Study of the fractal structure of the Large-scale matter distribution in the Universe
The current cosmological view asserts that the universe is homogeneous and isotropic; the observed heterogeneities are local in nature and should vanish at sufficiently large scales. This principle is based firstly on philosophical considerations: the observed universe must be statistically equal to...
- Autores:
-
Chacón Cardona, César Alexander
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/53818
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/53818
http://bdigital.unal.edu.co/48485/
- Palabra clave:
- 52 Astronomía y ciencias afines / Astronomy
53 Física / Physics
Dark matter
Large-scale structure of the universe
Methods: statistical.
materia oscura
Estructuras a gran escala en el universo
Métodos: Estadísticos
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNACIONAL2_069f67b61bab5b623d76f3751456bdd2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/53818 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Study of the fractal structure of the Large-scale matter distribution in the Universe |
title |
Study of the fractal structure of the Large-scale matter distribution in the Universe |
spellingShingle |
Study of the fractal structure of the Large-scale matter distribution in the Universe 52 Astronomía y ciencias afines / Astronomy 53 Física / Physics Dark matter Large-scale structure of the universe Methods: statistical. materia oscura Estructuras a gran escala en el universo Métodos: Estadísticos |
title_short |
Study of the fractal structure of the Large-scale matter distribution in the Universe |
title_full |
Study of the fractal structure of the Large-scale matter distribution in the Universe |
title_fullStr |
Study of the fractal structure of the Large-scale matter distribution in the Universe |
title_full_unstemmed |
Study of the fractal structure of the Large-scale matter distribution in the Universe |
title_sort |
Study of the fractal structure of the Large-scale matter distribution in the Universe |
dc.creator.fl_str_mv |
Chacón Cardona, César Alexander |
dc.contributor.author.spa.fl_str_mv |
Chacón Cardona, César Alexander |
dc.contributor.spa.fl_str_mv |
Casas Miranda, Rigoberto Angel |
dc.subject.ddc.spa.fl_str_mv |
52 Astronomía y ciencias afines / Astronomy 53 Física / Physics |
topic |
52 Astronomía y ciencias afines / Astronomy 53 Física / Physics Dark matter Large-scale structure of the universe Methods: statistical. materia oscura Estructuras a gran escala en el universo Métodos: Estadísticos |
dc.subject.proposal.spa.fl_str_mv |
Dark matter Large-scale structure of the universe Methods: statistical. materia oscura Estructuras a gran escala en el universo Métodos: Estadísticos |
description |
The current cosmological view asserts that the universe is homogeneous and isotropic; the observed heterogeneities are local in nature and should vanish at sufficiently large scales. This principle is based firstly on philosophical considerations: the observed universe must be statistically equal to any observer regardless of the point and direction of observation; and secondly, on cosmological observations: mainly isotropy measurements of the cosmic microwave background and clustering analysis of galaxies. This standard cosmological principle constitutes the basis of cosmology as a branch of physics. From the structure of space-time of the universe, to large-scale structure formation, this principle is present in the conceptual foundations, in the statistical information processes and the interpretation of the results. Regardless the success of the physical models based on the standard cosmological principle, there still remains unresolved fundamental questions within the formation of large scale structures in the universe. Is it supported by the observations the standard cosmological principle? And, What is scale of distance from which the homogeneity transition occurs? Already some research groups claim that astrophysical objects are grouped into highly structured hierarchical patterns with self-similarity properties, scale invariance and Hausdorff dimension less than the physical dimension of space, specific characteristics of fractal behaviour, where the standard cosmological principle is tested. Based on these concepts a topological analysis of large scale matter clustering in the universe is preformed from the fractal point of view. First is analysed the way in which dark matter is grouped at redshift z = 0 in the Millennium cosmological simulation. The determination of the homogeneity transition in the Millennium Simulation data is demonstrated from the behaviour of the fractal dimension and the lacunarity. The sliding window technique is used to determine the fractal mass-radius