Impacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidos

The processes of improved thermal recovery by cyclic steam injection have been used successfully in heavy and extra-heavy crude oil reservoirs as a strategy for recovering remaining reserves. The increase in oil recovery is caused by the reduction in viscosity of crude oil, which leads to an increas...

Full description

Autores:
Caro Vélez, Cristina
Tipo de recurso:
Work document
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75839
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75839
Palabra clave:
Ingeniería química::Tecnología de explosivos, combustibles, productos relacionados
Heavy Oil Crude
Thermal Recovery
In-Situ Improvement
Nanofluid
Crudo Pesado
Recobro Térmico
Mejoramiento In-Situ
Nanofluido
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_06c096f986571d2e8a28452f7bdcf6c9
oai_identifier_str oai:repositorio.unal.edu.co:unal/75839
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Impacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidos
title Impacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidos
spellingShingle Impacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidos
Ingeniería química::Tecnología de explosivos, combustibles, productos relacionados
Heavy Oil Crude
Thermal Recovery
In-Situ Improvement
Nanofluid
Crudo Pesado
Recobro Térmico
Mejoramiento In-Situ
Nanofluido
title_short Impacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidos
title_full Impacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidos
title_fullStr Impacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidos
title_full_unstemmed Impacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidos
title_sort Impacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidos
dc.creator.fl_str_mv Caro Vélez, Cristina
dc.contributor.advisor.spa.fl_str_mv Lopera Castro, Sergio Hernando
Franco Ariza, Camilo Andrés
dc.contributor.author.spa.fl_str_mv Caro Vélez, Cristina
dc.contributor.researchgroup.spa.fl_str_mv Yacimientos de Hidrocarburos
dc.subject.ddc.spa.fl_str_mv Ingeniería química::Tecnología de explosivos, combustibles, productos relacionados
topic Ingeniería química::Tecnología de explosivos, combustibles, productos relacionados
Heavy Oil Crude
Thermal Recovery
In-Situ Improvement
Nanofluid
Crudo Pesado
Recobro Térmico
Mejoramiento In-Situ
Nanofluido
dc.subject.proposal.eng.fl_str_mv Heavy Oil Crude
Thermal Recovery
In-Situ Improvement
Nanofluid
dc.subject.proposal.spa.fl_str_mv Crudo Pesado
Recobro Térmico
Mejoramiento In-Situ
Nanofluido
description The processes of improved thermal recovery by cyclic steam injection have been used successfully in heavy and extra-heavy crude oil reservoirs as a strategy for recovering remaining reserves. The increase in oil recovery is caused by the reduction in viscosity of crude oil, which leads to an increase in mobility and a decrease in the residual saturation of the oil present in the formation. However, the chemistry of crude oil is not noticeably modified, so its effect on mobility is temporary, returning to its conditions before steam injection when returning to the formation temperature in its production cycle. Thus, in this work it seeks to harness steam energy in the in-situ improvement process in order to increase recoverable reserves and improve the quality of the oil recovered in each steam injection cycle, by adding a nanofluid With a capacity for catalytic decomposition of fractions heavys in a dynamic laboratory-scale test at a steam temperature of 210°C. evaluating the saturation states and effluents produced in the different injection cycles. achieving an incremental oil recovery up to 30% and API gravity changes from 6.9 to 15.8 °API in the first cycle, in addition viscosity, simulated distillation, and asphaltene content were evaluated, to model a type well with which an incorporation of reserves up to 26.7% was determined by the addition of the nanofluid.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-10-31
dc.date.accessioned.spa.fl_str_mv 2020-03-04T20:02:10Z
dc.date.available.spa.fl_str_mv 2020-03-04T20:02:10Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75839
url https://repositorio.unal.edu.co/handle/unal/75839
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Gray, M. R., Upgrading oilsands bitumen and heavy oil. University of Alberta: 2015
Ali, S. F., Heavy oil—evermore mobile. Journal of Petroleum Science and Engineering 2003, 37 (1-2), 5-9.
Bahadori, A., Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs. Gulf Professional Publishing: 2018; pp 139 - 183
Nassar, N. N.; Hassan, A.; Pereira-Almao, P., Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy & Fuels 2011, 25 (4), 1566-1570.
Franco, C. A.; Zabala, R.; Cortés, F. B., Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering 2017
Franco, C. A.; Zabala, R.; Cortés, F. B., Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering 2017.
Bera, A.; Belhaj, H., Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review. Journal of Natural Gas Science and Engineering 2016, 34, 1284-1309
Shokrlu, Y. H.; Babadagli, T. In Transportation and interaction of nano and micro size metal particles injected to improve thermal recovery of heavy-oil, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers: 2011.
Hamedi Shokrlu, Y.; Babadagli, T., In-situ upgrading of heavy oil/bitumen during steam injection by use of metal nanoparticles: A study on in-situ catalysis and catalyst transportation. SPE Reservoir Evaluation & Engineering 2013, 16 (03), 333-344.
Shokrlu, Y. H.; Babadagli, T., Viscosity reduction of heavy oil/bitumen using micro- and nano-metal particles during aqueous and non-aqueous thermal applications. Journal of Petroleum Science and Engineering 2014, 119, 210-220.
Farooqui, J.; Babadagli, T.; Li, H. A. In Improvement of the recovery factor using nano-metal particles at the late stages of cyclic steam stimulation, SPE Canada Heavy Oil Technical Conference, Society of Petroleum Engineers: 2015.
Ospina Gómez, N. A. Evaluación de la aplicación de nanofluidos para mejoramiento in-situ del crudo pesado. Universidad Nacional de Colombia-Sede Medellín
Franco, C.; Cardona, L.; Lopera, S.; Mejía, J.; Cortés, F. In Heavy oil upgrading and enhanced recovery in a continuous steam injection process assisted by nanoparticulated catalysts, SPE improved oil recovery conference, Society of Petroleum Engineers: 2016.
Omajali, J. B.; Hart, A.; Walker, M.; Wood, J.; Macaskie, L. E., In-situ catalytic upgrading of heavy oil using dispersed bionanoparticles supported on gram-positive and gram-negative bacteria. Applied Catalysis B: Environmental 2017, 203, 807-819.
a) Cardona, L.; Arias-Madrid, D.; Cortés, F. B.; Lopera, S. H.; Franco, C. A., Heavy Oil Upgrading and Enhanced Recovery in a Steam Injection Process Assisted by NiO-and PdO-Functionalized SiO2 Nanoparticulated Catalysts. Catalysts 2018, 8 (4), 132; (b) Cardona Rojas, L. Efecto de nanopartículas en procesos con inyección de vapor a diferentes calidades. Universidad Nacional de Colombia-Sede Medellín.
DUARTE, J. O. A.; RIBERO, F. J. G., SISTEMA EXPERTO PARA LA SELECCIÓN TÉCNICA DE UN MÉTODO DE RECOBRO MEJORADO PARA UN CAMPO DE CRUDO. 18. Escobar, F., Aspectos fundamentales de recobro secundario y terciario. Neiva- Huila, Universidad Surcolombiana 2006.
(a) Jorshari, K.; O'Hara, B., A new SAGD-well-pair placement: a field case review. Journal of Canadian Petroleum Technology 2013, 52 (01), 12-19; (b) Kar, T.; Ovalles, C.; Rogel, E.; Vien, J.; Hascakir, B., The residual oil saturation determination for Steam Assisted Gravity Drainage (SAGD) and Solvent-SAGD. Fuel 2016, 172, 187-195; (c) Liu, H.; Cheng, L.; Huang, S.; Jia, P.; Chen, M., Evolution characteristics of SAGD steam chamber and its impacts on heavy oil production and heat consumption. International Journal of Heat and Mass Transfer 2018, 121, 579-596.
(a) Melcon, S., Oil recovery by in situ combustion. Google Patents: 1965; (b) Dabbous, M. K.; Fulton, P. F., Low-temperature-oxidation reaction kinetics and effects on the in-situ combustion process. Society of Petroleum Engineers Journal 1974, 14 (03), 253- 262.
Ordoñez, V.; D'Leonid, B., Estimación de reservas en campos maduros bajo un enfoque probabilístico. 2015.
Martíneza, D. H.; Ferraria, L., Evolución de la distribución de las reservas de hidrocarburos de las Provincias Petroleras Mexicanas Evolution of the distribution of the hydrocarbon reserves of the Mexican Petroleum Provinces.
Whitaker, S., Flow in porous media I: A theoretical derivation of Darcy's law. Transport in porous media 1986, 1 (1), 3-25.
Ariffin, T. S. T.; Yahya, E.; Husin, H., The rheology of light crude oil and water-in- oil-emulsion. Procedia engineering 2016, 148, 1149-1155
Li, X.; Shi, L.; Li, H.; Liu, P.; Luo, J.; Yuan, Z., Experimental study on viscosity reducers for SAGD in developing extra-heavy oil reservoirs. Journal of Petroleum Science and Engineering 2018, 166, 25-32.
Cardona, L.; Arias-Madrid, D.; Cortés, F.; Lopera, S.; Franco, C., Heavy oil upgrading and enhanced recovery in a steam injection process assisted by NiO-and PdO- Functionalized SiO2 nanoparticulated catalysts. Catalysts 2018, 8 (4), 132
Taborda, E. A.; Franco, C. A.; Ruiz, M. A.; Alvarado, V.; Cortés, F. B., Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy & Fuels 2017, 31 (2), 1329-1338.
Taborda, E. A.; Franco, C. A.; Lopera, S. H.; Alvarado, V.; Cortés, F. B., Effect ofnanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous mediaat reservoir conditions. Fuel 2016, 184, 222-232.
(a) Elahi, S. M.; Ahmadi Khoshooei, M.; Scott, C. E.; Chen, Z.; Pereira‐Almao, P., In‐situ upgrading of heavy oil using nano‐catalysts: A computational fluid dynamics study of hydrogen and vacuum residue injection. The Canadian Journal of Chemical Engineering 2019, 97, 1352-1360; (b) Sun, X.; Zhang, Y.; Chen, G.; Gai, Z., Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies 2017, 10 (3), 345
(a) Dragonetti, R.; Napolitano, M.; Di Filippo, S.; Romano, R., Modeling energy conversion in a tortuous stack for thermoacostic applications. Applied Thermal Engineering 2016, 103, 233-242; (b) Zhu, Q.; Xuan, Y., Pore scale numerical simulation of heat transfer and flow in porous volumetric solar receivers. Applied Thermal Engineering 2017, 120, 150- 159.
(a) Iwamoto, M.; Yoda, Y.; Yamazoe, N.; Seiyama, T., Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides. The Journal of Physical Chemistry 1978, 82 (24), 2564-2570; (b) Astruc, D., Nanoparticles and catalysis. John Wiley & Sons: 2008; (c) Jana, N. R.; Wang, Z.; Pal, T., Redox catalytic properties of palladium nanoparticles: surfactant and electron donor− acceptor effects. Langmuir 2000, 16 (6), 2457-2463
Wang, X.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.; Martínez-Arias, A.; Fernández-García, M., In situ studies of the active sites for the water gas shift reaction over Cu− CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. The Journal of Physical Chemistry B 2006, 110 (1), 428-434.
Labastie, A.; Guy, M.; Delclaud, J. P.; Iffly, R. In Effect of flow rate and wettability on water-oil relative permeabilities and capillary pressure, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers: 1980
Anderson, W. G., Wettability literature survey part 5: the effects of wettability on relative permeability. Journal of Petroleum Technology 1987, 39 (11), 1,453-1,468.
(a) Burdine, N., Relative permeability calculations from pore size distribution data. Journal of Petroleum Technology 1953, 5 (03), 71-78; (b) Land, C. S., Calculation of imbibition relative permeability for two-and three-phase flow from rock properties. Society of Petroleum Engineers Journal 1968, 8 (02), 149-156; (c) Johnson, E.; Bossler, D.; Bossler, V., Calculation of relative permeability from displacement experiments. 1959.
Hardy, W. C.; Shepard, J. C.; Reddick, K. L., Secondary recovery of petroleum with a preformed emulsion slug drive. Google Patents: 1966
(a) McGurn, M. K.; Baydak, E. N.; Sztukowski, D. M.; Yarranton, H. W., The effect of inorganic solids on emulsion layer growth in asphaltene‐stabilized water‐in‐oil emulsions. The Canadian Journal of Chemical Engineering 2017, 95 (10), 1909-1924; (b) Yang, F.; Tchoukov, P.; Dettman, H.; Teklebrhan, R. B.; Liu, L.; Dabros, T.; Czarnecki, J.; Masliyah, J.; Xu, Z., Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 2: Molecular representations and molecular dynamics simulations. Energy & Fuels 2015, 29 (8), 4783-4794.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 76
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75839/1/1039448281.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/75839/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75839/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/75839/4/1039448281.2019.pdf.jpg
bitstream.checksum.fl_str_mv c49c2fb51e137ee071ce1ae126ab3ca5
6f3f13b02594d02ad110b3ad534cd5df
217700a34da79ed616c2feb68d4c5e06
5b25ddf240d60dc8d039f598872d44b5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090019530342400
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lopera Castro, Sergio Hernandoa90b0f8f-b07e-4edc-a8ba-d7929bafed43-1Franco Ariza, Camilo Andrés87f601b6-020c-4371-841c-916ed0e2ccbd-1Caro Vélez, Cristinad54eab66-cba6-426e-aa61-9d2b321d8892Yacimientos de Hidrocarburos2020-03-04T20:02:10Z2020-03-04T20:02:10Z2019-10-31https://repositorio.unal.edu.co/handle/unal/75839The processes of improved thermal recovery by cyclic steam injection have been used successfully in heavy and extra-heavy crude oil reservoirs as a strategy for recovering remaining reserves. The increase in oil recovery is caused by the reduction in viscosity of crude oil, which leads to an increase in mobility and a decrease in the residual saturation of the oil present in the formation. However, the chemistry of crude oil is not noticeably modified, so its effect on mobility is temporary, returning to its conditions before steam injection when returning to the formation temperature in its production cycle. Thus, in this work it seeks to harness steam energy in the in-situ improvement process in order to increase recoverable reserves and improve the quality of the oil recovered in each steam injection cycle, by adding a nanofluid With a capacity for catalytic decomposition of fractions heavys in a dynamic laboratory-scale test at a steam temperature of 210°C. evaluating the saturation states and effluents produced in the different injection cycles. achieving an incremental oil recovery up to 30% and API gravity changes from 6.9 to 15.8 °API in the first cycle, in addition viscosity, simulated distillation, and asphaltene content were evaluated, to model a type well with which an incorporation of reserves up to 26.7% was determined by the addition of the nanofluid.Los procesos de recobro mejorado térmico por inyección cíclica de vapor se han empleado de manera exitosa en yacimientos de crudo pesado y extrapesado como estrategia de recuperación de reservas remanentes. El aumento en el recobro se origina por la reducción en viscosidad del crudo lo que conlleva a un aumento en la movilidad y disminución de la saturación residual del aceite presente en formación. Sin embargo, no se modifican de manera notoria la química del crudo, por lo que su efecto en la movilidad es temporal, retornando a sus condiciones previa a la inyección de vapor al volver a la temperatura de formación en su ciclo de producción. Así, en este trabajo busca aprovechar la energía del vapor en el proceso de mejoramiento in-situ con el fin de aumentar las reservas recuperables y mejorar la calidad del crudo recobrado en cada ciclo de inyección de vapor, por medio de la adición de un nanofluido con capacidad de descomposición catalítica de fracciones pesada en una prueba dinámica a escala de laboratorio a una temperatura de vapor de 210°C, evaluando los estados de saturación y los efluentes producidos en los diferentes ciclos de inyección logrando un recobro incremental hasta del 30% y cambios en la gravedad API de 6.9° hasta 15.8° API en el primer ciclo, además se evalúo la viscosidad, destilación simulada y contenido de asfaltenos, para modelar un pozo tipo con el cual se determinó una incorporación de reservas de debida a la adición del nanofluido hasta 26.7%.Magister en Ingeniería de PetróleosMaestría76application/pdfspaIngeniería química::Tecnología de explosivos, combustibles, productos relacionadosHeavy Oil CrudeThermal RecoveryIn-Situ ImprovementNanofluidCrudo PesadoRecobro TérmicoMejoramiento In-SituNanofluidoImpacto en la incorporación de reservas en procesos de recobro mejorado térmico de inyección cíclica de vapor mediante el uso de nanofluidosDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/WPDepartamento de Procesos y EnergíaUniversidad Nacional de Colombia - Sede MedellínGray, M. R., Upgrading oilsands bitumen and heavy oil. University of Alberta: 2015Ali, S. F., Heavy oil—evermore mobile. Journal of Petroleum Science and Engineering 2003, 37 (1-2), 5-9.Bahadori, A., Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs. Gulf Professional Publishing: 2018; pp 139 - 183Nassar, N. N.; Hassan, A.; Pereira-Almao, P., Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energy & Fuels 2011, 25 (4), 1566-1570.Franco, C. A.; Zabala, R.; Cortés, F. B., Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering 2017Franco, C. A.; Zabala, R.; Cortés, F. B., Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering 2017.Bera, A.; Belhaj, H., Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review. Journal of Natural Gas Science and Engineering 2016, 34, 1284-1309Shokrlu, Y. H.; Babadagli, T. In Transportation and interaction of nano and micro size metal particles injected to improve thermal recovery of heavy-oil, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers: 2011.Hamedi Shokrlu, Y.; Babadagli, T., In-situ upgrading of heavy oil/bitumen during steam injection by use of metal nanoparticles: A study on in-situ catalysis and catalyst transportation. SPE Reservoir Evaluation & Engineering 2013, 16 (03), 333-344.Shokrlu, Y. H.; Babadagli, T., Viscosity reduction of heavy oil/bitumen using micro- and nano-metal particles during aqueous and non-aqueous thermal applications. Journal of Petroleum Science and Engineering 2014, 119, 210-220.Farooqui, J.; Babadagli, T.; Li, H. A. In Improvement of the recovery factor using nano-metal particles at the late stages of cyclic steam stimulation, SPE Canada Heavy Oil Technical Conference, Society of Petroleum Engineers: 2015.Ospina Gómez, N. A. Evaluación de la aplicación de nanofluidos para mejoramiento in-situ del crudo pesado. Universidad Nacional de Colombia-Sede MedellínFranco, C.; Cardona, L.; Lopera, S.; Mejía, J.; Cortés, F. In Heavy oil upgrading and enhanced recovery in a continuous steam injection process assisted by nanoparticulated catalysts, SPE improved oil recovery conference, Society of Petroleum Engineers: 2016.Omajali, J. B.; Hart, A.; Walker, M.; Wood, J.; Macaskie, L. E., In-situ catalytic upgrading of heavy oil using dispersed bionanoparticles supported on gram-positive and gram-negative bacteria. Applied Catalysis B: Environmental 2017, 203, 807-819.a) Cardona, L.; Arias-Madrid, D.; Cortés, F. B.; Lopera, S. H.; Franco, C. A., Heavy Oil Upgrading and Enhanced Recovery in a Steam Injection Process Assisted by NiO-and PdO-Functionalized SiO2 Nanoparticulated Catalysts. Catalysts 2018, 8 (4), 132; (b) Cardona Rojas, L. Efecto de nanopartículas en procesos con inyección de vapor a diferentes calidades. Universidad Nacional de Colombia-Sede Medellín.DUARTE, J. O. A.; RIBERO, F. J. G., SISTEMA EXPERTO PARA LA SELECCIÓN TÉCNICA DE UN MÉTODO DE RECOBRO MEJORADO PARA UN CAMPO DE CRUDO. 18. Escobar, F., Aspectos fundamentales de recobro secundario y terciario. Neiva- Huila, Universidad Surcolombiana 2006.(a) Jorshari, K.; O'Hara, B., A new SAGD-well-pair placement: a field case review. Journal of Canadian Petroleum Technology 2013, 52 (01), 12-19; (b) Kar, T.; Ovalles, C.; Rogel, E.; Vien, J.; Hascakir, B., The residual oil saturation determination for Steam Assisted Gravity Drainage (SAGD) and Solvent-SAGD. Fuel 2016, 172, 187-195; (c) Liu, H.; Cheng, L.; Huang, S.; Jia, P.; Chen, M., Evolution characteristics of SAGD steam chamber and its impacts on heavy oil production and heat consumption. International Journal of Heat and Mass Transfer 2018, 121, 579-596.(a) Melcon, S., Oil recovery by in situ combustion. Google Patents: 1965; (b) Dabbous, M. K.; Fulton, P. F., Low-temperature-oxidation reaction kinetics and effects on the in-situ combustion process. Society of Petroleum Engineers Journal 1974, 14 (03), 253- 262.Ordoñez, V.; D'Leonid, B., Estimación de reservas en campos maduros bajo un enfoque probabilístico. 2015.Martíneza, D. H.; Ferraria, L., Evolución de la distribución de las reservas de hidrocarburos de las Provincias Petroleras Mexicanas Evolution of the distribution of the hydrocarbon reserves of the Mexican Petroleum Provinces.Whitaker, S., Flow in porous media I: A theoretical derivation of Darcy's law. Transport in porous media 1986, 1 (1), 3-25.Ariffin, T. S. T.; Yahya, E.; Husin, H., The rheology of light crude oil and water-in- oil-emulsion. Procedia engineering 2016, 148, 1149-1155Li, X.; Shi, L.; Li, H.; Liu, P.; Luo, J.; Yuan, Z., Experimental study on viscosity reducers for SAGD in developing extra-heavy oil reservoirs. Journal of Petroleum Science and Engineering 2018, 166, 25-32.Cardona, L.; Arias-Madrid, D.; Cortés, F.; Lopera, S.; Franco, C., Heavy oil upgrading and enhanced recovery in a steam injection process assisted by NiO-and PdO- Functionalized SiO2 nanoparticulated catalysts. Catalysts 2018, 8 (4), 132Taborda, E. A.; Franco, C. A.; Ruiz, M. A.; Alvarado, V.; Cortés, F. B., Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy & Fuels 2017, 31 (2), 1329-1338.Taborda, E. A.; Franco, C. A.; Lopera, S. H.; Alvarado, V.; Cortés, F. B., Effect ofnanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous mediaat reservoir conditions. Fuel 2016, 184, 222-232.(a) Elahi, S. M.; Ahmadi Khoshooei, M.; Scott, C. E.; Chen, Z.; Pereira‐Almao, P., In‐situ upgrading of heavy oil using nano‐catalysts: A computational fluid dynamics study of hydrogen and vacuum residue injection. The Canadian Journal of Chemical Engineering 2019, 97, 1352-1360; (b) Sun, X.; Zhang, Y.; Chen, G.; Gai, Z., Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies 2017, 10 (3), 345(a) Dragonetti, R.; Napolitano, M.; Di Filippo, S.; Romano, R., Modeling energy conversion in a tortuous stack for thermoacostic applications. Applied Thermal Engineering 2016, 103, 233-242; (b) Zhu, Q.; Xuan, Y., Pore scale numerical simulation of heat transfer and flow in porous volumetric solar receivers. Applied Thermal Engineering 2017, 120, 150- 159.(a) Iwamoto, M.; Yoda, Y.; Yamazoe, N.; Seiyama, T., Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides. The Journal of Physical Chemistry 1978, 82 (24), 2564-2570; (b) Astruc, D., Nanoparticles and catalysis. John Wiley & Sons: 2008; (c) Jana, N. R.; Wang, Z.; Pal, T., Redox catalytic properties of palladium nanoparticles: surfactant and electron donor− acceptor effects. Langmuir 2000, 16 (6), 2457-2463Wang, X.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.; Martínez-Arias, A.; Fernández-García, M., In situ studies of the active sites for the water gas shift reaction over Cu− CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. The Journal of Physical Chemistry B 2006, 110 (1), 428-434.Labastie, A.; Guy, M.; Delclaud, J. P.; Iffly, R. In Effect of flow rate and wettability on water-oil relative permeabilities and capillary pressure, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers: 1980Anderson, W. G., Wettability literature survey part 5: the effects of wettability on relative permeability. Journal of Petroleum Technology 1987, 39 (11), 1,453-1,468.(a) Burdine, N., Relative permeability calculations from pore size distribution data. Journal of Petroleum Technology 1953, 5 (03), 71-78; (b) Land, C. S., Calculation of imbibition relative permeability for two-and three-phase flow from rock properties. Society of Petroleum Engineers Journal 1968, 8 (02), 149-156; (c) Johnson, E.; Bossler, D.; Bossler, V., Calculation of relative permeability from displacement experiments. 1959.Hardy, W. C.; Shepard, J. C.; Reddick, K. L., Secondary recovery of petroleum with a preformed emulsion slug drive. Google Patents: 1966(a) McGurn, M. K.; Baydak, E. N.; Sztukowski, D. M.; Yarranton, H. W., The effect of inorganic solids on emulsion layer growth in asphaltene‐stabilized water‐in‐oil emulsions. The Canadian Journal of Chemical Engineering 2017, 95 (10), 1909-1924; (b) Yang, F.; Tchoukov, P.; Dettman, H.; Teklebrhan, R. B.; Liu, L.; Dabros, T.; Czarnecki, J.; Masliyah, J.; Xu, Z., Asphaltene subfractions responsible for stabilizing water-in-crude oil emulsions. Part 2: Molecular representations and molecular dynamics simulations. Energy & Fuels 2015, 29 (8), 4783-4794.ORIGINAL1039448281.2019.pdf1039448281.2019.pdfTesis de Maestría en Ingeniería - Ingeniería de Petróleosapplication/pdf1152131https://repositorio.unal.edu.co/bitstream/unal/75839/1/1039448281.2019.pdfc49c2fb51e137ee071ce1ae126ab3ca5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75839/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/75839/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL1039448281.2019.pdf.jpg1039448281.2019.pdf.jpgGenerated Thumbnailimage/jpeg4312https://repositorio.unal.edu.co/bitstream/unal/75839/4/1039448281.2019.pdf.jpg5b25ddf240d60dc8d039f598872d44b5MD54unal/75839oai:repositorio.unal.edu.co:unal/758392024-07-25 23:15:15.875Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==