Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad

ilustraciones, gráficas

Autores:
Varón Vega, Henry Andrés
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82682
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82682
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Mycobacterium
Efecto de los fármacos
Inmunología
Drug effects
Immunology
Tuberculosis
Fármaco-resistencia
ATPasas tipo P
acoplamiento molecular
Cribado virtual
CtpF
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_08d54de4c92dc88989305036706c8e1d
oai_identifier_str oai:repositorio.unal.edu.co:unal/82682
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad
dc.title.translated.eng.fl_str_mv Search for Mycobacterium tuberculosis membrane transporter CtpF inhibitors by pharmacophore-based virtual screening and in vitro activity determination
title Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad
spellingShingle Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad
540 - Química y ciencias afines
Mycobacterium
Efecto de los fármacos
Inmunología
Drug effects
Immunology
Tuberculosis
Fármaco-resistencia
ATPasas tipo P
acoplamiento molecular
Cribado virtual
CtpF
title_short Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad
title_full Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad
title_fullStr Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad
title_full_unstemmed Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad
title_sort Búsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividad
dc.creator.fl_str_mv Varón Vega, Henry Andrés
dc.contributor.advisor.none.fl_str_mv Soto Ospina, Carlos Yesid
López Vallejo, Fabián Harvey
dc.contributor.author.none.fl_str_mv Varón Vega, Henry Andrés
dc.contributor.researchgroup.spa.fl_str_mv Bioquímica y Biología Molecular de las Micobacterias
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Mycobacterium
Efecto de los fármacos
Inmunología
Drug effects
Immunology
Tuberculosis
Fármaco-resistencia
ATPasas tipo P
acoplamiento molecular
Cribado virtual
CtpF
dc.subject.decs.spa.fl_str_mv Mycobacterium
Efecto de los fármacos
Inmunología
dc.subject.decs.eng.fl_str_mv Drug effects
dc.subject.lemb.eng.fl_str_mv Immunology
dc.subject.proposal.spa.fl_str_mv Tuberculosis
Fármaco-resistencia
ATPasas tipo P
acoplamiento molecular
Cribado virtual
CtpF
description ilustraciones, gráficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-10T20:03:28Z
dc.date.available.none.fl_str_mv 2022-11-10T20:03:28Z
dc.date.issued.none.fl_str_mv 2022-09-13
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82682
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82682
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv World Health Organization. Global tuberculosis report 2021. https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (2021) doi:ISBN 978-92-4-003702-1.
Pai, M. et al. Tuberculosis. Nat. Rev. Dis. Prim. 2, (2016).
Dheda, K. et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 5, 291–360 (2017).
Cassir, N., Rolain, J.-M. & Brouqui, P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Frontiers in Microbiology 5, (2014).
Padilla-Benavides, T., Long, J. E., Raimunda, D., Sassetti, C. M. & Argüello, J. M. A Novel P1B-type Mn2+-transporting ATPase Is Required for Secreted Protein Metallation in Mycobacteria *. J. Biol. Chem. 288, 11334–11347 (2013).
Gengenbacher, M. & Kaufmann, S. H. E. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 36, 514–532 (2012).
Prosser, G. et al. The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect. 19, 177–192 (2017).
Novoa-Aponte, L. et al. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Struct. Biol. 12, 1–12 (2012).
Ward, S. K., Abomoelak, B., Hoye, E. A., Steinberg, H. & Talaat, A. M. CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol. Microbiol. 77, 1096–1110 (2010).
Raimunda, D., Long, J. E., Padilla-Benavides, T., Sassetti, C. M. & Argüello, J. M. Differential roles for the Co2+/Ni2+ transporting ATPases , CtpD and CtpJ , in Mycobacterium tuberculosis virulence. Mol. Microbiol. 91, 185–197 (2014).
Maya-Hoyos, M., Rosales, C., Novoa-Aponte, L., Castillo, E. & Soto, C. Y. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 5, (2019).
Novoa-Aponte, L. & Soto Ospina, C. Y. Mycobacterium tuberculosis P-Type ATPases: Possible Targets for Drug or Vaccine Development. Biomed Res. Int. (2014).
Pulido, P. A., Novoa-Aponte, L., Villamil, N. & Soto, C. Y. The DosR Dormancy Regulator of Mycobacterium tuberculosis Stimulates the Na+/K+ and Ca2+ ATPase Activities in Plasma Membrane Vesicles of Mycobacteria. Curr. Microbiol. 69, 604–610 (2014).
Krishna, S., Pulcini, S., Fatih, F. & Staines, H. Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol. 26, 517–523 (2010).
Santos, P. et al. Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds. Bioorg. Med. Chem. 28, (2020).
Laursen, M. et al. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 284, 13513–13518 (2009).
Bublitz, M., Morth, J. P. & Nissen, P. P-type ATPases at a glance. J. Cell Sci. 124, 2515–2519 (2011).
O’Garra, A. et al. The Immune Response in Tuberculosis. Annu. Rev. Immunol. 31, 475–527 (2013).
Cook, G. M. et al. Physiology of Mycobacteria. Adv. Microb. Physiol. 55, 81–319 (2009).
Dulberger, C. L., Rubin, E. J. & Boutte, C. C. The mycobacterial cell envelope — a moving target. Nat. Rev. Microbiol. 18, 47–59 (2020).
Daffé, M. The Global Architecture of the Mycobacterial Cell Envelope. The Mycobacterial Cell Envelope. 1–11 (2008)
Ortalo-Magné, A. et al. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141, 1609–1620 (1995).
Daffé, M. & Draper, P. The Envelope Layers of Mycobacteria with Reference to their Pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1997).
Knechel, N. A. Tuberculosis: pathophysiology, clinical features, and diagnosis. Crit. Care Nurse 29, 34–43 (2009).
Jackson, M. The mycobacterial cell envelope-lipids. Cold Spring Harb. Perspect. Med. 4, (2014).