relation in order to find the fractal dimension, the pre-factor F and the lacunarity for the dark matter distribution in this simulation. In addition, the multi-fractal dimension and the lacunarity spectrum, including their dependence on a radial distance is obtained. These calculations demonstrate a radial distance dependency of all the fractal quantities, with heterogeneity clustering of dark matter haloes up to depths of 100 Mpc/h. Second, dark matter halo distribution is used in order to understand the fractal behaviour of the observed universe while avoiding the effects of luminosity selection. The data based on four limited-volume galaxy samples was obtained by Mu~noz-Cuartas and Mueller (2012) on the Seventh Data Release of the Sloan Digital Sky Survey (SDSS-DR7). In order to know the fractal behaviour of the observed universe, from the initial sample which contains 412468 galaxies, 339505 dark matter haloes were used as input the fractal calculations. Using again the sliding-window technique for dark matter distribution; the multi-fractal dimension and the lacunarity spectrum with its dependence on radial distance are determined in every sample. The dark matter halo clustering in the Millennium simulation shows a radial distance dependency of the calculated quantities with two clearly defined regions. The lacunarity spectrum for values of the structure parameter q 1 shows regions with relative maxima, which reveal the formation of clusters and voids in the distribution of dark matter haloes. Using the multi-fractal dimension spectrum and its complement the lacunarity spectrum, the transition to homogeneity is observed at depths from the centres ranging between 100 Mpc/h and 120 Mpc/h in the simulation. In contrast the homogeneity transition is not observed in the dark matter halo distribution obtained from the SDSS-DR7 limited-volume galaxy samples; in its place the dark matter halo distribution exhibits a persistent multi-fractal behaviour where the measured dimension does not arrive at the value of the physical dimension of the space, for all the parameter values of the analysed structure, at least up to radial distances ordered from 165 Mpc/h from the available centres of each sample. Finally, the density contrast for the spherical collapse of a dark matter which evolves in a non-homogeneous universe is theoretically developed, taking as a basis the cosmological model of a spherically symmetric pressure less dust developed by Georges Lemaître, Richard C. Tolman y Hermann Bondi (LTB model), within the context of the General Relativity Theory. With the purpose of determining the density contrast for a LTB universe, a perturbation with E (r) 0 which evolves inside of a background with E (r) 0 in an expansion process is proposed. It was found a radial function for the density contrast (not a constant value independent of the radial coordinate), that in first-order of approximation reproduces the predicted value by the standard cosmology for a homogeneous universe. In order to find expression for the mass function in a fractal distribution of matter, the Excursion Set Theory is used for a moving barrier in order to find a mass function which depends on the cosmic density field variance and the power spectrum for a fractal distribution of matter. The main results of this thesis have been submitted for publication in international journals; the firrst one published in Monthly Notices of the Royal Astronomical Society Millennium entitled: \Millennium simulation dark matter haloes: multifractal and lacunarity" (Chac�on-Cardona and Casas- Miranda, 2012), the second one submitted to the same journal, entitled: \Multi-fractal analysis and lacunarity spectrum of the dark matter haloes in the SDSS-DR7" is in the review process by academic peers, and the third one, entitled: \ Lemaître-Tolman-Bondi inhomogeneous dust: Contrast density for collapse and fractal mass function" submitted to the Physical Review D. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-05-14 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T18:29:51Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T18:29:51Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/53818 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/48485/ |
url |
https://repositorio.unal.edu.co/handle/unal/53818 http://bdigital.unal.edu.co/48485/ |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física Física Física |
dc.relation.references.spa.fl_str_mv |
Chacón Cardona, César Alexander (2015) Study of the fractal structure of the Large-scale matter distribution in the Universe. Doctorado thesis, Universidad Nacional de Colombia. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/53818/1/cesaralexanderchaconcardona.2015.pdf https://repositorio.unal.edu.co/bitstream/unal/53818/2/cesaralexanderchaconcardona.2015.pdf.jpg |
