Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas
Se propone una metodología para zonificar hidrogeológicamente el país considerando experiencias en otros países e incluyendo rocas ígneas y metamórficas con base en información existente. Después de revisada la información disponible y evaluar el uso de productos de sensores remotos, los principales...
- Autores:
-
Cárdenas Giraldo, Deisy Natalia
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82871
- Palabra clave:
- 550 - Ciencias de la tierra
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Sensores remotos
Hidrogeología
Aguas subterráneas - Procesamiento de datos
Zonificación hidrogeológica
Colombia
Rocas cristalinas
Sensores remotos
Anomalía de almacenamiento de agua subterránea
Hydrogeological zoning
Crystalline rocks
Groundwater storage anomaly
Remote sensing
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_06bf4c723dbe086b99b51ed3d2f67110 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82871 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas |
dc.title.translated.eng.fl_str_mv |
Hydrogeological zoning of Colombia from existing information, including crystalline rocks |
title |
Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas |
spellingShingle |
Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas 550 - Ciencias de la tierra 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Sensores remotos Hidrogeología Aguas subterráneas - Procesamiento de datos Zonificación hidrogeológica Colombia Rocas cristalinas Sensores remotos Anomalía de almacenamiento de agua subterránea Hydrogeological zoning Crystalline rocks Groundwater storage anomaly Remote sensing |
title_short |
Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas |
title_full |
Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas |
title_fullStr |
Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas |
title_full_unstemmed |
Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas |
title_sort |
Zonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinas |
dc.creator.fl_str_mv |
Cárdenas Giraldo, Deisy Natalia |
dc.contributor.advisor.none.fl_str_mv |
Ortiz Pimienta, Carolina Caballero Acosta, Jose Humberto |
dc.contributor.author.none.fl_str_mv |
Cárdenas Giraldo, Deisy Natalia |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica |
topic |
550 - Ciencias de la tierra 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Sensores remotos Hidrogeología Aguas subterráneas - Procesamiento de datos Zonificación hidrogeológica Colombia Rocas cristalinas Sensores remotos Anomalía de almacenamiento de agua subterránea Hydrogeological zoning Crystalline rocks Groundwater storage anomaly Remote sensing |
dc.subject.lemb.none.fl_str_mv |
Sensores remotos Hidrogeología Aguas subterráneas - Procesamiento de datos |
dc.subject.proposal.spa.fl_str_mv |
Zonificación hidrogeológica Colombia Rocas cristalinas Sensores remotos Anomalía de almacenamiento de agua subterránea |
dc.subject.proposal.eng.fl_str_mv |
Hydrogeological zoning Crystalline rocks Groundwater storage anomaly Remote sensing |
description |
Se propone una metodología para zonificar hidrogeológicamente el país considerando experiencias en otros países e incluyendo rocas ígneas y metamórficas con base en información existente. Después de revisada la información disponible y evaluar el uso de productos de sensores remotos, los principales insumos consisten en el Atlas Geológico de Colombia (AGC) 1:500.000 versión 2020 que constituye la geología más detallada homologada y homogenizada por el SGC con cobertura nacional completa y la anomalía de almacenamiento de agua subterránea somera (GWS-GLDAS) obtenida de la asimilación de datos de la misión GRACE en el modelo GLDAS versión 2.2. La zonificación propuesta consiste básicamente en la actualización de las provincias definidas en IDEAM (2010) considerando elementos conceptuales tomados de otros países y refinando los límites según las unidades cronoestratigráficas y fallas del AGC, además de divisorias de áreas y zonas hidrográficas. Las rocas cristalinas se incluyeron nombrando las zonas de “basamento” (en IDEAM, 2010) como ocho provincias hidrogeológicas nuevas, la geología usada no cuenta con información suficiente para discretizar su potencial hidrogeológico. El uso de GWS-GLDAS permitió evaluar el comportamiento hidrológico subterráneo en todas las provincias propuestas, mostrando que en las rocas cristalinas y volcánicas también hay cambios importantes y con base en esta variable se plantea una división al interior de seis provincias en regiones hidrogeológicas. El principal aporte de esta propuesta es incluir las rocas cristalinas y volcánicas en la zonificación hidrogeológica con base en aspectos geológicos e hidrológicos asociados a la anomalía de almacenamiento de agua subterránea (tomado de la fuente) |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-11-24 |
dc.date.accessioned.none.fl_str_mv |
2023-01-02T16:24:28Z |
dc.date.available.none.fl_str_mv |
2023-01-02T16:24:28Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82871 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82871 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Abdelmohsen, K., Sultan, M., Ahmed, M., Save, H., Elkaliouby, B., Emil, M., Yan, E., Abotalib, A. Z., Krishnamurthy, R. V., & Abdelmalik, K. (2019). Response of deep aquifers to climate variability. Science of the Total Environment, 677, 530–544. https://doi.org/10.1016/j.scitotenv.2019.04.316 Abdullah, A., Akhir, J. ., & Abdullah, I. (2010). Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran – Sungi Lembing Area, Malaysia. The Electronic Journal of Geotechnical Engineering, 15, 949–957. Ahmadi, H., & Pekkan, E. (2021). Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences, 11(5), 1–31. https://doi.org/10.3390/GEOSCIENCES11050183 Ahmed, M., & Abdelmohsen, K. (2018). Quantifying Modern Recharge and Depletion Rates of the Nubian Aquifer in Egypt. Surveys in Geophysics, 39(4), 729–751. https://doi.org/10.1007/s10712-018-9465-3 Alimi, J. (n.d.). Groundwater Resources and Management in Nigeria. ARSET. (n.d.). Sinopsis del Satélite GRACE y Sus Datos y Aplicaciones. NASA Applied Remote Sensing Training Program (ARSET). Awange, J. L., Gebremichael, M., Forootan, E., Wakbulcho, G., Anyah, R., Ferreira, V. G., & Alemayehu, T. (2014). Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Advances in Water Resources, 74, 64–78. https://doi.org/10.1016/j.advwatres.2014.07.012 Barrero, D., Pardo, A., Vargas, C. ., & Martínez, J. . (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. In Agencia Nacional de Hidrocarburos - A.N.H.- (Issues 978-958-98237-0–5). https://doi.org/ISBN: 978-958-98237-0-5 Belle, P., Lachassagne, P., Mathieu, F., Barbet, C., Brisset, N., & Gourry, J.