On the Theory of Linear Rank Inequalities

Abstract. In this work, we study linear polymatroids and linear rank inequalities. We focus on the problem of determining if the Common Information Method can generate all the linear inequalities satisfied by all linear polymatroids. It is well known that there exist deep connections between the The...

Full description

Autores:
Mejía Moreno, Carolina
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/56999
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/56999
http://bdigital.unal.edu.co/53062/
Palabra clave:
51 Matemáticas / Mathematics
Linear polymatroids
Linear rank inequalities
Secret sharing
Linear schemes
Abelian polymatroids
Matroids
Polimatroides lineales
Desigualdades rango lineales
Repartición de Secretos
Esquemas lineales
Polimatroides abelianos
Matroides
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_087b4151f8f83d19df846f6086efc4d1
oai_identifier_str oai:repositorio.unal.edu.co:unal/56999
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarria Zapata, HumbertoMejía Moreno, Carolinad14ca538-51e5-4733-b7f2-6db3c9bbdcb93002019-07-02T12:18:54Z2019-07-02T12:18:54Z2016-06-09https://repositorio.unal.edu.co/handle/unal/56999http://bdigital.unal.edu.co/53062/Abstract. In this work, we study linear polymatroids and linear rank inequalities. We focus on the problem of determining if the Common Information Method can generate all the linear inequalities satisfied by all linear polymatroids. It is well known that there exist deep connections between the Theory of Linear Rank Inequalities and Linear Secret Sharing. We study those connections. First, we study the problem of estimating the information rates that can be achieved by Linear Secret Sharing. Then, we arrive to the novel notion of Abelian Secret Sharing. We prove that if Abelian Secret Sharing outperforms Linear Secret Sharing, then the Common Information Method is incomplete. Therefore, we focus on the problem of comparing the performances of abelian and linear schemes. We show that the last problem is related to the Representation Theory of Matroids.En este trabajo estudiamos los polimatroides lineales y las desigualdades rango lineales. Nos enfocamos en el problema de determinar si elMétodo de la Información Común puede generar todas las desigualdades rango lineales, que son las desigualdades satisfechas por todos los polimatroides lineales. Se sabe que existen conexiones profundas entre la Teoría de desigualdades rango lineales y el Problema de Repartición Lineal de Secretos. En este texto estudiamos estas conexiones. Primero, estudiamos el problema de estimar las ratas de información que pueden ser alcanzadas por soluciones lineales al Problema de Repartición de Secretos. Luego, llegamos a la nueva noción de Repartición Abeliana de Secretos. Probamos que si las soluciones abelianas al Problema de Repartición de Secretos superan a las soluciones lineales, entonces el Método de la Información Común es incompleto. Por lo tanto, nos enfocamos en el problema de comparar las representaciones de esquemas abelianos y lineales. Nosotros probamos que este último problema está relacionado con la Teoría de Representación de Matroides.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas MatemáticasMatemáticasMejía Moreno, Carolina (2016) On the Theory of Linear Rank Inequalities. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.51 Matemáticas / MathematicsLinear polymatroidsLinear rank inequalitiesSecret sharingLinear schemesAbelian polymatroidsMatroidsPolimatroides linealesDesigualdades rango linealesRepartición de SecretosEsquemas linealesPolimatroides abelianosMatroidesOn the Theory of Linear Rank InequalitiesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINALcarolinamejiamoreno.2016.pdfapplication/pdf526869https://repositorio.unal.edu.co/bitstream/unal/56999/1/carolinamejiamoreno.2016.pdf061f669f3426744fd75809bc759c229cMD51THUMBNAILcarolinamejiamoreno.2016.pdf.jpgcarolinamejiamoreno.2016.pdf.jpgGenerated Thumbnailimage/jpeg3744https://repositorio.unal.edu.co/bitstream/unal/56999/2/carolinamejiamoreno.2016.pdf.jpg4d3b13bce494e6ce72d567ad4f92dfb1MD52unal/56999oai:repositorio.unal.edu.co:unal/569992024-03-25 23:08:03.15Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv On the Theory of Linear Rank Inequalities
title On the Theory of Linear Rank Inequalities
spellingShingle On the Theory of Linear Rank Inequalities
51 Matemáticas / Mathematics
Linear polymatroids
Linear rank inequalities
Secret sharing
Linear schemes
Abelian polymatroids
Matroids
Polimatroides lineales
Desigualdades rango lineales
Repartición de Secretos
Esquemas lineales
Polimatroides abelianos
Matroides
title_short On the Theory of Linear Rank Inequalities
title_full On the Theory of Linear Rank Inequalities
title_fullStr On the Theory of Linear Rank Inequalities
title_full_unstemmed On the Theory of Linear Rank Inequalities
title_sort On the Theory of Linear Rank Inequalities
dc.creator.fl_str_mv Mejía Moreno, Carolina
dc.contributor.author.spa.fl_str_mv Mejía Moreno, Carolina
dc.contributor.spa.fl_str_mv Sarria Zapata, Humberto
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Linear polymatroids
Linear rank inequalities
Secret sharing
Linear schemes
Abelian polymatroids
Matroids
Polimatroides lineales
Desigualdades rango lineales
Repartición de Secretos
Esquemas lineales
Polimatroides abelianos
Matroides
dc.subject.proposal.spa.fl_str_mv Linear polymatroids
Linear rank inequalities
Secret sharing
Linear schemes
Abelian polymatroids
Matroids
Polimatroides lineales
Desigualdades rango lineales
Repartición de Secretos
Esquemas lineales
Polimatroides abelianos
Matroides
description Abstract. In this work, we study linear polymatroids and linear rank inequalities. We focus on the problem of determining if the Common Information Method can generate all the linear inequalities satisfied by all linear polymatroids. It is well known that there exist deep connections between the Theory of Linear Rank Inequalities and Linear Secret Sharing. We study those connections. First, we study the problem of estimating the information rates that can be achieved by Linear Secret Sharing. Then, we arrive to the novel notion of Abelian Secret Sharing. We prove that if Abelian Secret Sharing outperforms Linear Secret Sharing, then the Common Information Method is incomplete. Therefore, we focus on the problem of comparing the performances of abelian and linear schemes. We show that the last problem is related to the Representation Theory of Matroids.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-06-09
dc.date.accessioned.spa.fl_str_mv 2019-07-02T12:18:54Z
dc.date.available.spa.fl_str_mv 2019-07-02T12:18:54Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/56999
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/53062/
url https://repositorio.unal.edu.co/handle/unal/56999
http://bdigital.unal.edu.co/53062/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas Matemáticas
Matemáticas
dc.relation.references.spa.fl_str_mv Mejía Moreno, Carolina (2016) On the Theory of Linear Rank Inequalities. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/56999/1/carolinamejiamoreno.2016.pdf
https://repositorio.unal.edu.co/bitstream/unal/56999/2/carolinamejiamoreno.2016.pdf.jpg
bitstream.checksum.fl_str_mv 061f669f3426744fd75809bc759c229c
4d3b13bce494e6ce72d567ad4f92dfb1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090206358274048