Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados

ilustraciones, diagramas, mapas, tablas

Autores:
Mejia Torres, Maria Camila
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82114
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82114
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
590 - Animales
Abejas - Enfermedades y plagas
Abejas sin aguijón
Bacterias cultivables
Disbiosis
Meliponinos
Patógeno
Deterioro
Stingless bees
Culturable bacteria
Dysbiosis
Meliponinae
Pathogen
Deterioration
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_07451502a4f0dae7b458987b4f5c8eee
oai_identifier_str oai:repositorio.unal.edu.co:unal/82114
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados
dc.title.translated.eng.fl_str_mv Relationship of the state of deterioration of colonies of meliponin bees Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) with their associated microorganisms
title Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados
spellingShingle Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados
570 - Biología::577 - Ecología
590 - Animales
Abejas - Enfermedades y plagas
Abejas sin aguijón
Bacterias cultivables
Disbiosis
Meliponinos
Patógeno
Deterioro
Stingless bees
Culturable bacteria
Dysbiosis
Meliponinae
Pathogen
Deterioration
title_short Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados
title_full Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados
title_fullStr Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados
title_full_unstemmed Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados
title_sort Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados
dc.creator.fl_str_mv Mejia Torres, Maria Camila
dc.contributor.advisor.none.fl_str_mv Ortiz Reyes, Adriana
Romero-Tabarez, Magally
dc.contributor.author.none.fl_str_mv Mejia Torres, Maria Camila
dc.contributor.researchgroup.spa.fl_str_mv Sabio Sustancias Activas y Biotecnologia
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
590 - Animales
topic 570 - Biología::577 - Ecología
590 - Animales
Abejas - Enfermedades y plagas
Abejas sin aguijón
Bacterias cultivables
Disbiosis
Meliponinos
Patógeno
Deterioro
Stingless bees
Culturable bacteria
Dysbiosis
Meliponinae
Pathogen
Deterioration
dc.subject.lemb.spa.fl_str_mv Abejas - Enfermedades y plagas
dc.subject.proposal.spa.fl_str_mv Abejas sin aguijón
Bacterias cultivables
Disbiosis
Meliponinos
Patógeno
Deterioro
dc.subject.proposal.eng.fl_str_mv Stingless bees
Culturable bacteria
Dysbiosis
Meliponinae
Pathogen
Deterioration
description ilustraciones, diagramas, mapas, tablas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-02-15
dc.date.accessioned.none.fl_str_mv 2022-08-25T19:42:42Z
dc.date.available.none.fl_str_mv 2022-08-25T19:42:42Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82114
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82114
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Michener, C. D. (2007). Tribe Meliponini. In The bees of the world (pp. 803–829). The John Hopckins University Press.
Miller, D. L., Smith, E. A., & Newton, I. L. G. (2020). A bacterial symbiont protects honey bees from fungal disease. BioRxiv, 812, 2020.01.21.914325. https://doi.org/10.1101/2020.01.21.914325
Mills, T. J. T. (2018). Diversity and bioactivity of microorganisms associated with Australian Stingless bee species (Issue August). The University of New South Wales.
Miorin, P. L., Levy, N. C., Custodio, A. R., Bretz, W. A., & Marcucci, M. C. (2003). Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. Journal of Applied Microbiology, 95(5), 913–920. https://doi.org/10.1046/j.1365-2672.2003.02050.x
Mohr, K. I., & Tebbe, C. C. (2006). Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology, 8(2), 258–272. https://doi.org/10.1111/j.1462-2920.2005.00893.x
Moran, N. A., Hansen, A. K., Powell, J. E., & Sabree, Z. L. (2012). Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE, 7(4), 1–10. https://doi.org/10.1371/journal.pone.0036393
Moran, N. A., & Sloan, D. B. (2015). The Hologenome Concept: Helpful or Hollow? PLoS Biology, 13(12), 1–10. https://doi.org/10.1371/journal.pbio.1002311
Motta, E. V. S., Raymann, K., & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10305–10310. https://doi.org/10.1073/pnas.1803880115
Moure, J. S. (1946). Contribuição para o conhecimento dos Meliponinae (Hym.,Apoidea). Rev. Entomol., 17(3), 437–443. http://moure.cria.org.br/catalogue?id=34161
Nafis, A., Elhidar, N., Oubaha, B., Samri, S. E., Niedermeyer, T., Ouhdouch, Y., Hassani, L., & Barakate, M. (2018). Screening for non-polyenic antifungal produced by actinobacteria from Moroccan habitats: Assessment of antimycin A19 production by Streptomyces albidoflavus AS25. International Journal of Molecular and Cellular Medicine, 7(2), 133–145. https://doi.org/10.22088/IJMCM.BUMS.7.2.133
Naiem, E. S., Hrassnigg, N., & Crailsheim, K. (1999). Nurse bees support the physiological development of young bees (Apis mellifera L.). Journal of Comparative Physiology - B Biochemical, Systemic, and Environmental Physiology, 169(4–5), 271–279. https://doi.org/10.1007/s003600050221
Nakamura, L. K. (2000). Phylogeny of Bacillus sphaericus- like organisms. International Journal of Systematic and Evolutionary Microbiology, 50(2000), 1715–1722
Naranjo, E. J., Dirzo, R., López, C., Jaime, A., Adrián, R. O., Gutiérrez-granados, G., Dirzo, R., Ballesté, A. M., Mandujano, C., Prieto, I., Manuel, H., Macías, H., & Mendoza, R. (2009). Impacto de los factores antropogénicos de afectación directa a las poblaciones silvestres de flora y fauna. Capital Natural de México, II(September 2019), 247–276.
Nates-Parra, G. (2001a). Guía para la cría y manejo de la abeja angelita. Convenio Andrés Bello. https://books.google.com.co/books?id=SLOMX2cfmcIC&printsec=frontcover&source =gbs_ge_summary_r&cad=0#v=onepage&q&f=false
Nates-Parra, G. (2001b). Las abejas sin aguijón (Hymenoptera: Apidae: Meliponini) de Colombia. Biota Colombiana, 2(3), 233–248. http://teca.fao.org/sites/default/files/comments/files/77-259-1-PB.pdf
Nates-Parra, G. (2005). Abejas corbiculadas de Colombia. Universidad Nacional de Colombia
Nates-Parra, G. (2009). Abejas silvestres y polinización. Manejo Integrado de Plagas y Agroecología ( Costa Rica ), N o . 7 5(Roubik 1995), 7–20.
Nates-Parra, G., & Lopera, A. V. (1989). Ciclo de desarrollo de Trigona (Tetragonisca) angustula, Latreille 1811 (Hymenoptera, Trigonini). Acta Biológica Colombiana, 1(5), 91–98.
Nates-Parra, G., Rodríguez-c, Á., & Vélez, E. D. (2006). Abejas sin aguijón (Hymenoptera: Apidae: Meliponini) en cementerios de la cordillera oriental de Colombia. Acta Biológica Colombiana, 11(1), 25–35.
Nates-Parra, G., & Rosso-Londoño, J. M. (2013). Diversidad de abejas sin aguijón (Hymenoptera : Meliponini) utilizadas en meliponicultura en Colombia. Acta Biológica Colombiana, 18(3), 415–425
Nates-Parra, G., & Roubik, D. W. (1990). Sympatry among Subspecies of Melipona favosa in Colombia and a Taxonomic Revision. Journal of the Kansas Entomological Society, 63(1), 200–203.
Ngalimat, M. S., Rahman, R. N. Z. R. A., Yusof, M. T., Syahir, A., & Sabri, S. (2019). Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ, 2019(8), 1–20. https://doi.org/10.7717/peerj.7478
Nishiwaki, H., Nakashima, K., Ishida, C., Kawamura, T., & Matsuda, K. (2007). Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by Bacillus sphaericus. Applied and Environmental Microbiology, 73(10), 3404–3411. https://doi.org/10.1128/AEM.00021-07
Nogueira-Neto. (1954). Notas bionômicas sôbre Meliponineos III – Sôbre a enxameagem (Hym. Apoidea). Arquivos Do Museu Nacional, 42, 419–452.
Nogueira-Neto, P. (1997). Vida e Criação de Abelhas Indígenas Sem Ferrão. Parma LTDA.
Nunes-Silva, P., Imperatriz-Fonseca, V. L., & Gonçalves, L. S. (2009). Hygienic behavior of the stingless bee Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Genetics and Molecular Research, 8(2), 649–654. https://doi.org/10.4238/vol8-2kerr026
Nunes-Silva, P., Piot, N., Meeus, I., Blochtein, B., & Smagghe, G. (2016). Absence of Leishmaniinae and Nosematidae in stingless bees. Scientific Reports, 6, 2–6. https://doi.org/10.1038/srep32547
O’Hara, C. M., Steigerwalt, A. G., Hill, B. C., Farmer, J. J., Fanning, G. R., & Brenner, D. J. (1989). Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as Enteric Group 75. Journal of Clinical Microbiology, 27(9), 2046– 2049
Olaitan, P. B., Adeleke, O. E., & Ola, I. O. (2007). Honey: A reservoir for microorganisms and an inhibitory agent for microbes. African Health Sciences, 7(3), 159–165. https://doi.org/10.5555/afhs.2007.7.3.159
Olaya, Y., Gutierrez, C., & Hernandez, C. (2014). Comparación entre la Calidad Microbiológica de Miel de Tetragonisca Angustula y de Apis Mellifera. Rev.Fac.Nal.Agr.Medellín 67, 2(MAY 2014), 754–756
Oliveira, R. de C., Nunes, F. D. M. F., Campos, A. P. S., de Vasconcelos, S. M., Roubik, D. W., Goulart, L. R., & Kerr, W. E. (2004). Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae,Trigonini) based on rapd markers. Genetics and Molecular Biology, 27(2), 181–186. https://doi.org/10.1590/S1415-47572004000200009
Olofsson, T. C., & Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 57(4), 356–363. https://doi.org/10.1007/s00284-008-9202-0
Otterstatter, M. C., Whidden, T. L., & Owen, R. E. (2002). Contrasting frequencies of parasitism and host mortality among phorid and conopid parasitoids of bumble-bees. Ecological Entomology, 27(2), 229–237. https://doi.org/10.1046/j.1365- 2311.2002.00403.x
Pailan, S., Gupta, D., Apte, S., Krishnamurthi, S., & Saha, P. (2015). Degradation of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural field in Burdwan, West Bengal, India. International Biodeterioration and Biodegradation, 103, 191–195. https://doi.org/10.1016/j.ibiod.2015.05.006