-C. (2019). Characterization and location of the laminated layer within hard rock weathering profiles from electrical resistivity tomography: implications for water well siting. Geological Society, London, Special Publications, 479(1), 187–205. https://doi.org/10.1144/SP479.7 Betancur, T., García, D. A., Vélez, A. J., Gómez, A. M., Flórez, C., Patiño, J., & Ortíz, J. A. (2017). Aguas subterráneas , humedales y servicios ecosistémicos en Colombia. Biota Colombiana, 18(1), 1–27. https://doi.org/10.21068/c2017.v18n01a1 Bolaños, S., Salazar, J. F., Betancur, T., & Werner, M. (2021). GRACE reveals depletion of water storage in northwestern South America between ENSO extremes. Journal of Hydrology, 596, 1–13. https://doi.org/10.1016/j.jhydrol.2020.125687 Brugeron, A., Paroissien, J. B., & Tillier, L. (2018). Référentiel hydrogéologique BDLISA version 2 : Principes de construction et évolutions (p. 69). Central Ground Water Board - CGWB. (2012). Aquifer Systems of India. Chilton, P. J., & Foster, S. (1995). Hydrogeological Characterisation and Water-Supply Potential of Basement Aquifers in Tropical Africa. Hydrogeology Journal, 3(1), 36–49. https://doi.org/10.1007/s100400050061 Chowdhury, A., Jha, M. K., & Chowdary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environmental Earth Sciences, 59(6), 1209–1222. https://doi.org/10.1007/s12665-009-0110-9 Cross, A. M. (1988). Detection of circular geological features using the Hough transform. International Journal of Remote Sensing, 9(9), 1519–1528. https://doi.org/10.1080/01431168808954956 Custodio, E. (2003). Hydrogeological similarities and differences between volcanic and hard rocks. International Conference on Groundwater in Fractured Rocks, 5. Das, B., & Singh, S. K. (2016). Ground water potential zone mapping of semi-arid region of Kalaburgi and Yadgir districts of North Karnataka: A geospatial analysis approach. International Journal of Current Research, 8(3), 28797–28807. Dewandel, B., Lachassagne, P., Wyns, R., Maréchal, J. C., & Krishnamurthy, N. S. (2006). A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330(1–2), 260–284. https://doi.org/10.1016/j.jhydrol.2006.03.026 Díaz-Alcaide, S., & Martínez-Santos, P. (2019). Review: Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307–2324. https://doi.org/10.1007/s10040-019-02001-3 DNP. (1983). Mapa Hidrogeológico General de Colombia Escala 1:500.000. El-Naqa, A., Hammouri, N., Ibrahim, K., & El-Taj, M. (2009). Integrated Approach for Groundwater Exploration in Wadi Araba Using Remote Sensing and GIS. Jordan Journal of Civil Engineering, 3(3), 229–243. Fenta, M. C., Anteneh, Z. L., Szanyi, J., Walker, D., Walker, D., & Walker, D. (2020). Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area, Northwest Ethiopia. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/J.GSD.2020.100408 Foster, S. (1984). African groundwater development - the challenges for hydrogeological science. Challenges in African Hydrology and Water Resources, December, 3–12. Foster, S., Hirata, R., Gomes, D., D’Elia, M., & Paris, M. (2002). Proteccion de la Calidad del Agua Subterránea - Guía para empresas de agua, autoridades municipales y agencias ambientales. Banco Mundial. Frappart, F., & Ramillien, G. (2018). Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060829 Freeze, R. ., & Cherry, J. . (1979). Groundwater. Prentice Hall. Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66 Gilbrich, W., & Struckmeier, W. (2014). 50 Years of Hydro(geo)logical Mapping Activities. Gómez, J. (2022). La geología como condicionante del paisaje - YouTube. Sociedad Geográfica de Colombia. https://www.youtube.com/watch?v=a4_Zl-iBHX8 Gómez, J., Montes, N. ., & Compiladores. (2020). Atlas Geológico de Colombia 2020 - Escala 1:500.000. Servicio Geológico Colombiano. Gómez, L. A. (2017). Dinámica espacio temporal del almacenamiento de agua en el suelo en el Norte de Suramérica. Universidad Nacional de Colombia. González de Vallejo, L., Ferrer, M., Ortuño, L., & Oteo, C. (2002). Ingeniería Geológica. Pearson Educación. Guarín, G., & Poveda, G. (2013). Variabilidad Espacial Y Temporal Del Almacenamiento De Agua En El Suelo En Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(142), 89–113. Guihéneuf, N., Boisson, A., Bour, O., Dewandel, B., Perrin, J., Dausse, A., Viossanges, M., Chandra, S., Ahmed, S., & Maréchal, J. C. (2014). Groundwater flows in weathered crystalline rocks: Impact of piezometric variations and depth-dependent fracture connectivity. Journal of Hydrology, 511, 320–324. Gun, J., Vasak, S., & Reckman, J. (2008). Scale-dependent hydrogeological zoning for effective communication and efficient information management on groundwater. 33rd International Geological Congress. Henry, C. M., Allen, D. M., & Huang, J. (2011). Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeology Journal, 19(4), 741–755. https://doi.org/10.1007/s10040-011-0724-3 Herbich, P., Woźnicka, M., & Witczak, S. (2010). Hydrogeological cartography as a tool supporting water management, spatial planning and environmental protection. Przeglad Geologiczny, 58(9 PART 1), 746–753. Herms, I., & Arnó, G. (2016). Cartografía Hidrogeológica. Hoyos, F. (2012). GEOTECNIA diccionario básico. Huat, B. B. ., Toll, D. ., & Prasad, A. (Eds. . (2012). Handbook of Tropical Residual Soils Engineering. CRC Press. IDEAM. (2010). Estudio Nacional de Agua 2010. IDEAM. (2013a). Aguas Subterráneas en Colombia Una Visión General. IDEAM. (2013b). Zonificación y Codificación de Unidades Hidrográficas e Hidrogeológicas de Colombia. IDEAM. (2015a). Estudio Nacional del Agua 2014. IDEAM. IDEAM. (2015b). Principios básicos para el conocimiento y monitoreo de las aguas subterráneas - Contenidos del Taller de Formación (p. 180). IDEAM. (2019). Estudio Nacional del Agua 2018. IDEAM. IGAC. (1997). Mapa Regiones Naturales de Colombia. Escala 1:5.000.000. INGEOMINAS. (1977). Mapa Hidrogeológico de Colombia Escala 1:3.000.000. INGEOMINAS. (1987). Memoria del Mapa Hidrogeológico de Colombia Edición 1987. INGEOMINAS. (2004a). Atlas de Aguas Subterráneas de Colombia a escala 1:500.000. INGEOMINAS. (2004b). Programa de exploración de aguas subterráneas – PEXAS. INGEOMINAS. (2011). Mapa litoestratigráfico con permeabilidades de Colombia escala 1:500.000. ISPRA. (2018). Carta Idrogeologica D’Italia – 1:50.000 (p. 71). Joshi, A. K. (1989). Automatic detection of lineaments from Landsat data. Digest - International Geoscience and Remote Sensing Symposium (IGARSS), 1, 85–88. https://doi.org/10.1109/IGARSS.1989.567160 Koike, K., Nagano, S., & Ohmi, M. (1995). Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Computers & Geosciences, 21(9), 1091–1104. https://doi.org/10.1016/0098-3004(95)00042-7 Krishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing, 17(10), 1867–1884. https://doi.org/10.1080/01431169608948744 Kumar, P. K. D., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601. https://doi.org/10.1080/01431160601086050 Kuriakose, S. L., Devkota, S., Rossiter, D. G., & Jetten, V. G. (2009). Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. CATENA, 79(1), 27–38. https://doi.org/10.1016/J.CATENA.2009.05.005 Lachassagne, P. (2008). Overview of the hydrogeology of hard rock aquifers: Applications for their survey, management, modelling and protection. In Groundwater Dynamics in Hard Rock Aquifers: Sustainable Management and Optimal Monitoring Network Design (pp. 40–63). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6540-8_3 Lachassagne, P., Aunay, B., Frissant, N., Guilbert, M., & Malard, A. (2014). High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: a Mayotte, Comoros, case study. Terra Nova, 26(4), 15 p. https://doi.org/10.1111/TER.12102 Lachassagne, P., Dewandel, B., & Wyns, R. (2014a). Hydrogeology of Hard Rock Aquifers. In S. Eslamian (Ed.), Handbook of Engineering Hydrology (pp. 297–326). CRC Press. https://doi.org/10.1201/b15625-18 Lachassagne, P., Dewandel, B., & Wyns, R. (2014b). The conceptual model of weathered hard rock aquifers and its practical applications. In J. M. Sharp (Ed.), Fractured Rock Hydrogeology (IAH Select, Vol. 20, pp. 35–68). CRC Press. https://doi.org/10.1201/b17016-7 Lachassagne, P., Dewandel, B., & Wyns, R. (2021). Review: Hydrogeology of weathered crystalline/hard-rock aquifers—guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal 2021, 1–34. https://doi.org/10.1007/S10040-021-02339-7 Lachassagne, P., Wyns, R., Bérard, P., Bruel, T., Chéry, L., Coutand, T., Desprats, J. F., & Le Strat, P. (2001). Exploitation of high-yields in hard-rock aquifers: Downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water, 39(4), 568–581. https://doi.org/10.1111/j.1745-6584.2001.tb02345.x Lachassagne, P., Wyns, R., & Dewandel, B. (2011). The fracture permeability of Hard Rock Aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145–161. https://doi.org/10.1111/j.1365-3121.2011.00998.x Landerer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4), 4531. https://doi.org/10.1029/2011WR011453 Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., … Bettadpur, S. (2019). Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 55(9), 7564–7586. https://doi.org/10.1029/2018WR024618 MacDonald, A. ., & Davies, J. (2000). A brief review of groundwater for rural water supply in sub-Saharan Africa - BGS Technical Report WC/00/33. Maréchal, J. C., Dewandel, B., & Subrahmanyam, K. (2004). Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resources Research, 40(11). https://doi.org/10.1029/2004WR003137 Maréchal, J. C., Selles, A., Dewandel, B., Boisson, A., Perrin, J., & Ahmed, S. (2018). An observatory of groundwater in crystalline rock aquifers exposed to a changing environment: Hyderabad, India. Vadose Zone Journal, 17(1), 1–14. https://doi.org/10.2136/vzj2018.04.0076 Margat, J., & Gun, J. (2013). Groundwater around the World (CRC Press (ed.)). https://doi.org/https://doi.org/10.1201/b13977 Marghany, M., & Hashim, M. (2010). Lineament mapping using multispectral remote sensing satellite data. Research Journal of Applied Sciences, 5(2), 126–130. https://doi.org/10.3923/RJASCI.2010.126.130 Masoud, A., & Koike, K. (2017). Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Computers & Geosciences, 106, 89–100. https://doi.org/10.1016/J.CAGEO.2017.06.006 Maxey, G. B. (1964). Hydrostratigraphic units. Journal of Hydrology, 2(2), 124–129. https://doi.org/10.1016/0022-1694(64)90023-X Mehta, A. (n.d.). Satélites, sensores y modelos de sistemas terrestres de la NASA usados para la gestión de recursos hídricos - NASA Applied Remote Sensing Training Program (ARSET). Mehta, A., Podest, E., & McCartney, S. (2020). Groundwater Monitoring using Observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) Missions - NASA Applied Remote Sensing Training Program (ARSET). Meijerink, A. M. J. (1996). Remote sensing applications to hydrology: groundwater. Hydrological Sciences Journal, 41(4), 549–561. https://doi.org/10.1080/02626669609491525 Meijerink, A. M. J., Bannert, D., Batelaan, O., Lubczynski, M. ., & Pointet, T. (2007). Remote Sensing Applications to Groundwater. IHP-VI, Series on Groundwater No.16 (UNESCO (ed.)). Mohamed, A. (2019). Hydro-geophysical study of the groundwater storage variations over the Libyan area and its connection to the Dakhla basin in Egypt. Journal of African Earth Sciences, 157(December 2018), 103508. https://doi.org/10.1016/j.jafrearsci.2019.05.016 Mohamed, A., Sultan, M., Ahmed, M., Yan, E., & Ahmed, E. (2017). Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface models, and geochemical and geophysical data. Bulletin of the Geological Society of America, 129(5–6), 534–546. https://doi.org/10.1130/B31460.1 Monreal, R., Rangel, M., Grijalva, A., Minjarez, I., & Morales, M. (2011). Metodología para la definición de unidades hidroestratigráficas: Caso del acuífero del valle del río Yaqui, Sonora, México. Boletin de La Sociedad Geológica Mexicana, 63(1), 119–135. https://doi.org/10.18268/bsgm2011v63n1a10 Nag, S. K., & Chowdhury, P. (2019). Decipherment of potential zones for groundwater occurrence: a study in Khatra Block, Bankura District, West Bengal, using geospatial techniques. Environmental Earth Sciences, 78(2), 1–14. https://doi.org/10.1007/S12665-018-8034-X Oliveira, J., Brito, A., De Carlo, R., & Feijó, T. (2014). Manual de Cartografia Hidrogeológica (Servicio Geológico de Brasil - CPRM (ed.)). Ospina, D. L., & Vargas, C. A. (2018). Monitoring runoff coefficients and groundwater levels using data from GRACE, GLDAS, and hydrometeorological stations: analysis of a Colombian foreland basin. Hydrogeology Journal, 26(8), 2769–2779. https://doi.org/10.1007/s10040-018-1824-0 Pantaleone, D. V., Vincenzo, A., Fulvio, C., Silvia, F., Cesaria, M., Giuseppina, M., Ilaria, M., Vincenzo, P., Rosa, S. A., Gianpietro, S., Giuseppe, T., & Pietro, C. (2018). Hydrogeology of continental southern Italy. Journal of Maps, 14(2), 230–241. https://doi.org/10.1080/17445647.2018.1454352 Petit, V., Hanot, F., & Pointet, T. (2003). Référentiel hydrogéologique BD RHF. Guide méthodologique de découpage des entités. BRGM/RP-52261-FR (p. 101). https://doi.org/PNR61 Portal, A., Belle, P., Mathieu, F., Lachassagne, P., & Brisset, N. (2017). Identification and characterization of hard rocks weathering profile by electrical resistivity imaging. 23rd European Meeting of Environmental and Engineering Geophysics. https://doi.org/10.3997/2214-4609.201702054 Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475. https://doi.org/10.1007/S00254-007-0992-3/FIGURES/9 Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071. https://doi.org/10.1007/S12517-014-1668-4/FIGURES/5 Rahnama, M., & Gloaguen, R. (2014). TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sensing 2014, Vol. 6, Pages 5938-5958, 6(7), 5938–5958. https://doi.org/10.3390/RS6075938 Ramírez, T. . (2016). Análisis de la problemática Socioambiental generada por la Construcción de Túneles Viales en Colombia: Caso de estudio Túnel de Occidente. Universidad Nacional de Colombia. Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., & Shafri, H. Z. M. (2010). Lineament mapping and its application in landslide hazard assessment: A review. Bulletin of Engineering Geology and the Environment, 69(2), 215–233. https://doi.org/10.1007/S10064-009-0255-5 Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883. https://doi.org/10.1007/S12145-015-0220-8/FIGURES/5 Richey, A. S., Thomas, B. F., Lo, M.-H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238. https://doi.org/10.1002/2015WR017349 Richts, A., Struckmeier, W. F., & Zaepke, M. (2011). WHYMAP and the Groundwater Resources Map of the World 1:25,000,000. In Sustaining Groundwater Resources (pp. 159–173). https://doi.org/10.1007/978-90-481-3426-7 Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15(1), 159–166. https://doi.org/10.1007/S10040-006-0103-7/FIGURES/5 Rodell, M., & Famiglietti, J. S. (1999). Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resources Research, 35(9), 2705–2723. https://doi.org/10.1029/1999WR900141 Rodell, M., & Famiglietti, J. S. (2002). The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. Journal of Hydrology, 263(1–4), 245–256. https://doi.org/10.1016/S0022-1694(02)00060-4 Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381 Rui, H., & Beaudoing, H. (2021). README Document for NASA GLDAS Version 2 Data Products. Goddard Earth Sciences Data and Information Services Center (GES DISC). NASA. Scanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4), 1–9. https://doi.org/10.1029/2011WR011312 SGC. (2020). Atlas Geológico de Colombia 2020. https://www2.sgc.gov.co/MGC/Paginas/agc_500K2020.aspx Shafique, M., van der Meijde, M., & Rossiter, D. G. (2011). Geophysical and remote sensing-based approach to model regolith thickness in a data-sparse environment. CATENA, 87(1), 11–19. https://doi.org/10.1016/J.CATENA.2011.04.004 Shafique, M., van der Meijde, M., & Ullah, S. (2011). Regolith modeling and its relation to earthquake induced building damage: A remote sensing approach. Journal of Asian Earth Sciences, 42(1–2), 65–75. https://doi.org/10.1016/J.JSEAES.2011.04.004 Sharpe, D., Russell, H., Dyke, L., Grasby, S., Gleeson, T., Michaud, Y., Savard, M., Mei, M., & Wozniak, P. (2010). Hydrogeological regions of Canada - Chapter 8. Sima, J. (n.d.). Hydrogeological zones Czech Republic. Retrieved November 6, 2019, from http://www.geology.cz/projekt681900/english/learning-resources Singhal, B. B. ., & Gupta, R. . (2010). Applied Hydrogeology of Fractured Rocks (Second Edi). Springer. https://doi.org/10.1007/978-90-481-8799-7 Soto-Pinto, C., Arellano-Baeza, A., & Sánchez, G. (2013). A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Computers and Geosciences, 57, 93–103. https://doi.org/10.1016/J.CAGEO.2013.03.019 Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038I006P00913 Struckmeier, W., & Margat, J. (1995). Hydrogeological Maps A Guide and a Standard Legend (International Association of Hydrogeologists (ed.)). Suárez, J. (2009). Deslizamientos Tomo I: Análisis Geotécnico. Tarbuck, E. J., Lutgens, F. K., & Tasa, D. (2005). Ciencias de la Tierra. Pearson Educación S.A. Taylor, R. G., & Howard, K. W. F. (1999). The influence of tectonic setting on the hydrological characteristics of deeply weathered terrains: evidence from Uganda. Journal of Hydrology, 218(1–2), 44–71. https://doi.org/10.1016/S0022-1694(99)00024-4 Thomas, A. C., Reager, J. T., Famiglietti, J. S., & Rodell, M. (2014). A GRACE-based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters, 41(5), 1537–1545. https://doi.org/10.1002/2014GL059323 Thomas, B. F., Famiglietti, J. S., Landerer, F. W., Wiese, D. N., Molotch, N. P., & Argus, D. F. (2017). GRACE Groundwater Drought Index: Evaluation of California Central Valley groundwater drought. Remote Sensing of Environment, 198, 384–392. https://doi.org/10.1016/j.rse.2017.06.026 UNESCO. (1985). Aguas subterráneas en rocas duras - Proyecto 8.6 del Programa Hidrológico Internacional. Urrea, V. (2017). Variabilidad espacial y temporal del ciclo anual de lluvia en Colombia. Universidad Nacional de Colombia sede Medellín. USGS. (1992). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-J. USGS. (1995). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-M. Vargas, N. O. (2001). Zonas hidrogeológicas homogéneas de Colombia. Vargas, N. O. (2005). Zonas hidrogeológicas homogéneas de Colombia. 17. Vargas, N. O. (2006). Zonas hidrogeológicas homogéneas de Colombia. Boletín Geológico y Minero, 117(1), 47–61. Wendland, F., Blum, A., Coetsiers, M., Gorova, R., Griffioen, J., Grima, J., Hinsby, K., Kunkel, R., Marandi, A., Melo, T., Panagopoulos, A., Pauwels, H., Ruisi, M., Traversa, P., Vermooten, J. S. ., & Walraevens, K. (2007). European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environmental Geology. https://doi.org/10.1007/s00254-007-0966-5 Wesley, L. (2010). Geotechnical Engineering in Residual Soils. John Wiley & Sons, Inc. Worthington, S. R. H., Davies, G. J., & Alexander, E. C. (2016). Enhancement of bedrock permeability by weathering. Earth-Science Reviews, 160, 188–202. https://doi.org/10.1016/J.EARSCIREV.2016.07.002 Wright, E. P., & Burgess, W. G. (1992). The hydrogeology of crystalline basement aquifers in Africa. Geological Society Special Publication, 66, 1–27. https://doi.org/10.1144/GSL.SP.1992.066.01.01 Wu, Q., Si, B., He, H., & Wu, P. (2019). Determining regional-scale groundwater recharge with GRACE and GLDAS. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020154 Wyns, R., Baltassat, J.-M., Lachassagne, P., Legchenko, A., Vairon, J., & Mathieu, F. (2004). Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bulletin de La Société Géologique de France, 175(1), 21–34. https://doi.org/10.2113/175.1.21 Zaporozec, A. (1972). Groundwater zoning in water resources management. Journal of the American Water Resources Association, 8(6), 1137–1143. Zlatopolsky, A. A. (1992). Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis—experimental results. Computers & Geosciences, 18(9), 1121–1126. https://doi.org/10.1016/0098-3004(92)90036-Q |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 158 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82871/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82871/2/1038407489.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82871/3/1038407489.