Rinder, H., Mieskes, K. T. & Löscher, T. Heteroresistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 5, 339–345 (2001).
Ernst, J. D. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12, 581–591 (2012).
Ehrt, S., Schnappinger, D. & Rhee, K. Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat. Rev. Microbiol. 16, 496–507 (2018).
Via, L. E. et al. Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates. Infect. Immun. 76, 2333–2340 (2008).
Singh, R. et al. Recent updates on drug resistance in Mycobacterium tuberculosis. J. Appl. Microbiol. 128, 1547–1567 (2020).
Koul, A., Arnoult, E., Lounis, N., Guillemont, J. & Andries, K. The challenge of new drug discovery for tuberculosis. Nature 469, 483–490 (2011).
Horsburgh, C. R., Barry, C. E. & Lange, C. Treatment of Tuberculosis. N. Engl. J. Med. 373, 2149–2160 (2015).
Prestinaci, F., Pezzotti, P. & Pantosti, A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 109, 309–318 (2015).
Zumla, A. I. et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet. Infect. Dis. 14, 327–340 (2014).
Guo, H. et al. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Nature 589, 143–147 (2021).
Lodish, H. et al. Molecular Cell Biology. (2016).
Nelson, D. L. & Michael, C. Lehninger Principles of Biochemistry. (2017).
Alberts, B. et al. Molecular Biology of the Cell. (2015).
Yatime, L. et al. P-type ATPases as drug targets: Tools for medicine and science. Biochim. Biophys. Acta - Bioenerg. 1787, 207–220 (2009).
Saffioti, N. A. et al. E2P-like states of plasma membrane Ca2+‑ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues. Biochim. Biophys. Acta - Biomembr. 1861, 366–379 (2019).
Palmgren, M. G. & Nissen, P. P-Type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).
Wang, K. et al. Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514, 518–522 (2014).
Hu, G.-B., Rice, W. J., Dröse, S., Altendorf, K. & Stokes, D. L. Three-dimensional structure of the KdpFABC complex of Escherichia coli by electron tomography of two-dimensional crystals. J. Struct. Biol. 161, 411–418 (2008).
Skou, J. C. The Identification of the Sodium–Potassium Pump (Nobel Lecture). Angew. Chemie Int. Ed. 37, 2320–2328 (1998).
Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).
Lopez-Marques, R. L., Theorin, L., Palmgren, M. G. & Pomorski, T. G. P4-ATPases: lipid flippases in cell membranes. Pflügers Arch. - Eur. J. Physiol. 466, 1227–1240 (2014).
León-Torres, A., Novoa-Aponte, L. & Soto, C. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals 28, (2015).
López, M., Quitian, L.-V., Calderón, M.-N. & Soto, C.-Y. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch. Microbiol. 200, 483–492 (2018).
Botella, H. et al. Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages. Cell Host Microbe 10, 248–259 (2011).
Novoa Aponte, L. Potencial de las ATPasas tipo P como dianas terapéuticas o en el diseño de mutantes atenuados de Mycobacterium tuberculosis. Universidad Nacional de Colombia (2017).
Primeau, J. O., Armanious, G. P., Fisher, M. E. & Young, H. S. The SarcoEndoplasmic Reticulum Calcium ATPase BT - Membrane Protein Complexes: Structure and Function. Harris, J. R. & Boekema, E. 229–258 (2018).
Musgaard, M., Thøgersen, L., Schiøtt, B. & Tajkhorshid, E. Tracing Cytoplasmic Ca2+ Ion and Water Access Points in the Ca2+-ATPase. Biophys. J. 102, 268–277 (2012).
Chourasia, M. & Sastry, G. N. The nucleotide, inhibitor, and cation binding sites of P-type II ATPases. Chem. Biol. Drug Des. 79, 617–627 (2012).
Seidler, N. W., Jona, I., Vegh, M. & Martonosi, A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816–17823 (1989).
Moncoq, K., Trieber, C. A. & Young, H. S. The Molecular Basis for Cyclopiazonic Acid Inhibition of the Sarcoplasmic Reticulum Calcium Pump. J. Biol. Chem. 282, 9748–9757 (2007).
Park, H.-D. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833–843 (2003).
L., L. R. et al. The Mycobacterium tuberculosis DosR Regulon Assists in Metabolic Homeostasis and Enables Rapid Recovery from Nonrespiring Dormancy . J. Bacteriol. 192, 1662–1670 (2010).
Santos, P., López-Vallejo, F. & Soto, C. Y. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Chem. Biol. Drug Des. 90, 175–187 (2017).
Koseki, Y. & Shunsuke, A. Computational Medicinal Chemistry for Rational Drug Design: Identification of Novel Chemical Structures with Potential Anti-Tuberculosis Activity. Curr. Top. Med. Chem. 14, 176–188 (2014).
Thomas G. Fundamentals of Medicinal Chemistry. John Wiley Sons, West Sussex 79–80 (2003).
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).
Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000).
Beutler, J. A. Natural Products as a Foundation for Drug Discovery. Curr. Protoc. Pharmacol. 46, (2009).
Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 12, 306–317 (2008).
Sheridan, R. P. & Venkataraghavan, R. New methods in computer-aided drug design. Acc. Chem. Res. 20, 322–329 (1987).
Hertzberg, R. P. & Pope, A. J. High-throughput screening: new technology for the 21st century. Curr. Opin. Chem. Biol. 4, 445—451 (2000).
Kapetanovic, I. M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem. Biol. Interact. 171, 165–176 (2006).
Macalino, S. J. Y., Gosu, V., Hong, S. & Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701 (2015).
Jorgensen, W. L. The many roles of computation in drug discovery. Science 303, 1813–1818 (2004).
Kier, L. B. & Hall, L. H. The Generation of Molecular Structures from a Graph-Based QSAR Equation. Quant. Struct. Relationships 12, 383–388 (1993).
Pandit, D., So, S.-S. & Sun, H. Enhancing Specificity and Sensitivity of Pharmacophore-Based Virtual Screening by Incorporating Chemical and Shape Features−A Case Study of HIV Protease Inhibitors. J. Chem. Inf. Model. 46, 1236–1244 (2006).
López-Vallejo, F., Medina Franco, J. L. & Castillo, R. Diseño de fármacos asistido por computadora. Educ. Química 17, (2006).
Ramírez, D. Computational Methods Applied to Rational Drug Design. Open Med. Chem. J. 10, 7–20 (2016).
Menchaca, T. M. Past, Present, and Future of Molecular Docking. IntechOpen 2, (2020).
Bowers, K. J. et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing 84 (2006).
Koes, D. R. & Camacho, C. J. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res. 40, 409–414 (2012).
Wolber, G. & Langer, T. LigandScout:  3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 45, 160–169 (2005).
Veber, D. F. et al. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 45, 2615–2623 (2002).
Schrödinger LLC. LigPrep. (2021).
Friesner, R. A. et al. Extra Precision Glide:  Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 49, 6177–6196 (2006).
Friesner, R. A. et al. Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 47, 1739–1749 (2004).
Jacobson, M. P. et al. A hierarchical approach to all-atom protein loop prediction. Proteins 55, 351–367 (2004).
Palomino, J.-C. et al. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46, 2720–2722 (2002).
Khalifa, R. A., Nasser, M. S., Gomaa, A. A., Osman, N. M. & Salem, H. M. Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt. J. Chest Dis. Tuberc. 62, 241–247 (2013).
Anandi, M., Mirtha, C., Françoise, P. & Carlos, P. J. Resazurin Microtiter Assay Plate Testing of Mycobacterium tuberculosis Susceptibilities to Second-Line Drugs: Rapid, Simple, and Inexpensive Method. Antimicrob. Agents Chemother. 47, 3616–3619 (2003).
Basu, J., Chattopadhyay, R., Kundu, M. & Chakrabarti, P. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 174, 4829 - 4832 (1992).
Santos, P., Gordillo, A., Osses, L., Salazar, L.-M. & Soto, C.-Y. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides 36, 121–128 (2012).
Johansson, F., Olbe, M., Sommarin, M. & Larsson, C. Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J. 7, 165–173 (1995).
Zor, T. & Selinger, Z. Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Anal. Biochem. 236, 302–308 (1996).
Cariani, L., Thomas, L., Brito, J. & del Castillo, J. . Bismuth citrate in the quantification of inorganic phosphate and its utility in the determination of membrane-bound phosphatases. Anal. Biochem. 324, 79–83 (2004).
León-Torres, A., Novoa-Aponte, L. & Soto, C. Y. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals 28, 713–724 (2015).
Kyaw, A., Maung-U, K. & Toe, T. Determination of inorganic phosphate with molybdate and Triton X-100 without reduction. Anal. Biochem. 145, 230–234 (1985).
Bers, D. M., Patton, C. W. & Nuccitelli, R. Chapter 1 - A Practical Guide to the Preparation of Ca2+ Buffers. in Calcium in Living Cells 99 1–26 (2010).
Fabiato, A. B. T.-M. in E. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods in Enzymology 157, 378–417 (1988).
Ayala-Torres, C., Novoa-Aponte, L. & Soto, C. Y. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na+ and K+ across the Mycobacterium smegmatis plasma membrane. Microbiol. Res. 176, 1–6 (2015).
Sikdar, R., Ganguly, U., Pal, P., Mazumder, B. & Sen, P. C. Biochemical characterization of a calcium ion stimulated-ATPase from goat spermatozoa. Mol. Cell. Biochem. 103, 121–130 (1991).
Nugraha, A. T. et al. Cytotoxic activity of flavonoid from local plant Eriocaulon cinereum R.B against MCF-7 breast cancer cells. J. Adv. Pharm. Technol. Res. 12, 425–429 (2021).
Muñoz, M. et al. Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence 10, 657–676 (2019).
Braga, A. A. et al. Antibacterial and Hemolytic Activity of a new Lectin Purified from the Seeds of Sterculia Foetida L. Appl. Biochem. Biotechnol. 175, 1689–1699 (2015).
Di Marino, D., D’Annessa, I., Coletta, A., Via, A. & Tramontano, A. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: A computational study. Proteins Struct. Funct. Bioinforma. 83, 564–574 (2015).
Rodríguez, Y. & Májeková, M. Structural Changes of Sarco/Endoplasmic Reticulum Ca2+-ATPase Induced by Rutin Arachidonate: A Molecular Dynamics Study. Biomolecules 10, (2020).
Sahakyan, H. Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. J. Comput. Aided. Mol. Des. 35, 731–736 (2021).
Gilson, M. K. & Zhou, H.-X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 36, 21–42 (2007).
Aparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D. & Hopper, W. Identification of Natural Compound Inhibitors for Multidrug Efflux Pumps of Escherichia coli and Pseudomonas aeruginosa Using In Silico High-Throughput Virtual Screening and In Vitro Validation. PLoS One 9, (2014).
Deng, Z., Chuaqui, C. & Singh, J. Structural Interaction Fingerprint (SIFt):  A Novel Method for Analyzing Three-Dimensional Protein−Ligand Binding Interactions. J. Med. Chem. 47, 337–344 (2004).
Abdelshaheed, M. M., Fawzy, I. M., El-Subbagh, H. I. & Youssef, K. M. Piperidine nucleus in the field of drug discovery. Futur. J. Pharm. Sci. 7, 188 (2021).
Kourounakis, A. P., Xanthopoulos, D. & Tzara, A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med. Res. Rev. 40, 709–752 (2020).
Gramec, D., Peterlin Mašič, L. & Sollner Dolenc, M. Bioactivation potential of thiophene-containing drugs. Chem. Res. Toxicol. 27, 1344–1358 (2014).
Heinrichs, M. T. et al. Mycobacterium tuberculosis Strains H37ra and H37rv have equivalent minimum inhibitory concentrations to most antituberculosis drugs. Int. J. mycobacteriology 7, 156–161 (2018).
Bemer-Melchior, P., Bryskier, A. & Drugeon, H. B. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J. Antimicrob. Chemother. 46, 571–576 (2000).
Suo, J., Chang, C. E., Lin, T. P. & Heifets, L. B. Minimal inhibitory concentrations of isoniazid, rifampin, ethambutol, and streptomycin against Mycobacterium tuberculosis strains isolated before treatment of patients in Taiwan. Am. Rev. Respir. Dis. 138, 999–1001 (1988).
Vilchèze, C. Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. Applied Sciences 10, (2020).
Chen, P., Gearhart, J., Protopopova, M., Einck, L. & Nacy, C. A. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J. Antimicrob. Chemother. 58, 332–337 (2006).
Salomon, J. J. et al. Biopharmaceutical in vitro characterization of CPZEN-45, a drug candidate for inhalation therapy of tuberculosis. Ther. Deliv. 4, 915–923 (2013).
Monalisa, C. et al. 1,4-Azaindole, a Potential Drug Candidate for Treatment of Tuberculosis. Antimicrob. Agents Chemother. 58, 5325–5331 (2014).
Watkins, W. M. et al. Effectiveness of amodiaquine as treatment for chloroquine-resistant plasmodium falciparum infections in kenya. Lancet 323, 357–359 (1984).
Wongsrichanalai, C. et al. In vitro susceptibility of Plasmodium falciparum isolates in Vietnam to artemisinin derivatives and other antimalarials. Acta Trop. 63, 151–158 (1997).
Labrador, V., Fernández Freire, P., Pérez Martín, J. M. & Hazen, M. J. Cytotoxicity of butylated hydroxyanisole in Vero cells. Cell Biol. Toxicol. 23, 189–199 (2007).
Othmen, Z. O.-B., Golli, E. El, Abid-Essefi, S. & Bacha, H. Cytotoxicity effects induced by Zearalenone metabolites, α Zearalenol and β Zearalenol, on cultured Vero cells. Toxicology 252, 72–77 (2008).
Ge, F. et al. In vitro synergistic interactions of oleanolic acid in combination with isoniazid, rifampicin or ethambutol against Mycobacterium tuberculosis. J. Med. Microbiol. 59, 567–572 (2010).
Mohyeldin, S. M., Mehanna, M. M. & Elgindy, N. A. The relevancy of controlled nanocrystallization on rifampicin characteristics and cytotoxicity. Int. J. Nanomedicine 11, 2209–2222 (2016).
Smitha, K. T., Nisha, N., Maya, S., Biswas, R. & Jayakumar, R. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. Int. J. Biol. Macromol. 74, 36–43 (2015).
International Standard Organization. ISO 10993-5:2009 Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 34 (2009).
Clara, A.-P. et al. Synergy between Circular Bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 62, (2022).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 88 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82682/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82682/2/1118558029.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82682/3/1118558029.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
b5b6135f1fef2b09e8c3ed47c68c4ee2
384b8d42cf741d4c6a16855dbbd14d6d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089616100163584
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Soto Ospina, Carlos Yesida5b5bbad5c61bb4a64f522a1f05590adLópez Vallejo, Fabián Harveyded3062059fd87d5db691f0ac84dde83Varón Vega, Henry Andrés3abea2eb4098cf0c003acce5c2dc560aBioquímica y Biología Molecular de las Micobacterias2022-11-10T20:03:28Z2022-11-10T20:03:28Z2022-09-13https://repositorio.unal.edu.co/handle/unal/82682Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficasLa aparición de cepas de Mycobacterium tuberculosis (Mtb), multirresistente y extremadamente resistente a los fármacos, y la coinfección con el virus de inmunodeficiencia humana (VIH), han aumentado dramáticamente la mortalidad por tuberculosis (TB) en el mundo. Esta situación obliga a la necesidad de encontrar dianas terapéuticas alternativas y la identificación de nuevos fármacos más efectivos contra la TB. En este sentido, las proteínas de membrana ATPasas tipo P, podrían ser blancos relevantes, toda vez que se conoce son relevantes en la homeostasis iónica y en la supervivencia de Mtb durante la infección. CtpF, una Ca2+-ATPasa de membrana plasmática, es una proteína que se activa en condiciones de hipoxia, estrés oxidativo e infección, sugiriendo qué este transportador hace parte de las estrategias usadas por el bacilo tuberculoso para evadir la respuesta inmune. Considerando la importancia de CtpF en la viabilidad del bacilo tuberculoso, en el presente trabajo se planteó la búsqueda de nuevos compuestos con potencial actividad inhibitoria del transporte de Ca2+ mediado por CtpF. En el presente trabajo se partió del análisis in silico de los modos de unión y las interacciones con los residuos funcionalmente activos entre CtpF y el ácido ciclopiazónico (CPA, un reconocido inhibidor de la actividad Ca2+ ATPasa en eucariotas) además de tres compuestos adicionales que en un estudio previo mostraron inhibición del crecimiento de Mtb y de la actividad ATPasa mediada por CtpF. Para la identificación de los nuevos inhibidores se llevó a cabo un cribado virtual basado en diferentes métodos quimioinformáticos que incluyeron: dinámica molecular, modelado del farmacóforo, huellas digitales moleculares, acoplamiento molecular automatizado y cálculos de energía de libre de unión. La estrategia propuesta en este trabajo permitió identificar once compuestos con potencial actividad inhibitoria de CtpF, los que se probaron in vitro. Ensayos de concentración mínima inhibitoria (CMI) permitieron seleccionar cuatro nuevos inhibidores del crecimiento de Mtb (ZINC57418826, ZINC12547355, ZINC09731847 y ZINC04030361). Experimentos para determinar el efecto de dos de estos compuestos sobre la actividad Ca2+-ATPasa de vesículas de membrana, mostraron que los ligandos ZINC09731847 (IC50 = 7,6 μM) y ZINC04030361 (IC50 = 3,3 μM) inhiben de manera efectiva la actividad de CtpF en membrana plasmática. Los resultados de CMI (25,0 μg/mL) actividad Ca2+-ATPasa, actividad citotóxica (27,2, %) sobre células vero y hemólisis sobre glóbulos rojos humanos (0,2 %), ayudaron a seleccionar el compuesto ZINC04030361 como el candidato más activo contra la ATPasa CtpF de membrana plasmática. Los resultados obtenidos en el presente trabajo representan un avance en la búsqueda y desarrollo de nuevos compuestos anti-TB dirigidos a dianas alternativas, como son las proteínas de membrana involucradas en la homeóstasis iónica de Mtb. (Texto tomado de la fuente)The appearance of multidrug-resistant and extremely drug-resistant Mycobacterium tuberculosis (Mtb) strains, and co-infection with the human immunodeficiency virus (HIV), have dramatically increased mortality from tuberculosis (TB) in the world. This situation forces the need to find alternative therapeutic targets and the identification of new and more effective drugs against TB. In this way, P-type ATPase membrane proteins are known to be relevant in ionic homeostasis and in the survival of Mtb during infection. CtpF, a Ca2+-ATPase, is a protein whose encoding gene is activated under conditions of hypoxia, oxidative stress, and infection, suggesting that this transporter is part of the strategies used by the tubercle bacillus to evade the immune response. Considering the importance of CtpF in the viability of the tubercle bacillus, was proposed in the present work the search for new compounds with potential inhibitory activity of Ca2+ transport mediated by CtpF. In the present work, we started from the in silico analysis of the binding modes and the interactions with the functionally active residues between CtpF and cyclopiazonic acid (CPA, a recognized inhibitor of Ca2+ ATPase activity in eukaryotes) and three additional compounds, which in a previous study showed inhibition of Mtb growth, as well as of CtpF mediated ATPase activity. For the identification of the new inhibitors, a virtual screening was carried out based on different chemoinformatic methods that included: molecular dynamics, pharmacophore modeling, molecular fingerprinting, automated molecular docking, and binding free energy calculations. The strategy proposed in this work allowed the identification of eleven compounds with potential CtpF inhibitory activity, these compounds were tested in vitro. Minimum inhibitory concentration (MIC) assays allowed the selection of four new Mtb growth inhibitors (ZINC57418826, ZINC12547355, ZINC09731847 and ZINC04030361). Experiments to determine the effect of two of these compounds on the Ca2+-ATPase activity of membrane vesicles, showed that the ligands ZINC09731847 (IC50 = 7,6 μM) and ZINC04030361 (IC50 = 3,3 μM) effectively inhibit CtpF activity. The results of MIC (25,0 μg/mL) Ca2+-ATPase activity, in addition to cytotoxic activity assays on Vero cells (27,2 %) and hemolysis on human red blood cells (0,2%), helped to select the compound ZINC04030361 as the most active candidate against the plasma membrane ATPase CtpF. Finally, the results obtained represent an advance in the search and development of new anti-TB compounds directed at alternative targets, such as the membrane proteins involved in the ionic homeostasis of Mtb.MaestríaAnti-TBQuimioinformáticaxviii, 88 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesMycobacteriumEfecto de los fármacosInmunologíaDrug effectsImmunologyTuberculosisFármaco-resistenciaATPasas tipo Pacoplamiento molecularCribado virtualCtpFBúsqueda de inhibidores del transportador de membrana CtpF de Mycobacterium tuberculosis mediante screening virtual basado en farmacóforo y determinación in vitro de la actividadSearch for Mycobacterium tuberculosis membrane transporter CtpF inhibitors by pharmacophore-based virtual screening and in vitro activity determinationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeRedColLaReferenciaWorld Health Organization. Global tuberculosis report 2021. https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (2021) doi:ISBN 978-92-4-003702-1.Pai, M. et al. Tuberculosis. Nat. Rev. Dis. Prim. 2, (2016).Dheda, K. et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 5, 291–360 (2017).Cassir, N., Rolain, J.-M. & Brouqui, P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Frontiers in Microbiology 5, (2014).Padilla-Benavides, T., Long, J. E., Raimunda, D., Sassetti, C. M. & Argüello, J. M. A Novel P1B-type Mn2+-transporting ATPase Is Required for Secreted Protein Metallation in Mycobacteria *. J. Biol. Chem. 288, 11334–11347 (2013).Gengenbacher, M. & Kaufmann, S. H. E. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 36, 514–532 (2012).Prosser, G. et al. The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect. 19, 177–192 (2017).Novoa-Aponte, L. et al. In silico identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex. BMC Struct. Biol. 12, 1–12 (2012).Ward, S. K., Abomoelak, B., Hoye, E. A., Steinberg, H. & Talaat, A. M. CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol. Microbiol. 77, 1096–1110 (2010).Raimunda, D., Long, J. E., Padilla-Benavides, T., Sassetti, C. M. & Argüello, J. M. Differential roles for the Co2+/Ni2+ transporting ATPases , CtpD and CtpJ , in Mycobacterium tuberculosis virulence. Mol. Microbiol. 91, 185–197 (2014).Maya-Hoyos, M., Rosales, C., Novoa-Aponte, L., Castillo, E. & Soto, C. Y. The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells. Heliyon 5, (2019).Novoa-Aponte, L. & Soto Ospina, C. Y. Mycobacterium tuberculosis P-Type ATPases: Possible Targets for Drug or Vaccine Development. Biomed Res. Int. (2014).Pulido, P. A., Novoa-Aponte, L., Villamil, N. & Soto, C. Y. The DosR Dormancy Regulator of Mycobacterium tuberculosis Stimulates the Na+/K+ and Ca2+ ATPase Activities in Plasma Membrane Vesicles of Mycobacteria. Curr. Microbiol. 69, 604–610 (2014).Krishna, S., Pulcini, S., Fatih, F. & Staines, H. Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol. 26, 517–523 (2010).Santos, P. et al. Identification of Mycobacterium tuberculosis CtpF as a target for designing new antituberculous compounds. Bioorg. Med. Chem. 28, (2020).Laursen, M. et al. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 284, 13513–13518 (2009).Bublitz, M., Morth, J. P. & Nissen, P. P-type ATPases at a glance. J. Cell Sci. 124, 2515–2519 (2011).O’Garra, A. et al. The Immune Response in Tuberculosis. Annu. Rev. Immunol. 31, 475–527 (2013).Cook, G. M. et al. Physiology of Mycobacteria. Adv. Microb. Physiol. 55, 81–319 (2009).Dulberger, C. L., Rubin, E. J. & Boutte, C. C. The mycobacterial cell envelope — a moving target. Nat. Rev. Microbiol. 18, 47–59 (2020).Daffé, M. The Global Architecture of the Mycobacterial Cell Envelope. The Mycobacterial Cell Envelope. 1–11 (2008)Ortalo-Magné, A. et al. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141, 1609–1620 (1995).Daffé, M. & Draper, P. The Envelope Layers of Mycobacteria with Reference to their Pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1997).Knechel, N. A. Tuberculosis: pathophysiology, clinical features, and diagnosis. Crit. Care Nurse 29, 34–43 (2009).Jackson, M. The mycobacterial cell envelope-lipids. Cold Spring Harb. Perspect. Med. 4, (2014).Rinder, H., Mieskes, K. T. & Löscher, T. Heteroresistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 5, 339–345 (2001).Ernst, J. D. The immunological life cycle of tuberculosis. Nat. Rev. Immunol. 12, 581–591 (2012).Ehrt, S., Schnappinger, D. & Rhee, K. Y. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat. Rev. Microbiol. 16, 496–507 (2018).Via, L. E. et al. Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates. Infect. Immun. 76, 2333–2340 (2008).Singh, R. et al. Recent updates on drug resistance in Mycobacterium tuberculosis. J. Appl. Microbiol. 128, 1547–1567 (2020).Koul, A., Arnoult, E., Lounis, N., Guillemont, J. & Andries, K. The challenge of new drug discovery for tuberculosis. Nature 469, 483–490 (2011).Horsburgh, C. R., Barry, C. E. & Lange, C. Treatment of Tuberculosis. N. Engl. J. Med. 373, 2149–2160 (2015).Prestinaci, F., Pezzotti, P. & Pantosti, A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health 109, 309–318 (2015).Zumla, A. I. et al. New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet. Infect. Dis. 14, 327–340 (2014).Guo, H. et al. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline. Nature 589, 143–147 (2021).Lodish, H. et al. Molecular Cell Biology. (2016).Nelson, D. L. & Michael, C. Lehninger Principles of Biochemistry. (2017).Alberts, B. et al. Molecular Biology of the Cell. (2015).Yatime, L. et al. P-type ATPases as drug targets: Tools for medicine and science. Biochim. Biophys. Acta - Bioenerg. 1787, 207–220 (2009).Saffioti, N. A. et al. E2P-like states of plasma membrane Ca2+‑ATPase characterization of vanadate and fluoride-stabilized phosphoenzyme analogues. Biochim. Biophys. Acta - Biomembr. 1861, 366–379 (2019).Palmgren, M. G. & Nissen, P. P-Type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).Wang, K. et al. Structure and mechanism of Zn2+-transporting P-type ATPases. Nature 514, 518–522 (2014).Hu, G.-B., Rice, W. J., Dröse, S., Altendorf, K. & Stokes, D. L. Three-dimensional structure of the KdpFABC complex of Escherichia coli by electron tomography of two-dimensional crystals. J. Struct. Biol. 161, 411–418 (2008).Skou, J. C. The Identification of the Sodium–Potassium Pump (Nobel Lecture). Angew. Chemie Int. Ed. 37, 2320–2328 (1998).Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).Lopez-Marques, R. L., Theorin, L., Palmgren, M. G. & Pomorski, T. G. P4-ATPases: lipid flippases in cell membranes. Pflügers Arch. - Eur. J. Physiol. 466, 1227–1240 (2014).León-Torres, A., Novoa-Aponte, L. & Soto, C. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals 28, (2015).López, M., Quitian, L.-V., Calderón, M.-N. & Soto, C.-Y. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch. Microbiol. 200, 483–492 (2018).Botella, H. et al. Mycobacterial P1-Type ATPases Mediate Resistance to Zinc Poisoning in Human Macrophages. Cell Host Microbe 10, 248–259 (2011).Novoa Aponte, L. Potencial de las ATPasas tipo P como dianas terapéuticas o en el diseño de mutantes atenuados de Mycobacterium tuberculosis. Universidad Nacional de Colombia (2017).Primeau, J. O., Armanious, G. P., Fisher, M. E. & Young, H. S. The SarcoEndoplasmic Reticulum Calcium ATPase BT - Membrane Protein Complexes: Structure and Function. Harris, J. R. & Boekema, E. 229–258 (2018).Musgaard, M., Thøgersen, L., Schiøtt, B. & Tajkhorshid, E. Tracing Cytoplasmic Ca2+ Ion and Water Access Points in the Ca2+-ATPase. Biophys. J. 102, 268–277 (2012).Chourasia, M. & Sastry, G. N. The nucleotide, inhibitor, and cation binding sites of P-type II ATPases. Chem. Biol. Drug Des. 79, 617–627 (2012).Seidler, N. W., Jona, I., Vegh, M. & Martonosi, A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816–17823 (1989).Moncoq, K., Trieber, C. A. & Young, H. S. The Molecular Basis for Cyclopiazonic Acid Inhibition of the Sarcoplasmic Reticulum Calcium Pump. J. Biol. Chem. 282, 9748–9757 (2007).Park, H.