Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects
Tropical deforestation is an ongoing process mainly caused by the construction of new roads, which, without proper environmental planning, contribute to biodiversity loss. Given that the artificial neural networks (ANNs) have the ability to capture nonlinear relationships, they were used to predict...
- Autores:
-
Gómez-Ossa, Luisa Fernanda
Botero-Fernández, Verónica
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/60381
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/60381
http://bdigital.unal.edu.co/58713/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Artificial neural networks
prediction
deforestation
roads
Redes neuronales artificiales
predicción
deforestación
vías
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_09526666e24fe2b7d5cb656ab3c9bb0d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/60381 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez-Ossa, Luisa Fernanda6439d863-5d73-43ce-98dd-532ac00683bd300Botero-Fernández, Verónica6fc81cdc-db0f-4f07-9348-20ea83bee86a3002019-07-02T18:11:16Z2019-07-02T18:11:16Z2017-04-01ISSN: 2346-2183https://repositorio.unal.edu.co/handle/unal/60381http://bdigital.unal.edu.co/58713/Tropical deforestation is an ongoing process mainly caused by the construction of new roads, which, without proper environmental planning, contribute to biodiversity loss. Given that the artificial neural networks (ANNs) have the ability to capture nonlinear relationships, they were used to predict deforestation associated with new roads, such as the “Variante Porce” road and the “El Bagre-San Jacinto del Cauca” road in the department of Antioquia. ANN Training was carried out online using the back-propagation algorithm, part of the R software. The predictive capacity was evaluated using the area under the receiver operator characteristic curve (AUC). Also, a network that showed the best predictive capacity for the deforestation surface was generated for the baseline scenario and the simulated scenario incorporating the new roads. The comparison of scenarios suggested that new roads would increase the probability of deforestation for approximately 103.729 ha of forest.La deforestación tropical es un proceso continuo causado principalmente por la construcción de nuevas vías, las cuales sin una planificación ambiental adecuada contribuyen a la pérdida de biodiversidad. Dado que las redes neuronales artificiales (RNAs) tienen la capacidad de capturar relaciones no lineales, se utilizaron para predecir la deforestación asociada a nuevas vías, como la Variante Porce y la vía El Bagre-San Jacinto del Cauca, en el departamento de Antioquia. El entrenamiento de las RNAs se realizó en modo on line con el algoritmo de retropropagación, en el software R. La capacidad de predicción se evaluó con el área bajo la curva ROC (AUC) y con la red que presentó mejor capacidad predictiva se generó la superficie de deforestación para el escenario base y el escenario simulado incorporando las nuevas vías. La comparación de escenarios indica que las nuevas vías incrementarían la probabilidad de deforestación de aproximadamente 103.729 ha de bosque.application/pdfspaUniversidad Nacional de Colombia (Sede Medellín). Facultad de Minas.https://revistas.unal.edu.co/index.php/dyna/article/view/54310Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaGómez-Ossa, Luisa Fernanda and Botero-Fernández, Verónica (2017) Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects. DYNA, 84 (201). pp. 68-73. ISSN 2346-218362 Ingeniería y operaciones afines / EngineeringArtificial neural networkspredictiondeforestationroadsRedes neuronales artificialesprediccióndeforestaciónvíasApplication of artificial neural networks in modeling deforestation associated with new road infrastructure projectsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL54310-329303-2-PB.pdfapplication/pdf692379https://repositorio.unal.edu.co/bitstream/unal/60381/1/54310-329303-2-PB.pdf6b3e66cdb4d6ba71513ad35aa9720791MD51THUMBNAIL54310-329303-2-PB.pdf.jpg54310-329303-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg9531https://repositorio.unal.edu.co/bitstream/unal/60381/2/54310-329303-2-PB.pdf.jpg70798e0f3ec0156ba1804cc567f010acMD52unal/60381oai:repositorio.unal.edu.co:unal/603812024-04-13 23:10:21.374Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
spellingShingle |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects 62 Ingeniería y operaciones afines / Engineering Artificial neural networks prediction deforestation roads Redes neuronales artificiales predicción deforestación vías |
title_short |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title_full |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title_fullStr |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title_full_unstemmed |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
title_sort |
Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects |
dc.creator.fl_str_mv |
Gómez-Ossa, Luisa Fernanda Botero-Fernández, Verónica |
dc.contributor.author.spa.fl_str_mv |
Gómez-Ossa, Luisa Fernanda Botero-Fernández, Verónica |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering Artificial neural networks prediction deforestation roads Redes neuronales artificiales predicción deforestación vías |
dc.subject.proposal.spa.fl_str_mv |
Artificial neural networks prediction deforestation roads Redes neuronales artificiales predicción deforestación vías |
description |
Tropical deforestation is an ongoing process mainly caused by the construction of new roads, which, without proper environmental planning, contribute to biodiversity loss. Given that the artificial neural networks (ANNs) have the ability to capture nonlinear relationships, they were used to predict deforestation associated with new roads, such as the “Variante Porce” road and the “El Bagre-San Jacinto del Cauca” road in the department of Antioquia. ANN Training was carried out online using the back-propagation algorithm, part of the R software. The predictive capacity was evaluated using the area under the receiver operator characteristic curve (AUC). Also, a network that showed the best predictive capacity for the deforestation surface was generated for the baseline scenario and the simulated scenario incorporating the new roads. The comparison of scenarios suggested that new roads would increase the probability of deforestation for approximately 103.729 ha of forest. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-04-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T18:11:16Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T18:11:16Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2346-2183 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/60381 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/58713/ |
identifier_str_mv |
ISSN: 2346-2183 |
url |
https://repositorio.unal.edu.co/handle/unal/60381 http://bdigital.unal.edu.co/58713/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/54310 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.references.spa.fl_str_mv |
Gómez-Ossa, Luisa Fernanda and Botero-Fernández, Verónica (2017) Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects. DYNA, 84 (201). pp. 68-73. ISSN 2346-2183 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia (Sede Medellín). Facultad de Minas. |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/60381/1/54310-329303-2-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/60381/2/54310-329303-2-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
6b3e66cdb4d6ba71513ad35aa9720791 70798e0f3ec0156ba1804cc567f010ac |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089276836544512 |