Modeling variability in generalized linear models

This work proposes joint modeling of parameters in the biparametric exponential family, including heteroscedastic linear regression (non linear regression) models; with joint modeling of the mean and precision (the variance) parameters; beta regression models, longitudinal date analysis (including m...

Full description

Autores:
Cepeda-Cuervo, Edilberto
Tipo de recurso:
Work document
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/11839
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/11839
http://bdigital.unal.edu.co/9394/
Palabra clave:
31 Colecciones de estadística general / Statistics
Normal linear regression models
Gamma regression models
Beta regression models
Nonlinear regression models
Longitudinal data
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_0725f2de112ad1825c6405da1ead3ef8
oai_identifier_str oai:repositorio.unal.edu.co:unal/11839
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gammerman, Dani (Thesis advisor)e2a8695b-7932-40d4-b9f0-20bf217e0437-1Cepeda-Cuervo, Edilberto8f2ae6e2-1778-4f83-a496-0d49efcbe66a3002019-06-25T00:32:13Z2019-06-25T00:32:13Zhttps://repositorio.unal.edu.co/handle/unal/11839http://bdigital.unal.edu.co/9394/This work proposes joint modeling of parameters in the biparametric exponential family, including heteroscedastic linear regression (non linear regression) models; with joint modeling of the mean and precision (the variance) parameters; beta regression models, longitudinal date analysis (including modeling of the covariance matrix) and hierarchical models. This work presents results of the classic approach to fit regression models for both mean and precision parameters in biparametric exponential family of distributions, which includes Bayesian methods for fitting the proposed models. And also extensions of the Bayesian methods to fit nonlinear regression models. Finally, proposes to use a Bayesian approach for modeling the covariance matrix in normal regression models when the observations are not independent. This document includes the following chapters: Chapter 1 is a introduction. Chapter 2 presents a summary of generalized linear models and the classical and Bayesian approaches to the parameters estimation, presenting the Fisher score method and a Bayesian approach using the Metropolis-Hastings algorithm. In Chapter 3, the heteroscedastic normal linear regression models are considered, including summaries of the classic method and Bayesian method proposed to fit these models. Chapter 4 is an extension of Chapter 3, which studies the regression models in the biparametric exponential family of distribution for mean and precision parameters. The following examples are included. 1. Gamma regression models with regression structures in the mean and precision (variance). 2. Beta regression models with regression structures in both mean and dispersion parameter. Several simulation studies were performed to illustrate these models and the proposed Bayesian methods. Chapter 5 discusses normal nonlinear heteroskedastic regression models. Chapter 6 include a Bayesian proposal to fit longitudinal regression models, where regression structures are assumed for the mean and the variance-covariance matrix of observations with Normal distribution (longitudinal data) Chapter 7 presents an extension of the methodology proposed in the previous chapters for adjusting hierarchical models.application/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de EstadísticaDepartamento de EstadísticaCepeda-Cuervo, Edilberto Modeling variability in generalized linear models. Otro. Sin Definir. (No publicado)31 Colecciones de estadística general / StatisticsNormal linear regression modelsGamma regression modelsBeta regression modelsNonlinear regression modelsLongitudinal dataModeling variability in generalized linear modelsDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_b1a7d7d4d402bcceTexthttp://purl.org/redcol/resource_type/WPORIGINALmodelagem_variabilidade_modelos.pdfapplication/pdf4973148https://repositorio.unal.edu.co/bitstream/unal/11839/1/modelagem_variabilidade_modelos.pdf45bf4c48fd3c9ba6cc460eae1a054ac2MD51THUMBNAILmodelagem_variabilidade_modelos.pdf.jpgmodelagem_variabilidade_modelos.pdf.jpgGenerated Thumbnailimage/jpeg3302https://repositorio.unal.edu.co/bitstream/unal/11839/2/modelagem_variabilidade_modelos.pdf.jpgb4e30a80fd9ba6ad34a675ed083be304MD52unal/11839oai:repositorio.unal.edu.co:unal/118392023-09-20 23:05:55.184Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Modeling variability in generalized linear models
title Modeling variability in generalized linear models
spellingShingle Modeling variability in generalized linear models
31 Colecciones de estadística general / Statistics
Normal linear regression models
Gamma regression models
Beta regression models
Nonlinear regression models
Longitudinal data
title_short Modeling variability in generalized linear models
title_full Modeling variability in generalized linear models
title_fullStr Modeling variability in generalized linear models
title_full_unstemmed Modeling variability in generalized linear models
title_sort Modeling variability in generalized linear models
dc.creator.fl_str_mv Cepeda-Cuervo, Edilberto
dc.contributor.advisor.spa.fl_str_mv Gammerman, Dani (Thesis advisor)
dc.contributor.author.spa.fl_str_mv Cepeda-Cuervo, Edilberto
dc.subject.ddc.spa.fl_str_mv 31 Colecciones de estadística general / Statistics
topic 31 Colecciones de estadística general / Statistics
Normal linear regression models
Gamma regression models
Beta regression models
Nonlinear regression models
Longitudinal data
dc.subject.proposal.spa.fl_str_mv Normal linear regression models
Gamma regression models
Beta regression models
Nonlinear regression models
Longitudinal data
description This work proposes joint modeling of parameters in the biparametric exponential family, including heteroscedastic linear regression (non linear regression) models; with joint modeling of the mean and precision (the variance) parameters; beta regression models, longitudinal date analysis (including modeling of the covariance matrix) and hierarchical models. This work presents results of the classic approach to fit regression models for both mean and precision parameters in biparametric exponential family of distributions, which includes Bayesian methods for fitting the proposed models. And also extensions of the Bayesian methods to fit nonlinear regression models. Finally, proposes to use a Bayesian approach for modeling the covariance matrix in normal regression models when the observations are not independent. This document includes the following chapters: Chapter 1 is a introduction. Chapter 2 presents a summary of generalized linear models and the classical and Bayesian approaches to the parameters estimation, presenting the Fisher score method and a Bayesian approach using the Metropolis-Hastings algorithm. In Chapter 3, the heteroscedastic normal linear regression models are considered, including summaries of the classic method and Bayesian method proposed to fit these models. Chapter 4 is an extension of Chapter 3, which studies the regression models in the biparametric exponential family of distribution for mean and precision parameters. The following examples are included. 1. Gamma regression models with regression structures in the mean and precision (variance). 2. Beta regression models with regression structures in both mean and dispersion parameter. Several simulation studies were performed to illustrate these models and the proposed Bayesian methods. Chapter 5 discusses normal nonlinear heteroskedastic regression models. Chapter 6 include a Bayesian proposal to fit longitudinal regression models, where regression structures are assumed for the mean and the variance-covariance matrix of observations with Normal distribution (longitudinal data) Chapter 7 presents an extension of the methodology proposed in the previous chapters for adjusting hierarchical models.
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-06-25T00:32:13Z
dc.date.available.spa.fl_str_mv 2019-06-25T00:32:13Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str draft
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/11839
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/9394/
url https://repositorio.unal.edu.co/handle/unal/11839
http://bdigital.unal.edu.co/9394/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística
Departamento de Estadística
dc.relation.references.spa.fl_str_mv Cepeda-Cuervo, Edilberto Modeling variability in generalized linear models. Otro. Sin Definir. (No publicado)
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/11839/1/modelagem_variabilidade_modelos.pdf
https://repositorio.unal.edu.co/bitstream/unal/11839/2/modelagem_variabilidade_modelos.pdf.jpg
bitstream.checksum.fl_str_mv 45bf4c48fd3c9ba6cc460eae1a054ac2
b4e30a80fd9ba6ad34a675ed083be304
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090257777295360