bitstream.checksum.fl_str_mv |
6ac161bea68fde1d6479942752380734 7002bb44a574b8644bf162ca4bf4e615 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090194922504192 |
spelling |
Casas Miranda, Rigoberto AngelChacón Cardona, César Alexander1a7425df-8ced-4163-a060-3514ffdfa25a3002019-06-29T18:29:51Z2019-06-29T18:29:51Z2015-05-14https://repositorio.unal.edu.co/handle/unal/53818http://bdigital.unal.edu.co/48485/The current cosmological view asserts that the universe is homogeneous and isotropic; the observed heterogeneities are local in nature and should vanish at sufficiently large scales. This principle is based firstly on philosophical considerations: the observed universe must be statistically equal to any observer regardless of the point and direction of observation; and secondly, on cosmological observations: mainly isotropy measurements of the cosmic microwave background and clustering analysis of galaxies. This standard cosmological principle constitutes the basis of cosmology as a branch of physics. From the structure of space-time of the universe, to large-scale structure formation, this principle is present in the conceptual foundations, in the statistical information processes and the interpretation of the results. Regardless the success of the physical models based on the standard cosmological principle, there still remains unresolved fundamental questions within the formation of large scale structures in the universe. Is it supported by the observations the standard cosmological principle? And, What is scale of distance from which the homogeneity transition occurs? Already some research groups claim that astrophysical objects are grouped into highly structured hierarchical patterns with self-similarity properties, scale invariance and Hausdorff dimension less than the physical dimension of space, specific characteristics of fractal behaviour, where the standard cosmological principle is tested. Based on these concepts a topological analysis of large scale matter clustering in the universe is preformed from the fractal point of view. First is analysed the way in which dark matter is grouped at redshift z = 0 in the Millennium cosmological simulation. The determination of the homogeneity transition in the Millennium Simulation data is demonstrated from the behaviour of the fractal dimension and the lacunarity. The sliding window technique is used to determine the fractal mass-radius relation in order to find the fractal dimension, the pre-factor F and the lacunarity for the dark matter distribution in this simulation. In addition, the multi-fractal dimension and the lacunarity spectrum, including their dependence on a radial distance is obtained. These calculations demonstrate a radial distance dependency of all the fractal quantities, with heterogeneity clustering of dark matter haloes up to depths of 100 Mpc/h. Second, dark matter halo distribution is used in order to understand the fractal behaviour of the observed universe while avoiding the effects of luminosity selection. The data based on four limited-volume galaxy samples was obtained by Mu~noz-Cuartas and Mueller (2012) on the Seventh Data Release of the Sloan Digital Sky Survey (SDSS-DR7). In order to know the fractal behaviour of the observed universe, from the initial sample which contains 412468 galaxies, 339505 dark matter haloes were used as input the fractal calculations. Using again the sliding-window technique for dark matter distribution; the multi-fractal dimension and the lacunarity spectrum with its dependence on radial distance are determined in every sample. The dark matter halo clustering in the Millennium simulation shows a radial distance dependency of the calculated quantities with two clearly defined regions. The lacunarity spectrum for values of the structure parameter q 1 shows regions with relative maxima, which reveal the formation of clusters and voids in the distribution of dark matter haloes. Using the multi-fractal dimension spectrum and its complement the lacunarity spectrum, the transition to homogeneity is observed at depths from the centres ranging between 100 Mpc/h and 120 Mpc/h in the simulation. In contrast the homogeneity transition is not observed in the dark matter halo distribution obtained from the SDSS-DR7 limited-volume galaxy samples; in its place the dark matter halo distribution exhibits a persistent multi-fractal behaviour where the measured dimension does not arrive at the value of the physical dimension of the space, for all the parameter values of the analysed structure, at least up to radial distances ordered from 165 Mpc/h from the available centres of each sample. Finally, the density contrast for the spherical collapse of a dark matter which evolves in a non-homogeneous universe is theoretically developed, taking as a basis the cosmological model of a spherically symmetric pressure less dust developed by Georges Lemaître, Richard C. Tolman y Hermann Bondi (LTB model), within the context of the General Relativity Theory. With the purpose of determining the density contrast for a LTB universe, a perturbation with E (r) 0 which evolves inside of a background with E (r) 0 in an expansion process is proposed. It was found a radial function for the density contrast (not a constant value independent of the radial coordinate), that in first-order of approximation reproduces the predicted value by the standard cosmology for a homogeneous universe. In order to find expression for the mass function in a fractal distribution of matter, the Excursion Set Theory is used for a moving barrier in order to find a mass function which depends on the cosmic density field variance and the power spectrum for a fractal distribution of matter. The main results of this thesis have been submitted for publication in international journals; the firrst one published in Monthly Notices of the Royal Astronomical Society Millennium entitled: \Millennium simulation dark matter haloes: multifractal and lacunarity" (Chac�on-Cardona and Casas- Miranda, 2012), the second one submitted to the same journal, entitled: \Multi-fractal analysis and lacunarity spectrum of the dark matter haloes in the SDSS-DR7" is in the review process by academic peers, and the third one, entitled: \ Lemaître-Tolman-Bondi inhomogeneous dust: Contrast density for collapse and fractal mass function" submitted to the Physical Review D.Resumen. En la visión cosmológica actual el universo es homogéneo e isotrópico; las heterogeneidades observadas deben desvanecerse a escalas suficientemente grandes. Este principio se basa en consideraciones filosóficas: el universo observado debe ser estadísticamente igual para cualquier observador independientemente del punto de observación y de la dirección en que ésta se realiza; y segundo, en observaciones del cosmos: principalmente las mediciones de isotropía de la radiación cósmica de fondo así como el análisis del agrupamiento de galaxias bajo la acción de la gravedad. El principio cosmológico estándar se constituye en el fundamento de la cosmología como rama de la física. Desde la estructura del espacio-tiempo del universo, hasta la formación de estructuras a gran escala, este principio cosmológico se encuentra presente en los fundamentos conceptuales, en los procesos estadísticos de la información proveniente de la observación del espacio profundo, y en la interpretación de estos resultados. No obstante el éxito de los modelos físicos basados en el principio cosmológico estándar, aún quedan sin resolver preguntas fundamentales dentro de la formación de estructuras a gran escala en el universo. Es soportado por las observaciones el principio cosmológico estándar? y Cuál es la escala de distancia a partir de la cual se presenta la transición a la homogeneidad? Ya algunos grupos de investigación afirman que los objetos astrofísicos se agrupan en patrones jerárquicos altamente estructurados, con propiedades de auto-similaridad, invariancia de escala y dimensión de Hausdorff inferior a la dimensión física del espacio, características propias del comportamiento fractal, donde el principio cosmológico estándar es puesto a prueba. Con base en estos conceptos en la presente tesis se realiza un análisis topológico del agrupamiento de materia a gran escala en el universo desde el punto de vista fractal. Primero se determina en que forma se agrupa la materia oscura en la simulación cosmológica Millennium para corrimiento al rojo de z = 0. La determinación del paso a la homogeneidad en los datos de la simulación Millennium es descrita a partir del comportamiento de la dimensión fractal y la lacunaridad. Se usa la técnica de ventana deslizante para determinar la relación masa-radio de la distribución de materia oscura encontrando la dimensión fractal, el pre-factor F y la lacunaridad en función de la distancia radial para la distribución de materia oscura de esta simulación. Además, se obtiene el espectro de dimensión multi-fractal y de lacunaridad. Estos cálculos demuestran una dependencia radial en todas las cantidades fractales, con agrupamiento heterogéneo de los halos de materia oscura hasta profundidades de los 100 Mpc/h. En segundo lugar se utiliza la distribución del halos de materia oscura obtenida por Mu~noz-Cuartas and Mueller (2012) en la séptima liberación de datos del catálogo Sloan Digital Sky Survey (SDSS-DR7), información basada en cuatro muestras galácticas limitadas en volumen, con el fin de conocer el comportamiento fractal del universo observado evitando efectos de selección debidos a luminosidad. De la muestra inicial con 412468 galaxias, se usaron 339505 halos de materia oscura derivados de las muestras galácticas limitadas en volumen. Usando nuevamente la técnica de ventana deslizante para la distribución de materia oscura se determina: el espectro de dimensión multifractal y el espectro de lacunaridad en función de la distancia radial. El agrupamiento de halos de materia oscura en la simulacion Millennium muestra una dependencia con la distancia radial de las cantidades calculadas con dos regiones claramente definidas. El espectro de lacunaridad para valores del parámetro de estructura q 1 muestra regiones con máximos relativos que revelan la formación de racimos y vacíos en la distribución de halos de materia oscura. Con el uso del espectro de dimensión multi-fractal y su contraparte en lacunaridad, se detecta la transición a la homogeneidad en la simulación a profundidades a partir de los centros entre los 100 Mpc/h and 120 Mpc/h. En contraste, la transición a la homogeneidad no se observa para la distribución de halos de materia oscura obtenida a partir de las muestras galácticas limitadas en volumen de SDSS-DR7; en lugar de ésto la distribución de halos de materia oscura exhibe un comportamiento multi-fractal persistente donde la dimensión medida no alcanza el valor de la dimensión física del espacio para todos los valores del parámetro de estructura analizados, al menos hasta distancias radiales del orden de los 165 Mpc/h a partir de los centros disponibles dentro de cada muestra. Finalmente se desarrolla teóricamente el contraste de densidad para el colapso esférico de materia oscura que evoluciona en un universo no-homogéneo, tomando como base el modelo cosmológico con simetría esférica para un polvo libre de presión desarrollado por Georges Lemaître, Richard C. Tolman y Hermann Bondi (el modelo LTB), dentro del contexto de la Teoría de la Relatividad General. Con el propósito de determinar el contraste de densidad para un universo LTB, se propone que una perturbación del campo cósmico de densidad con E (r) 0 se desarrolla dentro de un fondo en proceso de expansión con E (r) 0, encontrando una función radial para el contraste de densidad (no un valor constante independiente de la coordenada radial) que en primer orden de aproximación reproduce el valor predicho por la cosmología estándar para un universo homogéneo. Con el propósito de encontrar un expresión para la función de masa dentro de una distribución fractal de materia, se usa el formalismo extendido de Press-Schechter (Excursion Set Theory) para una barrera móvil encontrando la función de masa dependiente de la varianza del campo cósmico de densidad y del espectro de potencias para una distribución fractal de materia. Los principales resultados de esta tesis han sido sometidos para su publicación en revistas internacionales; el primer artículo publicado en la revista Monthly Notices of the Royal Astronomical Society Millennium y titulado: \Millennium simulation dark matter haloes: multifractal and lacunarity" (Chacón-Cardona and Casas-Miranda, 2012), el segundo sometido a publicación a la misma revista, titulado: \Multi-fractal analysis and lacunarity spectrum of the dark matter haloes in the SDSS-DR7" en proceso de revisión por pares académicos, y el tercero titulado: \ Lemaître-Tolman-Bondi inhomogeneous dust: Contrast density for collapse and fractal mass function" sometido para su publicación a la revista Physical Review D.Doctoradoapplication/pdfUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física FísicaFísicaChacón Cardona, César Alexander (2015) Study of the fractal structure of the Large-scale matter distribution in the Universe. Doctorado thesis, Universidad Nacional de Colombia.52 Astronomía y ciencias afines / Astronomy53 Física / PhysicsDark matterLarge-scale structure of the universeMethods: statistical.materia oscuraEstructuras a gran escala en el universoMétodos: EstadísticosStudy of the fractal structure of the Large-scale matter distribution in the UniverseTrabajo de grado - Pregradoinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/access_right/c_abf2ORIGINALcesaralexanderchaconcardona.2015.pdfapplication/pdf14158101https://repositorio.unal.edu.co/bitstream/unal/53818/1/cesaralexanderchaconcardona.2015.pdf6ac161bea68fde1d6479942752380734MD51THUMBNAILcesaralexanderchaconcardona.2015.pdf.jpgcesaralexanderchaconcardona.2015.pdf.jpgGenerated Thumbnailimage/jpeg4015https://repositorio.unal.edu.co/bitstream/unal/53818/2/cesaralexanderchaconcardona.2015.pdf.jpg7002bb44a574b8644bf162ca4bf4e615MD52unal/53818oai:repositorio.unal.edu.co:unal/538182024-03-09 23:07:54.146Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |