Simplificación robusta de nubes de puntos usando análisis de componentes principales y algoritmos genéticos
Este artículo presenta un nuevo método de simplificación de nubes de puntos. El método propuesto, a diferencia de otros, no requiere la construcción previa de mallas poligonales y es robusto al ruido y a valores atípicos presentes en los datos. El método propuesto se compone principalmente de tres e...
- Autores:
-
Leal., Nallig E.
Leal., Esmeide A.
Branch., John W.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2009
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/33439
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/33439
http://bdigital.unal.edu.co/23519/
- Palabra clave:
- Point cloud simplification
PCA
Genetic Algorithms.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Este artículo presenta un nuevo método de simplificación de nubes de puntos. El método propuesto, a diferencia de otros, no requiere la construcción previa de mallas poligonales y es robusto al ruido y a valores atípicos presentes en los datos. El método propuesto se compone principalmente de tres etapas. En la primera etapa, se segmenta la nube de puntos en regiones homogéneas, usando el algoritmo kmeans. En la segunda etapa , se ajusta un plano de regresión de componentes principales robusto al ruido en cada cluster para determinar la tendencia local de los puntos. Finalmente, en la tercera etapa, usando un algoritmo genético se seleccionan los puntos de cada cluster cuyo plano de regresión de análisis de componentes principales minimice el ángulo con el plano de regresión del cluster. Resultados exper imentales muestran que la distribución local y global de la nube de puntos original se mantiene. |
---|