Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions

Ore extensions (introduced by Ore [33]) have been one of the most studied non-commutative structures in the last century. The skew polynomial rings (see Definition 1.1.1) are an Ore extensions that thanks to its similarity to the classical polynomial ring, currently seeks to “copy” the properties th...

Full description

Autores:
Suárez Gómez, Yésica Paola
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/63837
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/63837
http://bdigital.unal.edu.co/64407/
Palabra clave:
51 Matemáticas / Mathematics
PBW
Skew polynomial rings
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_084ca3e2bd5820b79d2fb84eddd94341
oai_identifier_str oai:repositorio.unal.edu.co:unal/63837
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes, ArmandoSuárez Gómez, Yésica Paola5ebb7be0-c959-4798-9118-525df18dcbfc3002019-07-02T22:12:04Z2019-07-02T22:12:04Z2018-01https://repositorio.unal.edu.co/handle/unal/63837http://bdigital.unal.edu.co/64407/Ore extensions (introduced by Ore [33]) have been one of the most studied non-commutative structures in the last century. The skew polynomial rings (see Definition 1.1.1) are an Ore extensions that thanks to its similarity to the classical polynomial ring, currently seeks to “copy” the properties that already have the classic polynomial ring such as Noetherianity, some homological properties, the characterization of ideals, and others. In particular, and as the first topic of interest in this work, Marks [26] examined an extreme situation for skew polynomial rings: he asked when every left (or right) ideal is two-sided. It is important to say that for an ordinary polynomial ring, this case can no occur unless the ring is commutative (i.e., an ordinary polynomial ring is one-sided duo only if it is commutative), as it was proved by Hirano, Hong, Kim and Park ([13], Lemma 3). This result was extended in [25], Lemma 3.3, and precisely, Marks [26] obtained further generalizations of these results: he showed that if a non-commutative Ore extension R[x; σ, δ] which is a duo ring on one side exists, then it has to be right duo, σ must be non-injective and δ 6= 0 ([26], Theorems 1 and 2). He also obtained a list of necessary conditions to guarantee that the Ore extension R[x; σ, δ] to be right duo. Nevertheless, Matczuk [28] proved that non-commutative skew polynomial ring which are right duo rings do exist and that the necessary conditions obtained by Marks are not sufficient for the skew polynomial ring to be right duo. Actually, Matczuk’s paper is one of the most important articles about the characterization of non-commutative rings which are duo rings.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de MatemáticasDepartamento de MatemáticasSuárez Gómez, Yésica Paola (2018) Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.51 Matemáticas / MathematicsPBWSkew polynomial ringsDuo, quasi-duo and ascending chain condition principal properties over skew PBW extensionsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALThesis Yesica.pdfapplication/pdf611482https://repositorio.unal.edu.co/bitstream/unal/63837/1/Thesis%20Yesica.pdf746fbb3ef5c565727cbeb76ede912d11MD51THUMBNAILThesis Yesica.pdf.jpgThesis Yesica.pdf.jpgGenerated Thumbnailimage/jpeg3244https://repositorio.unal.edu.co/bitstream/unal/63837/2/Thesis%20Yesica.pdf.jpgdee96d713046a72fdb5130b2f48896acMD52unal/63837oai:repositorio.unal.edu.co:unal/638372023-04-23 23:06:00.308Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions
title Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions
spellingShingle Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions
51 Matemáticas / Mathematics
PBW
Skew polynomial rings
title_short Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions
title_full Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions
title_fullStr Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions
title_full_unstemmed Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions
title_sort Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions
dc.creator.fl_str_mv Suárez Gómez, Yésica Paola
dc.contributor.author.spa.fl_str_mv Suárez Gómez, Yésica Paola
dc.contributor.spa.fl_str_mv Reyes, Armando
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
PBW
Skew polynomial rings
dc.subject.proposal.spa.fl_str_mv PBW
Skew polynomial rings
description Ore extensions (introduced by Ore [33]) have been one of the most studied non-commutative structures in the last century. The skew polynomial rings (see Definition 1.1.1) are an Ore extensions that thanks to its similarity to the classical polynomial ring, currently seeks to “copy” the properties that already have the classic polynomial ring such as Noetherianity, some homological properties, the characterization of ideals, and others. In particular, and as the first topic of interest in this work, Marks [26] examined an extreme situation for skew polynomial rings: he asked when every left (or right) ideal is two-sided. It is important to say that for an ordinary polynomial ring, this case can no occur unless the ring is commutative (i.e., an ordinary polynomial ring is one-sided duo only if it is commutative), as it was proved by Hirano, Hong, Kim and Park ([13], Lemma 3). This result was extended in [25], Lemma 3.3, and precisely, Marks [26] obtained further generalizations of these results: he showed that if a non-commutative Ore extension R[x; σ, δ] which is a duo ring on one side exists, then it has to be right duo, σ must be non-injective and δ 6= 0 ([26], Theorems 1 and 2). He also obtained a list of necessary conditions to guarantee that the Ore extension R[x; σ, δ] to be right duo. Nevertheless, Matczuk [28] proved that non-commutative skew polynomial ring which are right duo rings do exist and that the necessary conditions obtained by Marks are not sufficient for the skew polynomial ring to be right duo. Actually, Matczuk’s paper is one of the most important articles about the characterization of non-commutative rings which are duo rings.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T22:12:04Z
dc.date.available.spa.fl_str_mv 2019-07-02T22:12:04Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/63837
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/64407/
url https://repositorio.unal.edu.co/handle/unal/63837
http://bdigital.unal.edu.co/64407/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas
Departamento de Matemáticas
dc.relation.references.spa.fl_str_mv Suárez Gómez, Yésica Paola (2018) Duo, quasi-duo and ascending chain condition principal properties over skew PBW extensions. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/63837/1/Thesis%20Yesica.pdf
https://repositorio.unal.edu.co/bitstream/unal/63837/2/Thesis%20Yesica.pdf.jpg
bitstream.checksum.fl_str_mv 746fbb3ef5c565727cbeb76ede912d11
dee96d713046a72fdb5130b2f48896ac
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089457489412096