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a d40e8a31534bdf4610fdb29dcc7e1bfc 5cd1d6689b4a1c335db0b3afce66ffb1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090173811523584 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ortiz Pimienta, Carolina2ffbc8c5f2bc12bd561a3b7bcab672f3600Caballero Acosta, Jose Humbertobb560127d3e7d33dfef7949ac6c0a417600Cárdenas Giraldo, Deisy Nataliaa74f0cd6e1805776589b08694ad8172a2023-01-02T16:24:28Z2023-01-02T16:24:28Z2022-11-24https://repositorio.unal.edu.co/handle/unal/82871Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Se propone una metodología para zonificar hidrogeológicamente el país considerando experiencias en otros países e incluyendo rocas ígneas y metamórficas con base en información existente. Después de revisada la información disponible y evaluar el uso de productos de sensores remotos, los principales insumos consisten en el Atlas Geológico de Colombia (AGC) 1:500.000 versión 2020 que constituye la geología más detallada homologada y homogenizada por el SGC con cobertura nacional completa y la anomalía de almacenamiento de agua subterránea somera (GWS-GLDAS) obtenida de la asimilación de datos de la misión GRACE en el modelo GLDAS versión 2.2. La zonificación propuesta consiste básicamente en la actualización de las provincias definidas en IDEAM (2010) considerando elementos conceptuales tomados de otros países y refinando los límites según las unidades cronoestratigráficas y fallas del AGC, además de divisorias de áreas y zonas hidrográficas. Las rocas cristalinas se incluyeron nombrando las zonas de “basamento” (en IDEAM, 2010) como ocho provincias hidrogeológicas nuevas, la geología usada no cuenta con información suficiente para discretizar su potencial hidrogeológico. El uso de GWS-GLDAS permitió evaluar el comportamiento hidrológico subterráneo en todas las provincias propuestas, mostrando que en las rocas cristalinas y volcánicas también hay cambios importantes y con base en esta variable se plantea una división al interior de seis provincias en regiones hidrogeológicas. El principal aporte de esta propuesta es incluir las rocas cristalinas y volcánicas en la zonificación hidrogeológica con base en aspectos geológicos e hidrológicos asociados a la anomalía de almacenamiento de agua subterránea (tomado de la fuente)A methodology is proposed to hydrogeological zoning in the country considering experiences in other countries and including igneous and metamorphic rocks based on existing information. After reviewing the available information and evaluating the use of remote sensing products, the main inputs consist of the Geological Atlas of Colombia (AGC) 1:500.000 version 2020, which constitutes the most detailed geology approved and homogenized by the SGC with complete national coverage and the shallow groundwater storage anomaly (GWS-GLDAS) obtained from the assimilation of data from the GRACE mission in the GLDAS model version 2.2. The proposed zoning basically consists of updating the provinces defined in IDEAM (2010) considering conceptual elements taken from other countries and refining the limits according to the chronostratigraphic units and faults of the AGC, in addition to surface water basins. The crystalline rocks were included by naming the "basement" zones (in IDEAM, 2010) as seven new hydrogeological provinces, the geology used does not have enough information to discretize their hydrogeological potential. The use of GWS-GLDAS made it possible to evaluate the subterranean hydrological behavior in all the proposed provinces, showing that there are also important changes in crystalline and volcanic rocks and based on this variable, a division within six provinces into hydrogeological regions is proposed. The main contribution of this proposal is to include crystalline and volcanic rocks in the hydrogeological zoning based on geological and hydrological aspects associated with the groundwater storage anomalyMaestríaMagíster en Ingeniería - Recursos HidráulicosHidrogeologíaÁrea Curricular de Medio Ambientexvii, 158 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaSensores remotosHidrogeologíaAguas subterráneas - Procesamiento de datosZonificación hidrogeológicaColombiaRocas cristalinasSensores remotosAnomalía de almacenamiento de agua subterráneaHydrogeological zoningCrystalline rocksGroundwater storage anomalyRemote sensingZonificación hidrogeológica de Colombia a partir de información existente, incluyendo rocas cristalinasHydrogeological zoning of Colombia from existing information, including crystalline rocksTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAbdelmohsen, K., Sultan, M., Ahmed, M., Save, H., Elkaliouby, B., Emil, M., Yan, E., Abotalib, A. Z., Krishnamurthy, R. V., & Abdelmalik, K. (2019). Response of deep aquifers to climate variability. Science of the Total Environment, 677, 530–544. https://doi.org/10.1016/j.scitotenv.2019.04.316Abdullah, A., Akhir, J. ., & Abdullah, I. (2010). Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran – Sungi Lembing Area, Malaysia. The Electronic Journal of Geotechnical Engineering, 15, 949–957.Ahmadi, H., & Pekkan, E. (2021). Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences, 11(5), 1–31. https://doi.org/10.3390/GEOSCIENCES11050183Ahmed, M., & Abdelmohsen, K. (2018). Quantifying Modern Recharge and Depletion Rates of the Nubian Aquifer in Egypt. Surveys in Geophysics, 39(4), 729–751. https://doi.org/10.1007/s10712-018-9465-3Alimi, J. (n.d.). Groundwater Resources and Management in Nigeria.ARSET. (n.d.). Sinopsis del Satélite GRACE y Sus Datos y Aplicaciones. NASA Applied Remote Sensing Training Program (ARSET).Awange, J. L., Gebremichael, M., Forootan, E., Wakbulcho, G., Anyah, R., Ferreira, V. G., & Alemayehu, T. (2014). Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Advances in Water Resources, 74, 64–78. https://doi.org/10.1016/j.advwatres.2014.07.012Barrero, D., Pardo, A., Vargas, C. ., & Martínez, J. . (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. In Agencia Nacional de Hidrocarburos - A.N.H.- (Issues 978-958-98237-0–5). https://doi.org/ISBN: 978-958-98237-0-5Belle, P., Lachassagne, P., Mathieu, F., Barbet, C., Brisset, N., & Gourry, J.-C. (2019). Characterization and location of the laminated layer within hard rock weathering profiles from electrical resistivity tomography: implications for water well siting. Geological Society, London, Special Publications, 479(1), 187–205. https://doi.org/10.1144/SP479.7Betancur, T., García, D. A., Vélez, A. J., Gómez, A. M., Flórez, C., Patiño, J., & Ortíz, J. A. (2017). Aguas subterráneas , humedales y servicios ecosistémicos en Colombia. Biota Colombiana, 18(1), 1–27. https://doi.org/10.21068/c2017.v18n01a1Bolaños, S., Salazar, J. F., Betancur, T., & Werner, M. (2021). GRACE reveals depletion of water storage in northwestern South America between ENSO extremes. Journal of Hydrology, 596, 1–13. https://doi.org/10.1016/j.jhydrol.2020.125687Brugeron, A., Paroissien, J. B., & Tillier, L. (2018). Référentiel hydrogéologique BDLISA version 2 : Principes de construction et évolutions (p. 69).Central Ground Water Board - CGWB. (2012). Aquifer Systems of India.Chilton, P. J., & Foster, S. (1995). Hydrogeological Characterisation and Water-Supply Potential of Basement Aquifers in Tropical Africa. Hydrogeology Journal, 3(1), 36–49. https://doi.org/10.1007/s100400050061Chowdhury, A., Jha, M. K., & Chowdary, V. M. (2010). Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environmental Earth Sciences, 59(6), 1209–1222. https://doi.org/10.1007/s12665-009-0110-9Cross, A. M. (1988). Detection of circular geological features using the Hough transform. International Journal of Remote Sensing, 9(9), 1519–1528. https://doi.org/10.1080/01431168808954956Custodio, E. (2003). Hydrogeological similarities and differences between volcanic and hard rocks. International Conference on Groundwater in Fractured Rocks, 5.Das, B., & Singh, S. K. (2016). Ground water potential zone mapping of semi-arid region of Kalaburgi and Yadgir districts of North Karnataka: A geospatial analysis approach. International Journal of Current Research, 8(3), 28797–28807.Dewandel, B., Lachassagne, P., Wyns, R., Maréchal, J. C., & Krishnamurthy, N. S. (2006). A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330(1–2), 260–284. https://doi.org/10.1016/j.jhydrol.2006.03.026Díaz-Alcaide, S., & Martínez-Santos, P. (2019). Review: Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307–2324. https://doi.org/10.1007/s10040-019-02001-3DNP. (1983). Mapa Hidrogeológico General de Colombia Escala 1:500.000.El-Naqa, A., Hammouri, N., Ibrahim, K., & El-Taj, M. (2009). Integrated Approach for Groundwater Exploration in Wadi Araba Using Remote Sensing and GIS. Jordan Journal of Civil Engineering, 3(3), 229–243.Fenta, M. C., Anteneh, Z. L., Szanyi, J., Walker, D., Walker, D., & Walker, D. (2020). Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area, Northwest Ethiopia. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/J.GSD.2020.100408Foster, S. (1984). African groundwater development - the challenges for hydrogeological science. Challenges in African Hydrology and Water Resources, December, 3–12.Foster, S., Hirata, R., Gomes, D., D’Elia, M., & Paris, M. (2002). Proteccion de la Calidad del Agua Subterránea - Guía para empresas de agua, autoridades municipales y agencias ambientales. Banco Mundial.Frappart, F., & Ramillien, G. (2018). Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing, 10(6). https://doi.org/10.3390/rs10060829Freeze, R. ., & Cherry, J. . (1979). Groundwater. Prentice Hall.Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 1–21. https://doi.org/10.1038/sdata.2015.66Gilbrich, W., & Struckmeier, W. (2014). 50 Years of Hydro(geo)logical Mapping Activities.Gómez, J. (2022). La geología como condicionante del paisaje - YouTube. Sociedad Geográfica de Colombia. https://www.youtube.com/watch?v=a4_Zl-iBHX8Gómez, J., Montes, N. ., & Compiladores. (2020). Atlas Geológico de Colombia 2020 - Escala 1:500.000. Servicio Geológico Colombiano.Gómez, L. A. (2017). Dinámica espacio temporal del almacenamiento de agua en el suelo en el Norte de Suramérica. Universidad Nacional de Colombia.González de Vallejo, L., Ferrer, M., Ortuño, L., & Oteo, C. (2002). Ingeniería Geológica. Pearson Educación.Guarín, G., & Poveda, G. (2013). Variabilidad Espacial Y Temporal Del Almacenamiento De Agua En El Suelo En Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37(142), 89–113.Guihéneuf, N., Boisson, A., Bour, O., Dewandel, B., Perrin, J., Dausse, A., Viossanges, M., Chandra, S., Ahmed, S., & Maréchal, J. C. (2014). Groundwater flows in weathered crystalline rocks: Impact of piezometric variations and depth-dependent fracture connectivity. Journal of Hydrology, 511, 320–324.Gun, J., Vasak, S., & Reckman, J. (2008). Scale-dependent hydrogeological zoning for effective communication and efficient information management on groundwater. 33rd International Geological Congress.Henry, C. M., Allen, D. M., & Huang, J. (2011). Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeology Journal, 19(4), 741–755. https://doi.org/10.1007/s10040-011-0724-3Herbich, P., Woźnicka, M., & Witczak, S. (2010). Hydrogeological cartography as a tool supporting water management, spatial planning and environmental protection. Przeglad Geologiczny, 58(9 PART 1), 746–753.Herms, I., & Arnó, G. (2016). Cartografía Hidrogeológica.Hoyos, F. (2012). GEOTECNIA diccionario básico.Huat, B. B. ., Toll, D. ., & Prasad, A. (Eds. . (2012). Handbook of Tropical Residual Soils Engineering. CRC Press.IDEAM. (2010). Estudio Nacional de Agua 2010.IDEAM. (2013a). Aguas Subterráneas en Colombia Una Visión General.IDEAM. (2013b). Zonificación y Codificación de Unidades Hidrográficas e Hidrogeológicas de Colombia.IDEAM. (2015a). Estudio Nacional del Agua 2014. IDEAM.IDEAM. (2015b). Principios básicos para el conocimiento y monitoreo de las aguas subterráneas - Contenidos del Taller de Formación (p. 180).IDEAM. (2019). Estudio Nacional del Agua 2018. IDEAM.IGAC. (1997). Mapa Regiones Naturales de Colombia. Escala 1:5.000.000.INGEOMINAS. (1977). Mapa Hidrogeológico de Colombia Escala 1:3.000.000.INGEOMINAS. (1987). Memoria del Mapa Hidrogeológico de Colombia Edición 1987.INGEOMINAS. (2004a). Atlas de Aguas Subterráneas de Colombia a escala 1:500.000.INGEOMINAS. (2004b). Programa de exploración de aguas subterráneas – PEXAS.INGEOMINAS. (2011). Mapa litoestratigráfico con permeabilidades de Colombia escala 1:500.000.ISPRA. (2018). Carta Idrogeologica D’Italia – 1:50.000 (p. 71).Joshi, A. K. (1989). Automatic detection of lineaments from Landsat data. Digest - International Geoscience and Remote Sensing Symposium (IGARSS), 1, 85–88. https://doi.org/10.1109/IGARSS.1989.567160Koike, K., Nagano, S., & Ohmi, M. (1995). Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Computers & Geosciences, 21(9), 1091–1104. https://doi.org/10.1016/0098-3004(95)00042-7Krishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., & Manivel, M. (1996). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing, 17(10), 1867–1884. https://doi.org/10.1080/01431169608948744Kumar, P. K. D., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601. https://doi.org/10.1080/01431160601086050Kuriakose, S. L., Devkota, S., Rossiter, D. G., & Jetten, V. G. (2009). Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. CATENA, 79(1), 27–38. https://doi.org/10.1016/J.CATENA.2009.05.005Lachassagne, P. (2008). Overview of the hydrogeology of hard rock aquifers: Applications for their survey, management, modelling and protection. In Groundwater Dynamics in Hard Rock Aquifers: Sustainable Management and Optimal Monitoring Network Design (pp. 40–63). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6540-8_3Lachassagne, P., Aunay, B., Frissant, N., Guilbert, M., & Malard, A. (2014). High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: a Mayotte, Comoros, case study. Terra Nova, 26(4), 15 p. https://doi.org/10.1111/TER.12102Lachassagne, P., Dewandel, B., & Wyns, R. (2014a). Hydrogeology of Hard Rock Aquifers. In S. Eslamian (Ed.), Handbook of Engineering Hydrology (pp. 297–326). CRC Press. https://doi.org/10.1201/b15625-18Lachassagne, P., Dewandel, B., & Wyns, R. (2014b). The conceptual model of weathered hard rock aquifers and its practical applications. In J. M. Sharp (Ed.), Fractured Rock Hydrogeology (IAH Select, Vol. 20, pp. 35–68). CRC Press. https://doi.org/10.1201/b17016-7Lachassagne, P., Dewandel, B., & Wyns, R. (2021). Review: Hydrogeology of weathered crystalline/hard-rock aquifers—guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal 2021, 1–34. https://doi.org/10.1007/S10040-021-02339-7Lachassagne, P., Wyns, R., Bérard, P., Bruel, T., Chéry, L., Coutand, T., Desprats, J. F., & Le Strat, P. (2001). Exploitation of high-yields in hard-rock aquifers: Downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Ground Water, 39(4), 568–581. https://doi.org/10.1111/j.1745-6584.2001.tb02345.xLachassagne, P., Wyns, R., & Dewandel, B. (2011). The fracture permeability of Hard Rock Aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145–161. https://doi.org/10.1111/j.1365-3121.2011.00998.xLanderer, F. W., & Swenson, S. C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4), 4531. https://doi.org/10.1029/2011WR011453Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., … Bettadpur, S. (2019). Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 55(9), 7564–7586. https://doi.org/10.1029/2018WR024618MacDonald, A. ., & Davies, J. (2000). A brief review of groundwater for rural water supply in sub-Saharan Africa - BGS Technical Report WC/00/33.Maréchal, J. C., Dewandel, B., & Subrahmanyam, K. (2004). Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resources Research, 40(11). https://doi.org/10.1029/2004WR003137Maréchal, J. C., Selles, A., Dewandel, B., Boisson, A., Perrin, J., & Ahmed, S. (2018). An observatory of groundwater in crystalline rock aquifers exposed to a changing environment: Hyderabad, India. Vadose Zone Journal, 17(1), 1–14. https://doi.org/10.2136/vzj2018.04.0076Margat, J., & Gun, J. (2013). Groundwater around the World (CRC Press (ed.)). https://doi.org/https://doi.org/10.1201/b13977Marghany, M., & Hashim, M. (2010). Lineament mapping using multispectral remote sensing satellite data. Research Journal of Applied Sciences, 5(2), 126–130. https://doi.org/10.3923/RJASCI.2010.126.130Masoud, A., & Koike, K. (2017). Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Computers & Geosciences, 106, 89–100. https://doi.org/10.1016/J.CAGEO.2017.06.006Maxey, G. B. (1964). Hydrostratigraphic units. Journal of Hydrology, 2(2), 124–129. https://doi.org/10.1016/0022-1694(64)90023-XMehta, A. (n.d.). Satélites, sensores y modelos de sistemas terrestres de la NASA usados para la gestión de recursos hídricos - NASA Applied Remote Sensing Training Program (ARSET).Mehta, A., Podest, E., & McCartney, S. (2020). Groundwater Monitoring using Observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) Missions - NASA Applied Remote Sensing Training Program (ARSET).Meijerink, A. M. J. (1996). Remote sensing applications to hydrology: groundwater. Hydrological Sciences Journal, 41(4), 549–561. https://doi.org/10.1080/02626669609491525Meijerink, A. M. J., Bannert, D., Batelaan, O., Lubczynski, M. ., & Pointet, T. (2007). Remote Sensing Applications to Groundwater. IHP-VI, Series on Groundwater No.16 (UNESCO (ed.)).Mohamed, A. (2019). Hydro-geophysical study of the groundwater storage variations over the Libyan area and its connection to the Dakhla basin in Egypt. Journal of African Earth Sciences, 157(December 2018), 103508. https://doi.org/10.1016/j.jafrearsci.2019.05.016Mohamed, A., Sultan, M., Ahmed, M., Yan, E., & Ahmed, E. (2017). Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface models, and geochemical and geophysical data. Bulletin of the Geological Society of America, 129(5–6), 534–546. https://doi.org/10.1130/B31460.1Monreal, R., Rangel, M., Grijalva, A., Minjarez, I., & Morales, M. (2011). Metodología para la definición de unidades hidroestratigráficas: Caso del acuífero del valle del río Yaqui, Sonora, México. Boletin de La Sociedad Geológica Mexicana, 63(1), 119–135. https://doi.org/10.18268/bsgm2011v63n1a10Nag, S. K., & Chowdhury, P. (2019). Decipherment of potential zones for groundwater occurrence: a study in Khatra Block, Bankura District, West Bengal, using geospatial techniques. Environmental Earth Sciences, 78(2), 1–14. https://doi.org/10.1007/S12665-018-8034-XOliveira, J., Brito, A., De Carlo, R., & Feijó, T. (2014). Manual de Cartografia Hidrogeológica (Servicio Geológico de Brasil - CPRM (ed.)).Ospina, D. L., & Vargas, C. A. (2018). Monitoring runoff coefficients and groundwater levels using data from GRACE, GLDAS, and hydrometeorological stations: analysis of a Colombian foreland basin. Hydrogeology Journal, 26(8), 2769–2779. https://doi.org/10.1007/s10040-018-1824-0Pantaleone, D. V., Vincenzo, A., Fulvio, C., Silvia, F., Cesaria, M., Giuseppina, M., Ilaria, M., Vincenzo, P., Rosa, S. A., Gianpietro, S., Giuseppe, T., & Pietro, C. (2018). Hydrogeology of continental southern Italy. Journal of Maps, 14(2), 230–241. https://doi.org/10.1080/17445647.2018.1454352Petit, V., Hanot, F., & Pointet, T. (2003). Référentiel hydrogéologique BD RHF. Guide méthodologique de découpage des entités. BRGM/RP-52261-FR (p. 101). https://doi.org/PNR61Portal, A., Belle, P., Mathieu, F., Lachassagne, P., & Brisset, N. (2017). Identification and characterization of hard rocks weathering profile by electrical resistivity imaging. 23rd European Meeting of Environmental and Engineering Geophysics. https://doi.org/10.3997/2214-4609.201702054Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475. https://doi.org/10.1007/S00254-007-0992-3/FIGURES/9Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2015). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences, 8(9), 7059–7071. https://doi.org/10.1007/S12517-014-1668-4/FIGURES/5Rahnama, M., & Gloaguen, R. (2014). TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sensing 2014, Vol. 6, Pages 5938-5958, 6(7), 5938–5958. https://doi.org/10.3390/RS6075938Ramírez, T. . (2016). Análisis de la problemática Socioambiental generada por la Construcción de Túneles Viales en Colombia: Caso de estudio Túnel de Occidente. Universidad Nacional de Colombia.Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., & Shafri, H. Z. M. (2010). Lineament mapping and its application in landslide hazard assessment: A review. Bulletin of Engineering Geology and the Environment, 69(2), 215–233. https://doi.org/10.1007/S10064-009-0255-5Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8(4), 867–883. https://doi.org/10.1007/S12145-015-0220-8/FIGURES/5Richey, A. S., Thomas, B. F., Lo, M.-H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238. https://doi.org/10.1002/2015WR017349Richts, A., Struckmeier, W. F., & Zaepke, M. (2011). WHYMAP and the Groundwater Resources Map of the World 1:25,000,000. In Sustaining Groundwater Resources (pp. 159–173). https://doi.org/10.1007/978-90-481-3426-7Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15(1), 159–166. https://doi.org/10.1007/S10040-006-0103-7/FIGURES/5Rodell, M., & Famiglietti, J. S. (1999). Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resources Research, 35(9), 2705–2723. https://doi.org/10.1029/1999WR900141Rodell, M., & Famiglietti, J. S. (2002). The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. Journal of Hydrology, 263(1–4), 245–256. https://doi.org/10.1016/S0022-1694(02)00060-4Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381Rui, H., & Beaudoing, H. (2021). README Document for NASA GLDAS Version 2 Data Products. Goddard Earth Sciences Data and Information Services Center (GES DISC). NASA.Scanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48(4), 1–9. https://doi.org/10.1029/2011WR011312SGC. (2020). Atlas Geológico de Colombia 2020. https://www2.sgc.gov.co/MGC/Paginas/agc_500K2020.aspxShafique, M., van der Meijde, M., & Rossiter, D. G. (2011). Geophysical and remote sensing-based approach to model regolith thickness in a data-sparse environment. CATENA, 87(1), 11–19. https://doi.org/10.1016/J.CATENA.2011.04.004Shafique, M., van der Meijde, M., & Ullah, S. (2011). Regolith modeling and its relation to earthquake induced building damage: A remote sensing approach. Journal of Asian Earth Sciences, 42(1–2), 65–75. https://doi.org/10.1016/J.JSEAES.2011.04.004Sharpe, D., Russell, H., Dyke, L., Grasby, S., Gleeson, T., Michaud, Y., Savard, M., Mei, M., & Wozniak, P. (2010). Hydrogeological regions of Canada - Chapter 8.Sima, J. (n.d.). Hydrogeological zones Czech Republic. Retrieved November 6, 2019, from http://www.geology.cz/projekt681900/english/learning-resourcesSinghal, B. B. ., & Gupta, R. . (2010). Applied Hydrogeology of Fractured Rocks (Second Edi). Springer. https://doi.org/10.1007/978-90-481-8799-7Soto-Pinto, C., Arellano-Baeza, A., & Sánchez, G. (2013). A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Computers and Geosciences, 57, 93–103. https://doi.org/10.1016/J.CAGEO.2013.03.019Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038I006P00913Struckmeier, W., & Margat, J. (1995). Hydrogeological Maps A Guide and a Standard Legend (International Association of Hydrogeologists (ed.)).Suárez, J. (2009). Deslizamientos Tomo I: Análisis Geotécnico.Tarbuck, E. J., Lutgens, F. K., & Tasa, D. (2005). Ciencias de la Tierra. Pearson Educación S.A.Taylor, R. G., & Howard, K. W. F. (1999). The influence of tectonic setting on the hydrological characteristics of deeply weathered terrains: evidence from Uganda. Journal of Hydrology, 218(1–2), 44–71. https://doi.org/10.1016/S0022-1694(99)00024-4Thomas, A. C., Reager, J. T., Famiglietti, J. S., & Rodell, M. (2014). A GRACE-based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters, 41(5), 1537–1545. https://doi.org/10.1002/2014GL059323Thomas, B. F., Famiglietti, J. S., Landerer, F. W., Wiese, D. N., Molotch, N. P., & Argus, D. F. (2017). GRACE Groundwater Drought Index: Evaluation of California Central Valley groundwater drought. Remote Sensing of Environment, 198, 384–392. https://doi.org/10.1016/j.rse.2017.06.026UNESCO. (1985). Aguas subterráneas en rocas duras - Proyecto 8.6 del Programa Hidrológico Internacional.Urrea, V. (2017). Variabilidad espacial y temporal del ciclo anual de lluvia en Colombia. Universidad Nacional de Colombia sede Medellín.USGS. (1992). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-J.USGS. (1995). Ground Water Atlas of The United States - Hydrologic Investigations Atlas 730-M.Vargas, N. O. (2001). Zonas hidrogeológicas homogéneas de Colombia.Vargas, N. O. (2005). Zonas hidrogeológicas homogéneas de Colombia. 17.Vargas, N. O. (2006). Zonas hidrogeológicas homogéneas de Colombia. Boletín Geológico y Minero, 117(1), 47–61.Wendland, F., Blum, A., Coetsiers, M., Gorova, R., Griffioen, J., Grima, J., Hinsby, K., Kunkel, R., Marandi, A., Melo, T., Panagopoulos, A., Pauwels, H., Ruisi, M., Traversa, P., Vermooten, J. S. ., & Walraevens, K. (2007). European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environmental Geology. https://doi.org/10.1007/s00254-007-0966-5Wesley, L. (2010). Geotechnical Engineering in Residual Soils. John Wiley & Sons, Inc.Worthington, S. R. H., Davies, G. J., & Alexander, E. C. (2016). Enhancement of bedrock permeability by weathering. Earth-Science Reviews, 160, 188–202. https://doi.org/10.1016/J.EARSCIREV.2016.07.002Wright, E. P., & Burgess, W. G. (1992). The hydrogeology of crystalline basement aquifers in Africa. Geological Society Special Publication, 66, 1–27. https://doi.org/10.1144/GSL.SP.1992.066.01.01Wu, Q., Si, B., He, H., & Wu, P. (2019). Determining regional-scale groundwater recharge with GRACE and GLDAS. Remote Sensing, 11(2). https://doi.org/10.3390/rs11020154Wyns, R., Baltassat, J.-M., Lachassagne, P., Legchenko, A., Vairon, J., & Mathieu, F. (2004). Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bulletin de La Société Géologique de France, 175(1), 21–34. https://doi.org/10.2113/175.1.21Zaporozec, A. (1972). Groundwater zoning in water resources management. Journal of the American Water Resources Association, 8(6), 1137–1143.Zlatopolsky, A. A. (1992). Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis—experimental results. Computers & Geosciences, 18(9), 1121–1126. https://doi.org/10.1016/0098-3004(92)90036-QInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82871/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1038407489.2022.pdf1038407489.2022.pdfTesis Maestría en Ingeniería Eléctricaapplication/pdf15909755https://repositorio.unal.edu.co/bitstream/unal/82871/2/1038407489.2022.pdfd40e8a31534bdf4610fdb29dcc7e1bfcMD52THUMBNAIL1038407489.2022.pdf.jpg1038407489.2022.pdf.jpgGenerated Thumbnailimage/jpeg4778https://repositorio.unal.edu.co/bitstream/unal/82871/3/1038407489.2022.pdf.jpg5cd1d6689b4a1c335db0b3afce66ffb1MD53unal/82871oai:repositorio.unal.edu.co:unal/828712023-08-12 23:04:16.466Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |