdom.fdaSancetta, A. (2019). Intraday end-of-day volume prediction. Journal of Financial Econometrics.Saumard, M. (2017). Linear causality in the sense of Granger with stationary functional time series. En Functional Statistics and Related Fields (pp. 225-231). Springer.Saumard, M., & Hadjadji, B. (2021). Dynamic Functional Principal Components for Testing Causality. Signals, 2 (2), 353-365.Sen, R., Majumdar, A., & Sikaria, S. (2022). Bayesian Testing Of Granger Causality In Functional Time Series. Journal of Quantitative Economics, 1-20.Serge, D. J. G. (2022). far: Modelization for Functional AutoRegressive Processes [R package version 0.6-6]. https://CRAN.R-project.org/package=farSeth, A. (2007). Granger causality. Scholarpedia, 2 (7), 1667.Shojaie, A., & Fox, E. B. (2022). Granger causality: A review and recent advances. Annual Review of Statistics and Its Application, 9, 289-319.Sims, C. A. (1972). Money, income, and causality. The American economic review, 62 (4), 540-552.Skoog, G. R., et al. (1976). Causality Characterizations: Bivariate, Trivariate, and Multivariate Propositions (inf. téc.). Federal Reserve Bank of Minneapolis.Sonmez, O., Aue, A., & Rice, G. (2019). fChange: Change Point Analysis in Functional Data [R package version 0.2.1]. https://CRAN.R-project.org/package=fChangeSrivastava, A., & Klassen, E. P. (2016). Functional and shape data analysis (Vol. 1). Springer.Virta, J., Li, B., Nordhausen, K., & Oja, H. (2020). Independent component analysis for multivariate functional data. Journal of Multivariate Analysis, 176, 104568.Wiener, N. (1956). The theory of prediction. Modern mathematics for engineers.Williams, D., Goodhart, C. A., & Gowland, D. H. (1976). Money, income, and causality: The UK experience. The American Economic Review, 66 (3), 417-423.Zhang, J. (2014). Analysis of variance for functional data. Monographs on statistics and applied probability, 127, 127.Zhang, X., & Shao, X. (2015). Two sample inference for the second-order property of temporally dependent functional data. Bernoulli, 21 (2), 909-929EstudiantesInvestigadoresPadres y familiasPúblico generalORIGINAL1094949022.2023.pdf1094949022.2023.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf2229268https://repositorio.unal.edu.co/bitstream/unal/84489/2/1094949022.2023.pdf9f83e357b26e6c4096c61f879d52c400MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84489/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1094949022.2023.pdf.jpg1094949022.2023.pdf.jpgGenerated Thumbnailimage/jpeg4126https://repositorio.unal.edu.co/bitstream/unal/84489/3/1094949022.2023.pdf.jpg18d8a9a7815fadaa5608c562c2e4c229MD53unal/84489oai:repositorio.unal.edu.co:unal/844892023-08-08 23:03:25.009Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=