Palacios-López, O. A., González-Rangel, M. O., Rivera-Chavira, B. E., & Nevárez- Moorillón, G. V. (2011). El papel de los antimicrobianos en la estructura de las comunidades microbianas en la naturaleza. Tecnociencia Chihuahua, V(1), 1–8
Park, Y. G., Mun, B. G., Kang, S. M., Hussain, A., Shahzad, R., Seo, C. W., Kim, A. Y., Lee, S. U., Oh, K. Y., Lee, D. Y., Lee, I. J., & Yun, B. W. (2017). Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE, 12(3), 1–28. https://doi.org/10.1371/journal.pone.0173203
Paul, J., Sarkar, A., & Varma, A. (1986). In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut. Current Science, December, 710–714.
Pereira, K. de S., Meeus, I., & Smagghe, G. (2019). Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-40804-2
Pérez-pérez, E. M., Esthe Suarez, Peña-Vera, M. J., González, A. C., & Vit, P. (2013). Antioxidant activity and microorganisms in nest products of Tetragonisca Laboratorio de Biología Molecular , Facultad de Farmacia y Bioanálisis , Apiterapia y Bioactividad , Departamento Ciencia de los Alimentos , Facultad de Farmacia y Bioanálisis ,. In P. Vit & D. W. Roubik (Eds.), Stingless Bee Process Honey and Pollen in Cerumen Pots (pp. 1–8).
Porrini, M. P., Porrini, L. P., Garrido, P. M., de Melo e Silva Neto, C., Porrini, D. P., Muller, F., Nuñez, L. A., Alvarez, L., Iriarte, P. F., & Eguaras, M. J. (2017). Nosema ceranae in South American Native Stingless Bees and Social Wasp. Microbial Ecology, 74(4), 761–764. https://doi.org/10.1007/s00248-017-0975-1
Powell, J. E., Martinson, V. G., Urban-Mead, K., & Moran, N. A. (2014). Routes of acquisition of the gut microbiota of Apis mellifera. Applied and Environmental Microbiology, 80(23), 7378–7387. https://doi.org/10.1128/AEM.01861-14
Prado, S. S., Hung, K. Y., Daugherty, M. P., & Almeida, R. P. P. (2010). Indirect effects of temperature on stink bug fitness, via maintenance of gut-associated symbionts. Applied and Environmental Microbiology, 76(4), 1261–1266. https://doi.org/10.1128/AEM.02034-09
Praet, J., Parmentier, A., Schmid-hempel, R., Meeus, I., Smagghe, G., & Vandamme, P. (2018). Underestimated Bacterial Species Diversity Capable of Pathogen Inhibition. Environmental Microbiology, 20(1), 214–227. https://doi.org/10.1111/emi.13973
Priest, F. G., Goodfellow, M., Shute, L. A., & Berkeley, C. W. (1987). Bacillus amyloliquefaciens sp. nov. rev. International Journal of Systematic Bacteriology, 37(1), 69–71
Vit, P., & Pedro, S. R. M. (2013). Pot-Honey: A legacy of stingless bee. https://doi.org/10.1007/978-1-4614-4960-7
Vojvodic, S., Rehan, S. M., & Anderson, K. E. (2013). Microbial Gut Diversity of Africanized and European Honey Bee Larval Instars. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0072106
Voulgari-Kokota, A., Ankenbrand, M. J., Grimmer, G., Steffan-Dewenter, I., & Keller, A. (2019). Linking pollen foraging of megachilid bees to their nest bacterial microbiota. Ecology and Evolution, 9(18), 10788–10800. https://doi.org/10.1002/ece3.5599
Wang, L. T., Lee, F. L., Tai, C. J., & Kuo, H. P. (2008). Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. International Journal of Systematic and Evolutionary Microbiology, 58(3), 671–675. https://doi.org/10.1099/ijs.0.65191-0
Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, H. G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., ... Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(November), 560–565. https://doi.org/10.1038/nature06269
Watanabe, Y., Shinzato, N., & Fukatsu, T. (2003). Isolation of actinomycetes from termites’ guts. Bioscience, Biotechnology and Biochemistry, 67(8), 1797–1801. https://doi.org/10.1271/bbb.67.1797
Wei, G., Lai, Y., Wang, G., Chen, H., Li, F., & Wang, S. (2017). Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5994–5999. https://doi.org/10.1073/pnas.1703546114
Werner, W. (1933). Botanische Beschreibung haufiger am Buttersaureabbau beteiligter sporenbildender Bakterienspezies. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., 87, 446–475.
Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Rev Microbiol, 6(10), 741–751. https://doi.org/10.1038/nrmicro1969
Werren, John H. (2012). Symbionts provide pesticide detoxification. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8364–8365. https://doi.org/10.1073/pnas.1206194109
Wille, A. (1983). Biology of the Stingless Bees. Annual Review of Entomology, 28(1), 41– 64. https://doi.org/10.1146/annurev.en.28.010183.000353
Wong, A. C. N., Wang, Q. P., Morimoto, J., Senior, A. M., Lihoreau, M., Neely, G. G., Simpson, S. J., & Ponton, F. (2017). Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila. Current Biology, 27(15), 2397-2404.e4. https://doi.org/10.1016/j.cub.2017.07.022
Xavier, V. M. V. M., Message, D., Picanço, M. C., Bacci, L., Silva, G. A., & Da Silva Benevenute, J. (2010). Impact of botanical insecticides on indigenous stingless bees. Sociobiology, 56(3), 713–723
Xi-Biao, J., Sun, R.-J., Jian-Qing, Z., Zheng-Jun, X., Zhu, L., Quiang, W., & Xiao-Ying, Y. (2012). Isolation and identification of B altitudinis ZJ 186 from Marine Soil Samples and its antifungal activity against Magnaporthe oryzae. Current Research in Bacteriology, 5(1), 13–23.
Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., & Mcinroy, J. A. (2017). Biological Control of Meloidogyne incognita by Spore-forming Plant Growth- promoting Rhizobacteria on Cotton. 101(5), 774–784. https://doi.org/10.1094/PDIS- 09-16-1369-RE
Yaman, M., & Dem, E. (2016). Investigation of bacterial pathogens of Chrysomela ( Melasoma ) populi ( Coleoptera : Chrysomelidae ). 56(1), 77–83
Yang, J., Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038a
Yoon, J. H., Kim, I. G., Kang, K. H., Oh, T. K., & Park, Y. H. (2003). Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1297–1303. https://doi.org/10.1099/ijs.0.02365-0
Yoshiyama, M., & Kimura, K. (2009). Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology, 102(2), 91– 96. https://doi.org/10.1016/j.jip.2009.07.005
Yun, J. H., Roh, S. W., Whon, T. W., Jung, M. J., Kim, M. S., Park, D. S., Yoon, C., Nam, Y. Do, Kim, Y. J., Choi, J. H., Kim, J. Y., Shin, N. R., Kim, S. H., Lee, W. J., & Bae, J. W. (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 80(17), 5254–5264. https://doi.org/10.1128/AEM.01226-14
Zheng, H., Nishida, A., Kwong, W. K., Koch, H., Engel, P., Steele, M. I., & Moran, N. A. (2016). Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio, 7(6), 1–9. https://doi.org/10.1128/mBio.01326-16
Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C., & Moran, N. A. (2017). Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences, 114(18), 4775–4780. https://doi.org/10.1073/pnas.1701819114
Zheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S., & Moran, N. A. (2018). Honey bees as models for gut microbiota research. Lab Animal, 47(November), 317–325. https://doi.org/10.1038/s41684-018-0173-x
Zouache, K., Raharimalala, F. N., Raquin, V., Tran-Van, V., Raveloson, L. H. R., Ravelonandro, P., & Mavingui, P. (2011). Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiology Ecology, 75(3), 377–389. https://doi.org/10.1111/j.1574-6941.2010.01012.x
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 125 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Santander, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Entomología
dc.publisher.department.spa.fl_str_mv Escuela de ciencias naturales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82114/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82114/4/1020715471.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/82114/5/1020715471.2020.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
84d3a04a525b09a8bbee79937ad4399f
6874ff61a75824bb01b5f3096b48f557
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090182833471488
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ortiz Reyes, Adriana70a179b4f7a2629d27adb67c9c357c20600Romero-Tabarez, Magally149016e2af153f1298e57689aed1505b600Mejia Torres, Maria Camilaca9804ce1ea29f1f68869f4936b80ad1600Sabio Sustancias Activas y Biotecnologia2022-08-25T19:42:42Z2022-08-25T19:42:42Z2020-02-15https://repositorio.unal.edu.co/handle/unal/82114Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasColonias de Tetragonisca angustula en Cimitarra, Santander presentaron señales progresivas de deterioro que conllevó a su muerte. Dado que tras realizar la evaluación correspondiente para múltiples patógenos conocidos para otras especies de abejas no fue posible identificar el causante del daño, se decidió hacer un análisis extensivo sobre los microorganismos asociados a las colonias de T. angustula y establecer si existe relación entre el avance del deterioro y algún patógeno cultivable o una posible disbiosis en la colonia. Se aislaron bacterias de adultos, inmaduros y partes estructurales del nido utilizando métodos de siembra convencionales, se morfotiparon las colonias obtenidas y aquellas más abundantes y con aparente relación con el deterioro de las colonias fueron identificadas por técnicas moleculares. Se publica un listado detallado de las bacterias identificadas por cada fuente muestreada como aporte al conocimiento de la microbiota de esta especie de abeja sin aguijón. Se observó en todas las fuentes aumento en la abundancia bacteriana principalmente de Actino bacterias, Bacillus y Enterobacterias durante la etapa temprana del deterioro seguida por una reducción de esta en la etapa tardía, aunque los análisis estadísticos no permitieron establecer si alguna de las bacterias actúa como patógeno de la colonia o si estos cambios en la microbiota son los causantes del deterioro. Bacterias como L. saprophyticus o L. massiliensis son potencialmente patógenas, y sería interesante estudiar más a fondo su acción sobre T. angustula. Dado que los microorganismos que aumentaron tienen propiedades antifúngicas y que los hongos pueden establecer interacción con las bacterias, se recomienda evaluar las muestras para determinar la presencia de hongos que puedan estar modificando la microbiota de las abejas o causando cambios en el comportamiento de la colonia. (texto tomado de la fuente)Colonies of Tetragonisca angustula in Cimitarra, Santander showed progressive signs of deterioration that led to their death. Given that after carrying out the corresponding evaluation for multiple known pathogens for other species of bees it was not possible to identify the cause of the damage, it was decided to carry out an extensive analysis on the microorganisms associated with the colonies of T. angustula and to establish if there is a relationship between the advance of deterioration and some cultivable pathogen, or a possible dysbiosis in the colony. Bacteria were isolated from adults, immature and structural parts of the nest using conventional seeding methods, the colonies obtained were morphotyped and those more abundant and with an apparent relationship with the deterioration of the colonies were identified by molecular techniques. A detailed list of the bacteria identified by each sampled source is published as a contribution to the knowledge of the microbiota of this species of stingless bee. An increase in bacterial abundance was observed in all the sampled sources, mainly of Actinobacteria, Bacillus and Enterobacteria during the early stage of deterioration followed by a reduction of this in the late stage, although the statistical analysis did not allow to establish whether any of the bacteria acts as a pathogen of the colony or if these changes in the microbiota are causing the deterioration. Bacteria such as L. saprophyticus or L. massiliensis are potentially pathogenic, and it would be interesting to further study their action on T. angustula. Given that some microorganisms that increased have antifungal properties and that fungi can establish interaction with bacteria, it is recommended to evaluate the samples to determine the presence of fungi that may be modifying the microbiota of the bees or causing changes in the behaviour of the colony.MaestríaMagíster en Ciencias - EntomologíaEcología de insectosÁrea Curricular en Ciencias Naturalesxviii, 125 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - EntomologíaEscuela de ciencias naturalesFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - Ecología590 - AnimalesAbejas - Enfermedades y plagasAbejas sin aguijónBacterias cultivablesDisbiosisMeliponinosPatógenoDeterioroStingless beesCulturable bacteriaDysbiosisMeliponinaePathogenDeteriorationRelación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociadosRelationship of the state of deterioration of colonies of meliponin bees Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) with their associated microorganismsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMSantander, ColombiaMichener, C. D. (2007). Tribe Meliponini. In The bees of the world (pp. 803–829). The John Hopckins University Press.Miller, D. L., Smith, E. A., & Newton, I. L. G. (2020). A bacterial symbiont protects honey bees from fungal disease. BioRxiv, 812, 2020.01.21.914325. https://doi.org/10.1101/2020.01.21.914325Mills, T. J. T. (2018). Diversity and bioactivity of microorganisms associated with Australian Stingless bee species (Issue August). The University of New South Wales.Miorin, P. L., Levy, N. C., Custodio, A. R., Bretz, W. A., & Marcucci, M. C. (2003). Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. Journal of Applied Microbiology, 95(5), 913–920. https://doi.org/10.1046/j.1365-2672.2003.02050.xMohr, K. I., & Tebbe, C. C. (2006). Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology, 8(2), 258–272. https://doi.org/10.1111/j.1462-2920.2005.00893.xMoran, N. A., Hansen, A. K., Powell, J. E., & Sabree, Z. L. (2012). Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE, 7(4), 1–10. https://doi.org/10.1371/journal.pone.0036393Moran, N. A., & Sloan, D. B. (2015). The Hologenome Concept: Helpful or Hollow? PLoS Biology, 13(12), 1–10. https://doi.org/10.1371/journal.pbio.1002311Motta, E. V. S., Raymann, K., & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10305–10310. https://doi.org/10.1073/pnas.1803880115Moure, J. S. (1946). Contribuição para o conhecimento dos Meliponinae (Hym.,Apoidea). Rev. Entomol., 17(3), 437–443. http://moure.cria.org.br/catalogue?id=34161Nafis, A., Elhidar, N., Oubaha, B., Samri, S. E., Niedermeyer, T., Ouhdouch, Y., Hassani, L., & Barakate, M. (2018). Screening for non-polyenic antifungal produced by actinobacteria from Moroccan habitats: Assessment of antimycin A19 production by Streptomyces albidoflavus AS25. International Journal of Molecular and Cellular Medicine, 7(2), 133–145. https://doi.org/10.22088/IJMCM.BUMS.7.2.133Naiem, E. S., Hrassnigg, N., & Crailsheim, K. (1999). Nurse bees support the physiological development of young bees (Apis mellifera L.). Journal of Comparative Physiology - B Biochemical, Systemic, and Environmental Physiology, 169(4–5), 271–279. https://doi.org/10.1007/s003600050221Nakamura, L. K. (2000). Phylogeny of Bacillus sphaericus- like organisms. International Journal of Systematic and Evolutionary Microbiology, 50(2000), 1715–1722Naranjo, E. J., Dirzo, R., López, C., Jaime, A., Adrián, R. O., Gutiérrez-granados, G., Dirzo, R., Ballesté, A. M., Mandujano, C., Prieto, I., Manuel, H., Macías, H., & Mendoza, R. (2009). Impacto de los factores antropogénicos de afectación directa a las poblaciones silvestres de flora y fauna. Capital Natural de México, II(September 2019), 247–276.Nates-Parra, G. (2001a). Guía para la cría y manejo de la abeja angelita. Convenio Andrés Bello. https://books.google.com.co/books?id=SLOMX2cfmcIC&printsec=frontcover&source =gbs_ge_summary_r&cad=0#v=onepage&q&f=falseNates-Parra, G. (2001b). Las abejas sin aguijón (Hymenoptera: Apidae: Meliponini) de Colombia. Biota Colombiana, 2(3), 233–248. http://teca.fao.org/sites/default/files/comments/files/77-259-1-PB.pdfNates-Parra, G. (2005). Abejas corbiculadas de Colombia. Universidad Nacional de ColombiaNates-Parra, G. (2009). Abejas silvestres y polinización. Manejo Integrado de Plagas y Agroecología ( Costa Rica ), N o . 7 5(Roubik 1995), 7–20.Nates-Parra, G., & Lopera, A. V. (1989). Ciclo de desarrollo de Trigona (Tetragonisca) angustula, Latreille 1811 (Hymenoptera, Trigonini). Acta Biológica Colombiana, 1(5), 91–98.Nates-Parra, G., Rodríguez-c, Á., & Vélez, E. D. (2006). Abejas sin aguijón (Hymenoptera: Apidae: Meliponini) en cementerios de la cordillera oriental de Colombia. Acta Biológica Colombiana, 11(1), 25–35.Nates-Parra, G., & Rosso-Londoño, J. M. (2013). Diversidad de abejas sin aguijón (Hymenoptera : Meliponini) utilizadas en meliponicultura en Colombia. Acta Biológica Colombiana, 18(3), 415–425Nates-Parra, G., & Roubik, D. W. (1990). Sympatry among Subspecies of Melipona favosa in Colombia and a Taxonomic Revision. Journal of the Kansas Entomological Society, 63(1), 200–203.Ngalimat, M. S., Rahman, R. N. Z. R. A., Yusof, M. T., Syahir, A., & Sabri, S. (2019). Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ, 2019(8), 1–20. https://doi.org/10.7717/peerj.7478Nishiwaki, H., Nakashima, K., Ishida, C., Kawamura, T., & Matsuda, K. (2007). Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by Bacillus sphaericus. Applied and Environmental Microbiology, 73(10), 3404–3411. https://doi.org/10.1128/AEM.00021-07Nogueira-Neto. (1954). Notas bionômicas sôbre Meliponineos III – Sôbre a enxameagem (Hym. Apoidea). Arquivos Do Museu Nacional, 42, 419–452.Nogueira-Neto, P. (1997). Vida e Criação de Abelhas Indígenas Sem Ferrão. Parma LTDA.Nunes-Silva, P., Imperatriz-Fonseca, V. L., & Gonçalves, L. S. (2009). Hygienic behavior of the stingless bee Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Genetics and Molecular Research, 8(2), 649–654. https://doi.org/10.4238/vol8-2kerr026Nunes-Silva, P., Piot, N., Meeus, I., Blochtein, B., & Smagghe, G. (2016). Absence of Leishmaniinae and Nosematidae in stingless bees. Scientific Reports, 6, 2–6. https://doi.org/10.1038/srep32547O’Hara, C. M., Steigerwalt, A. G., Hill, B. C., Farmer, J. J., Fanning, G. R., & Brenner, D. J. (1989). Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as Enteric Group 75. Journal of Clinical Microbiology, 27(9), 2046– 2049Olaitan, P. B., Adeleke, O. E., & Ola, I. O. (2007). Honey: A reservoir for microorganisms and an inhibitory agent for microbes. African Health Sciences, 7(3), 159–165. https://doi.org/10.5555/afhs.2007.7.3.159Olaya, Y., Gutierrez, C., & Hernandez, C. (2014). Comparación entre la Calidad Microbiológica de Miel de Tetragonisca Angustula y de Apis Mellifera. Rev.Fac.Nal.Agr.Medellín 67, 2(MAY 2014), 754–756Oliveira, R. de C., Nunes, F. D. M. F., Campos, A. P. S., de Vasconcelos, S. M., Roubik, D. W., Goulart, L. R., & Kerr, W. E. (2004). Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae,Trigonini) based on rapd markers. Genetics and Molecular Biology, 27(2), 181–186. https://doi.org/10.1590/S1415-47572004000200009Olofsson, T. C., & Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 57(4), 356–363. https://doi.org/10.1007/s00284-008-9202-0Otterstatter, M. C., Whidden, T. L., & Owen, R. E. (2002). Contrasting frequencies of parasitism and host mortality among phorid and conopid parasitoids of bumble-bees. Ecological Entomology, 27(2), 229–237. https://doi.org/10.1046/j.1365- 2311.2002.00403.xPailan, S., Gupta, D., Apte, S., Krishnamurthi, S., & Saha, P. (2015). Degradation of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural field in Burdwan, West Bengal, India. International Biodeterioration and Biodegradation, 103, 191–195. https://doi.org/10.1016/j.ibiod.2015.05.006Palacios-López, O. A., González-Rangel, M. O., Rivera-Chavira, B. E., & Nevárez- Moorillón, G. V. (2011). El papel de los antimicrobianos en la estructura de las comunidades microbianas en la naturaleza. Tecnociencia Chihuahua, V(1), 1–8Park, Y. G., Mun, B. G., Kang, S. M., Hussain, A., Shahzad, R., Seo, C. W., Kim, A. Y., Lee, S. U., Oh, K. Y., Lee, D. Y., Lee, I. J., & Yun, B. W. (2017). Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE, 12(3), 1–28. https://doi.org/10.1371/journal.pone.0173203Paul, J., Sarkar, A., & Varma, A. (1986). In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut. Current Science, December, 710–714.Pereira, K. de S., Meeus, I., & Smagghe, G. (2019). Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-40804-2Pérez-pérez, E. M., Esthe Suarez, Peña-Vera, M. J., González, A. C., & Vit, P. (2013). Antioxidant activity and microorganisms in nest products of Tetragonisca Laboratorio de Biología Molecular , Facultad de Farmacia y Bioanálisis , Apiterapia y Bioactividad , Departamento Ciencia de los Alimentos , Facultad de Farmacia y Bioanálisis ,. In P. Vit & D. W. Roubik (Eds.), Stingless Bee Process Honey and Pollen in Cerumen Pots (pp. 1–8).Porrini, M. P., Porrini, L. P., Garrido, P. M., de Melo e Silva Neto, C., Porrini, D. P., Muller, F., Nuñez, L. A., Alvarez, L., Iriarte, P. F., & Eguaras, M. J. (2017). Nosema ceranae in South American Native Stingless Bees and Social Wasp. Microbial Ecology, 74(4), 761–764. https://doi.org/10.1007/s00248-017-0975-1Powell, J. E., Martinson, V. G., Urban-Mead, K., & Moran, N. A. (2014). Routes of acquisition of the gut microbiota of Apis mellifera. Applied and Environmental Microbiology, 80(23), 7378–7387. https://doi.org/10.1128/AEM.01861-14Prado, S. S., Hung, K. Y., Daugherty, M. P., & Almeida, R. P. P. (2010). Indirect effects of temperature on stink bug fitness, via maintenance of gut-associated symbionts. Applied and Environmental Microbiology, 76(4), 1261–1266. https://doi.org/10.1128/AEM.02034-09Praet, J., Parmentier, A., Schmid-hempel, R., Meeus, I., Smagghe, G., & Vandamme, P. (2018). Underestimated Bacterial Species Diversity Capable of Pathogen Inhibition. Environmental Microbiology, 20(1), 214–227. https://doi.org/10.1111/emi.13973Priest, F. G., Goodfellow, M., Shute, L. A., & Berkeley, C. W. (1987). Bacillus amyloliquefaciens sp. nov. rev. International Journal of Systematic Bacteriology, 37(1), 69–71Vit, P., & Pedro, S. R. M. (2013). Pot-Honey: A legacy of stingless bee. https://doi.org/10.1007/978-1-4614-4960-7Vojvodic, S., Rehan, S. M., & Anderson, K. E. (2013). Microbial Gut Diversity of Africanized and European Honey Bee Larval Instars. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0072106Voulgari-Kokota, A., Ankenbrand, M. J., Grimmer, G., Steffan-Dewenter, I., & Keller, A. (2019). Linking pollen foraging of megachilid bees to their nest bacterial microbiota. Ecology and Evolution, 9(18), 10788–10800. https://doi.org/10.1002/ece3.5599Wang, L. T., Lee, F. L., Tai, C. J., & Kuo, H. P. (2008). Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. International Journal of Systematic and Evolutionary Microbiology, 58(3), 671–675. https://doi.org/10.1099/ijs.0.65191-0Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, H. G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., ... Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(November), 560–565. https://doi.org/10.1038/nature06269Watanabe, Y., Shinzato, N., & Fukatsu, T. (2003). Isolation of actinomycetes from termites’ guts. Bioscience, Biotechnology and Biochemistry, 67(8), 1797–1801. https://doi.org/10.1271/bbb.67.1797Wei, G., Lai, Y., Wang, G., Chen, H., Li, F., & Wang, S. (2017). Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5994–5999. https://doi.org/10.1073/pnas.1703546114Werner, W. (1933). Botanische Beschreibung haufiger am Buttersaureabbau beteiligter sporenbildender Bakterienspezies. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., 87, 446–475.Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Rev Microbiol, 6(10), 741–751. https://doi.org/10.1038/nrmicro1969Werren, John H. (2012). Symbionts provide pesticide detoxification. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8364–8365. https://doi.org/10.1073/pnas.1206194109Wille, A. (1983). Biology of the Stingless Bees. Annual Review of Entomology, 28(1), 41– 64. https://doi.org/10.1146/annurev.en.28.010183.000353Wong, A. C. N., Wang, Q. P., Morimoto, J., Senior, A. M., Lihoreau, M., Neely, G. G., Simpson, S. J., & Ponton, F. (2017). Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila. Current Biology, 27(15), 2397-2404.e4. https://doi.org/10.1016/j.cub.2017.07.022Xavier, V. M. V. M., Message, D., Picanço, M. C., Bacci, L., Silva, G. A., & Da Silva Benevenute, J. (2010). Impact of botanical insecticides on indigenous stingless bees. Sociobiology, 56(3), 713–723Xi-Biao, J., Sun, R.-J., Jian-Qing, Z., Zheng-Jun, X., Zhu, L., Quiang, W., & Xiao-Ying, Y. (2012). Isolation and identification of B altitudinis ZJ 186 from Marine Soil Samples and its antifungal activity against Magnaporthe oryzae. Current Research in Bacteriology, 5(1), 13–23.Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., & Mcinroy, J. A. (2017). Biological Control of Meloidogyne incognita by Spore-forming Plant Growth- promoting Rhizobacteria on Cotton. 101(5), 774–784. https://doi.org/10.1094/PDIS- 09-16-1369-REYaman, M., & Dem, E. (2016). Investigation of bacterial pathogens of Chrysomela ( Melasoma ) populi ( Coleoptera : Chrysomelidae ). 56(1), 77–83Yang, J., Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038aYoon, J. H., Kim, I. G., Kang, K. H., Oh, T. K., & Park, Y. H. (2003). Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1297–1303. https://doi.org/10.1099/ijs.0.02365-0Yoshiyama, M., & Kimura, K. (2009). Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology, 102(2), 91– 96. https://doi.org/10.1016/j.jip.2009.07.005Yun, J. H., Roh, S. W., Whon, T. W., Jung, M. J., Kim, M. S., Park, D. S., Yoon, C., Nam, Y. Do, Kim, Y. J., Choi, J. H., Kim, J. Y., Shin, N. R., Kim, S. H., Lee, W. J., & Bae, J. W. (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 80(17), 5254–5264. https://doi.org/10.1128/AEM.01226-14Zheng, H., Nishida, A., Kwong, W. K., Koch, H., Engel, P., Steele, M. I., & Moran, N. A. (2016). Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio, 7(6), 1–9. https://doi.org/10.1128/mBio.01326-16Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C., & Moran, N. A. (2017). Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences, 114(18), 4775–4780. https://doi.org/10.1073/pnas.1701819114Zheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S., & Moran, N. A. (2018). Honey bees as models for gut microbiota research. Lab Animal, 47(November), 317–325. https://doi.org/10.1038/s41684-018-0173-xZouache, K., Raharimalala, F. N., Raquin, V., Tran-Van, V., Raveloson, L. H. R., Ravelonandro, P., & Mavingui, P. (2011). Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiology Ecology, 75(3), 377–389. https://doi.org/10.1111/j.1574-6941.2010.01012.xEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82114/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINAL1020715471.2020.pdf1020715471.2020.pdfTesis de Maestría en Ciencias - Entomologíaapplication/pdf3946174https://repositorio.unal.edu.co/bitstream/unal/82114/4/1020715471.2020.pdf84d3a04a525b09a8bbee79937ad4399fMD54THUMBNAIL1020715471.2020.pdf.jpg1020715471.2020.pdf.jpgGenerated Thumbnailimage/jpeg4254https://repositorio.unal.edu.co/bitstream/unal/82114/5/1020715471.2020.pdf.jpg6874ff61a75824bb01b5f3096b48f557MD55unal/82114oai:repositorio.unal.edu.co:unal/821142023-08-05 23:04:18.86Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=