Modeling variability in generalized linear models
This work proposes joint modeling of parameters in the biparametric exponential family, including heteroscedastic linear regression (non linear regression) models; with joint modeling of the mean and precision (the variance) parameters; beta regression models, longitudinal date analysis (including m...
- Autores:
-
Cepeda-Cuervo, Edilberto
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/11839
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/11839
http://bdigital.unal.edu.co/9394/
- Palabra clave:
- 31 Colecciones de estadística general / Statistics
Normal linear regression models
Gamma regression models
Beta regression models
Nonlinear regression models
Longitudinal data
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_0725f2de112ad1825c6405da1ead3ef8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/11839 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gammerman, Dani (Thesis advisor)e2a8695b-7932-40d4-b9f0-20bf217e0437-1Cepeda-Cuervo, Edilberto8f2ae6e2-1778-4f83-a496-0d49efcbe66a3002019-06-25T00:32:13Z2019-06-25T00:32:13Zhttps://repositorio.unal.edu.co/handle/unal/11839http://bdigital.unal.edu.co/9394/This work proposes joint modeling of parameters in the biparametric exponential family, including heteroscedastic linear regression (non linear regression) models; with joint modeling of the mean and precision (the variance) parameters; beta regression models, longitudinal date analysis (including modeling of the covariance matrix) and hierarchical models. This work presents results of the classic approach to fit regression models for both mean and precision parameters in biparametric exponential family of distributions, which includes Bayesian methods for fitting the proposed models. And also extensions of the Bayesian methods to fit nonlinear regression models. Finally, proposes to use a Bayesian approach for modeling the covariance matrix in normal regression models when the observations are not independent. This document includes the following chapters: Chapter 1 is a introduction. Chapter 2 presents a summary of generalized linear models and the classical and Bayesian approaches to the parameters estimation, presenting the Fisher score method and a Bayesian approach using the Metropolis-Hastings algorithm. In Chapter 3, the heteroscedastic normal linear regression models are considered, including summaries of the classic method and Bayesian method proposed to fit these models. Chapter 4 is an extension of Chapter 3, which studies the regression models in the biparametric exponential family of distribution for mean and precision parameters. The following examples are included. 1. Gamma regression models with regression structures in the mean and precision (variance). 2. Beta regression models with regression structures in both mean and dispersion parameter. Several simulation studies were performed to illustrate these models and the proposed Bayesian methods. Chapter 5 discusses normal nonlinear heteroskedastic regression models. Chapter 6 include a Bayesian proposal to fit longitudinal regression models, where regression structures are assumed for the mean and the variance-covariance matrix of observations with Normal distribution (longitudinal data) Chapter 7 presents an extension of the methodology proposed in the previous chapters for adjusting hierarchical models.application/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de EstadísticaDepartamento de EstadísticaCepeda-Cuervo, Edilberto Modeling variability in generalized linear models. Otro. Sin Definir. (No publicado)31 Colecciones de estadística general / StatisticsNormal linear regression modelsGamma regression modelsBeta regression modelsNonlinear regression modelsLongitudinal dataModeling variability in generalized linear modelsDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_b1a7d7d4d402bcceTexthttp://purl.org/redcol/resource_type/WPORIGINALmodelagem_variabilidade_modelos.pdfapplication/pdf4973148https://repositorio.unal.edu.co/bitstream/unal/11839/1/modelagem_variabilidade_modelos.pdf45bf4c48fd3c9ba6cc460eae1a054ac2MD51THUMBNAILmodelagem_variabilidade_modelos.pdf.jpgmodelagem_variabilidade_modelos.pdf.jpgGenerated Thumbnailimage/jpeg3302https://repositorio.unal.edu.co/bitstream/unal/11839/2/modelagem_variabilidade_modelos.pdf.jpgb4e30a80fd9ba6ad34a675ed083be304MD52unal/11839oai:repositorio.unal.edu.co:unal/118392023-09-20 23:05:55.184Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Modeling variability in generalized linear models |
title |
Modeling variability in generalized linear models |
spellingShingle |
Modeling variability in generalized linear models 31 Colecciones de estadística general / Statistics Normal linear regression models Gamma regression models Beta regression models Nonlinear regression models Longitudinal data |
title_short |
Modeling variability in generalized linear models |
title_full |
Modeling variability in generalized linear models |
title_fullStr |
Modeling variability in generalized linear models |
title_full_unstemmed |
Modeling variability in generalized linear models |
title_sort |
Modeling variability in generalized linear models |
dc.creator.fl_str_mv |
Cepeda-Cuervo, Edilberto |
dc.contributor.advisor.spa.fl_str_mv |
Gammerman, Dani (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Cepeda-Cuervo, Edilberto |
dc.subject.ddc.spa.fl_str_mv |
31 Colecciones de estadística general / Statistics |
topic |
31 Colecciones de estadística general / Statistics Normal linear regression models Gamma regression models Beta regression models Nonlinear regression models Longitudinal data |
dc.subject.proposal.spa.fl_str_mv |
Normal linear regression models Gamma regression models Beta regression models Nonlinear regression models Longitudinal data |
description |
This work proposes joint modeling of parameters in the biparametric exponential family, including heteroscedastic linear regression (non linear regression) models; with joint modeling of the mean and precision (the variance) parameters; beta regression models, longitudinal date analysis (including modeling of the covariance matrix) and hierarchical models. This work presents results of the classic approach to fit regression models for both mean and precision parameters in biparametric exponential family of distributions, which includes Bayesian methods for fitting the proposed models. And also extensions of the Bayesian methods to fit nonlinear regression models. Finally, proposes to use a Bayesian approach for modeling the covariance matrix in normal regression models when the observations are not independent. This document includes the following chapters: Chapter 1 is a introduction. Chapter 2 presents a summary of generalized linear models and the classical and Bayesian approaches to the parameters estimation, presenting the Fisher score method and a Bayesian approach using the Metropolis-Hastings algorithm. In Chapter 3, the heteroscedastic normal linear regression models are considered, including summaries of the classic method and Bayesian method proposed to fit these models. Chapter 4 is an extension of Chapter 3, which studies the regression models in the biparametric exponential family of distribution for mean and precision parameters. The following examples are included. 1. Gamma regression models with regression structures in the mean and precision (variance). 2. Beta regression models with regression structures in both mean and dispersion parameter. Several simulation studies were performed to illustrate these models and the proposed Bayesian methods. Chapter 5 discusses normal nonlinear heteroskedastic regression models. Chapter 6 include a Bayesian proposal to fit longitudinal regression models, where regression structures are assumed for the mean and the variance-covariance matrix of observations with Normal distribution (longitudinal data) Chapter 7 presents an extension of the methodology proposed in the previous chapters for adjusting hierarchical models. |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-25T00:32:13Z |
dc.date.available.spa.fl_str_mv |
2019-06-25T00:32:13Z |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/11839 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/9394/ |
url |
https://repositorio.unal.edu.co/handle/unal/11839 http://bdigital.unal.edu.co/9394/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística Departamento de Estadística |
dc.relation.references.spa.fl_str_mv |
Cepeda-Cuervo, Edilberto Modeling variability in generalized linear models. Otro. Sin Definir. (No publicado) |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/11839/1/modelagem_variabilidade_modelos.pdf https://repositorio.unal.edu.co/bitstream/unal/11839/2/modelagem_variabilidade_modelos.pdf.jpg |
bitstream.checksum.fl_str_mv |
45bf4c48fd3c9ba6cc460eae1a054ac2 b4e30a80fd9ba6ad34a675ed083be304 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090257777295360 |