-D. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol. 48, 833–843 (2003).L., L. R. et al. The Mycobacterium tuberculosis DosR Regulon Assists in Metabolic Homeostasis and Enables Rapid Recovery from Nonrespiring Dormancy . J. Bacteriol. 192, 1662–1670 (2010).Santos, P., López-Vallejo, F. & Soto, C. Y. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Chem. Biol. Drug Des. 90, 175–187 (2017).Koseki, Y. & Shunsuke, A. Computational Medicinal Chemistry for Rational Drug Design: Identification of Novel Chemical Structures with Potential Anti-Tuberculosis Activity. Curr. Top. Med. Chem. 14, 176–188 (2014).Thomas G. Fundamentals of Medicinal Chemistry. John Wiley Sons, West Sussex 79–80 (2003).Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000).Beutler, J. A. Natural Products as a Foundation for Drug Discovery. Curr. Protoc. Pharmacol. 46, (2009).Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 12, 306–317 (2008).Sheridan, R. P. & Venkataraghavan, R. New methods in computer-aided drug design. Acc. Chem. Res. 20, 322–329 (1987).Hertzberg, R. P. & Pope, A. J. High-throughput screening: new technology for the 21st century. Curr. Opin. Chem. Biol. 4, 445—451 (2000).Kapetanovic, I. M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem. Biol. Interact. 171, 165–176 (2006).Macalino, S. J. Y., Gosu, V., Hong, S. & Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. 38, 1686–1701 (2015).Jorgensen, W. L. The many roles of computation in drug discovery. Science 303, 1813–1818 (2004).Kier, L. B. & Hall, L. H. The Generation of Molecular Structures from a Graph-Based QSAR Equation. Quant. Struct. Relationships 12, 383–388 (1993).Pandit, D., So, S.-S. & Sun, H. Enhancing Specificity and Sensitivity of Pharmacophore-Based Virtual Screening by Incorporating Chemical and Shape Features−A Case Study of HIV Protease Inhibitors. J. Chem. Inf. Model. 46, 1236–1244 (2006).López-Vallejo, F., Medina Franco, J. L. & Castillo, R. Diseño de fármacos asistido por computadora. Educ. Química 17, (2006).Ramírez, D. Computational Methods Applied to Rational Drug Design. Open Med. Chem. J. 10, 7–20 (2016).Menchaca, T. M. Past, Present, and Future of Molecular Docking. IntechOpen 2, (2020).Bowers, K. J. et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing 84 (2006).Koes, D. R. & Camacho, C. J. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res. 40, 409–414 (2012).Wolber, G. & Langer, T. LigandScout:  3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 45, 160–169 (2005).Veber, D. F. et al. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 45, 2615–2623 (2002).Schrödinger LLC. LigPrep. (2021).Friesner, R. A. et al. Extra Precision Glide:  Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 49, 6177–6196 (2006).Friesner, R. A. et al. Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 47, 1739–1749 (2004).Jacobson, M. P. et al. A hierarchical approach to all-atom protein loop prediction. Proteins 55, 351–367 (2004).Palomino, J.-C. et al. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46, 2720–2722 (2002).Khalifa, R. A., Nasser, M. S., Gomaa, A. A., Osman, N. M. & Salem, H. M. Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt. J. Chest Dis. Tuberc. 62, 241–247 (2013).Anandi, M., Mirtha, C., Françoise, P. & Carlos, P. J. Resazurin Microtiter Assay Plate Testing of Mycobacterium tuberculosis Susceptibilities to Second-Line Drugs: Rapid, Simple, and Inexpensive Method. Antimicrob. Agents Chemother. 47, 3616–3619 (2003).Basu, J., Chattopadhyay, R., Kundu, M. & Chakrabarti, P. Purification and partial characterization of a penicillin-binding protein from Mycobacterium smegmatis. J. Bacteriol. 174, 4829 - 4832 (1992).Santos, P., Gordillo, A., Osses, L., Salazar, L.-M. & Soto, C.-Y. Effect of antimicrobial peptides on ATPase activity and proton pumping in plasma membrane vesicles obtained from mycobacteria. Peptides 36, 121–128 (2012).Johansson, F., Olbe, M., Sommarin, M. & Larsson, C. Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J. 7, 165–173 (1995).Zor, T. & Selinger, Z. Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Anal. Biochem. 236, 302–308 (1996).Cariani, L., Thomas, L., Brito, J. & del Castillo, J. . Bismuth citrate in the quantification of inorganic phosphate and its utility in the determination of membrane-bound phosphatases. Anal. Biochem. 324, 79–83 (2004).León-Torres, A., Novoa-Aponte, L. & Soto, C. Y. CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. BioMetals 28, 713–724 (2015).Kyaw, A., Maung-U, K. & Toe, T. Determination of inorganic phosphate with molybdate and Triton X-100 without reduction. Anal. Biochem. 145, 230–234 (1985).Bers, D. M., Patton, C. W. & Nuccitelli, R. Chapter 1 - A Practical Guide to the Preparation of Ca2+ Buffers. in Calcium in Living Cells 99 1–26 (2010).Fabiato, A. B. T.-M. in E. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods in Enzymology 157, 378–417 (1988).Ayala-Torres, C., Novoa-Aponte, L. & Soto, C. Y. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na+ and K+ across the Mycobacterium smegmatis plasma membrane. Microbiol. Res. 176, 1–6 (2015).Sikdar, R., Ganguly, U., Pal, P., Mazumder, B. & Sen, P. C. Biochemical characterization of a calcium ion stimulated-ATPase from goat spermatozoa. Mol. Cell. Biochem. 103, 121–130 (1991).Nugraha, A. T. et al. Cytotoxic activity of flavonoid from local plant Eriocaulon cinereum R.B against MCF-7 breast cancer cells. J. Adv. Pharm. Technol. Res. 12, 425–429 (2021).Muñoz, M. et al. Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence 10, 657–676 (2019).Braga, A. A. et al. Antibacterial and Hemolytic Activity of a new Lectin Purified from the Seeds of Sterculia Foetida L. Appl. Biochem. Biotechnol. 175, 1689–1699 (2015).Di Marino, D., D’Annessa, I., Coletta, A., Via, A. & Tramontano, A. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: A computational study. Proteins Struct. Funct. Bioinforma. 83, 564–574 (2015).Rodríguez, Y. & Májeková, M. Structural Changes of Sarco/Endoplasmic Reticulum Ca2+-ATPase Induced by Rutin Arachidonate: A Molecular Dynamics Study. Biomolecules 10, (2020).Sahakyan, H. Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. J. Comput. Aided. Mol. Des. 35, 731–736 (2021).Gilson, M. K. & Zhou, H.-X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 36, 21–42 (2007).Aparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D. & Hopper, W. Identification of Natural Compound Inhibitors for Multidrug Efflux Pumps of Escherichia coli and Pseudomonas aeruginosa Using In Silico High-Throughput Virtual Screening and In Vitro Validation. PLoS One 9, (2014).Deng, Z., Chuaqui, C. & Singh, J. Structural Interaction Fingerprint (SIFt):  A Novel Method for Analyzing Three-Dimensional Protein−Ligand Binding Interactions. J. Med. Chem. 47, 337–344 (2004).Abdelshaheed, M. M., Fawzy, I. M., El-Subbagh, H. I. & Youssef, K. M. Piperidine nucleus in the field of drug discovery. Futur. J. Pharm. Sci. 7, 188 (2021).Kourounakis, A. P., Xanthopoulos, D. & Tzara, A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med. Res. Rev. 40, 709–752 (2020).Gramec, D., Peterlin Mašič, L. & Sollner Dolenc, M. Bioactivation potential of thiophene-containing drugs. Chem. Res. Toxicol. 27, 1344–1358 (2014).Heinrichs, M. T. et al. Mycobacterium tuberculosis Strains H37ra and H37rv have equivalent minimum inhibitory concentrations to most antituberculosis drugs. Int. J. mycobacteriology 7, 156–161 (2018).Bemer-Melchior, P., Bryskier, A. & Drugeon, H. B. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J. Antimicrob. Chemother. 46, 571–576 (2000).Suo, J., Chang, C. E., Lin, T. P. & Heifets, L. B. Minimal inhibitory concentrations of isoniazid, rifampin, ethambutol, and streptomycin against Mycobacterium tuberculosis strains isolated before treatment of patients in Taiwan. Am. Rev. Respir. Dis. 138, 999–1001 (1988).Vilchèze, C. Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. Applied Sciences 10, (2020).Chen, P., Gearhart, J., Protopopova, M., Einck, L. & Nacy, C. A. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J. Antimicrob. Chemother. 58, 332–337 (2006).Salomon, J. J. et al. Biopharmaceutical in vitro characterization of CPZEN-45, a drug candidate for inhalation therapy of tuberculosis. Ther. Deliv. 4, 915–923 (2013).Monalisa, C. et al. 1,4-Azaindole, a Potential Drug Candidate for Treatment of Tuberculosis. Antimicrob. Agents Chemother. 58, 5325–5331 (2014).Watkins, W. M. et al. Effectiveness of amodiaquine as treatment for chloroquine-resistant plasmodium falciparum infections in kenya. Lancet 323, 357–359 (1984).Wongsrichanalai, C. et al. In vitro susceptibility of Plasmodium falciparum isolates in Vietnam to artemisinin derivatives and other antimalarials. Acta Trop. 63, 151–158 (1997).Labrador, V., Fernández Freire, P., Pérez Martín, J. M. & Hazen, M. J. Cytotoxicity of butylated hydroxyanisole in Vero cells. Cell Biol. Toxicol. 23, 189–199 (2007).Othmen, Z. O.-B., Golli, E. El, Abid-Essefi, S. & Bacha, H. Cytotoxicity effects induced by Zearalenone metabolites, α Zearalenol and β Zearalenol, on cultured Vero cells. Toxicology 252, 72–77 (2008).Ge, F. et al. In vitro synergistic interactions of oleanolic acid in combination with isoniazid, rifampicin or ethambutol against Mycobacterium tuberculosis. J. Med. Microbiol. 59, 567–572 (2010).Mohyeldin, S. M., Mehanna, M. M. & Elgindy, N. A. The relevancy of controlled nanocrystallization on rifampicin characteristics and cytotoxicity. Int. J. Nanomedicine 11, 2209–2222 (2016).Smitha, K. T., Nisha, N., Maya, S., Biswas, R. & Jayakumar, R. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. Int. J. Biol. Macromol. 74, 36–43 (2015).International Standard Organization. ISO 10993-5:2009 Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 34 (2009).Clara, A.-P. et al. Synergy between Circular Bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 62, (2022).Bioquímica y Biología Molecular de las MicobacteriasEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82682/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1118558029.2022.pdf1118558029.2022.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf2007232https://repositorio.unal.edu.co/bitstream/unal/82682/2/1118558029.2022.pdfb5b6135f1fef2b09e8c3ed47c68c4ee2MD52THUMBNAIL1118558029.2022.pdf.jpg1118558029.2022.pdf.jpgGenerated Thumbnailimage/jpeg4672https://repositorio.unal.edu.co/bitstream/unal/82682/3/1118558029.2022.pdf.jpg384b8d42cf741d4c6a16855dbbd14d6dMD53unal/82682oai:repositorio.unal.edu.co:unal/826822023-08-10 23:04:27.919Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=