Visual attention models and arse representations for morphometrical image analysis
Abstract. Medical diagnosis, treatment, follow-up and research activities are nowadays strongly supported on different types of diagnostic images, whose main goal is to provide an useful exchange of medical knowledge. This multi-modal information needs to be processed in order to extract information...
- Autores:
-
Rueda Olarte, Andrea del Pilar
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/21177
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/21177
http://bdigital.unal.edu.co/11932/
- Palabra clave:
- 46 Lenguas española y portuguesa / Specific languages
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Computational neuroanantomy
Sparse representations
Visual attention models
Machine learning techniques
Alzheimer's disease
Semantic-based representations
Visual pattern analysis
Neuroanatomía computacional
Representaciones escasas
Modelos de atención visual
Técnicas de aprendizaje de máquina
Enfermedad de Alzheimer
Representaciones basadas en semántica
Análisis de patrones visuales
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_067a7474d05553b363727c2fe584f945 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/21177 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Visual attention models and arse representations for morphometrical image analysis |
title |
Visual attention models and arse representations for morphometrical image analysis |
spellingShingle |
Visual attention models and arse representations for morphometrical image analysis 46 Lenguas española y portuguesa / Specific languages 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Computational neuroanantomy Sparse representations Visual attention models Machine learning techniques Alzheimer's disease Semantic-based representations Visual pattern analysis Neuroanatomía computacional Representaciones escasas Modelos de atención visual Técnicas de aprendizaje de máquina Enfermedad de Alzheimer Representaciones basadas en semántica Análisis de patrones visuales |
title_short |
Visual attention models and arse representations for morphometrical image analysis |
title_full |
Visual attention models and arse representations for morphometrical image analysis |
title_fullStr |
Visual attention models and arse representations for morphometrical image analysis |
title_full_unstemmed |
Visual attention models and arse representations for morphometrical image analysis |
title_sort |
Visual attention models and arse representations for morphometrical image analysis |
dc.creator.fl_str_mv |
Rueda Olarte, Andrea del Pilar |
dc.contributor.author.spa.fl_str_mv |
Rueda Olarte, Andrea del Pilar |
dc.contributor.spa.fl_str_mv |
Romero Castro, Eduardo |
dc.subject.ddc.spa.fl_str_mv |
46 Lenguas española y portuguesa / Specific languages 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering |
topic |
46 Lenguas española y portuguesa / Specific languages 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Computational neuroanantomy Sparse representations Visual attention models Machine learning techniques Alzheimer's disease Semantic-based representations Visual pattern analysis Neuroanatomía computacional Representaciones escasas Modelos de atención visual Técnicas de aprendizaje de máquina Enfermedad de Alzheimer Representaciones basadas en semántica Análisis de patrones visuales |
dc.subject.proposal.spa.fl_str_mv |
Computational neuroanantomy Sparse representations Visual attention models Machine learning techniques Alzheimer's disease Semantic-based representations Visual pattern analysis Neuroanatomía computacional Representaciones escasas Modelos de atención visual Técnicas de aprendizaje de máquina Enfermedad de Alzheimer Representaciones basadas en semántica Análisis de patrones visuales |
description |
Abstract. Medical diagnosis, treatment, follow-up and research activities are nowadays strongly supported on different types of diagnostic images, whose main goal is to provide an useful exchange of medical knowledge. This multi-modal information needs to be processed in order to extract information exploitable within the context of a particular medical task. In despite of the relevance of these complementary sources of medical knowledge, medical images are rarely further processed in actual clinical practice, so the specialists take decisions only based in the raw data. A new trend in the development of medical image processing and analysis tools follows the idea of biologically-inspired methods, which resemble the performance of the human vision system. Visual attention models and sparse representations are examples of this tendency. Based on this, the aim of this thesis was the development of a set of computational methods for automatic morph metrical analysis, combining the relevant region extraction power of visual attention models with the incorporation of a priori information capabilities of sparse representations. The combination of these biologically inspired tools with common machine learning techniques allowed the identification of visual patterns relevant for pathology discrimination, improving the accuracy and interpretability of morph metric measures and comparisons. After extensive validations with different image data sets, the computational methods proposed in this thesis seems to be promising tools for the definition of anatomical biomarkers, based on visual pattern analysis, and suitable for patient's diagnosis, prognosis and follow-up. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-25T19:02:06Z |
dc.date.available.spa.fl_str_mv |
2019-06-25T19:02:06Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/21177 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/11932/ |
url |
https://repositorio.unal.edu.co/handle/unal/21177 http://bdigital.unal.edu.co/11932/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Departamento de Ingeniería de Sistemas e Industrial |
dc.relation.references.spa.fl_str_mv |
Rueda Olarte, Andrea del Pilar (2013) Visual attention models and arse representations for morphometrical image analysis. Doctorado thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/21177/1/299813.2013.pdf https://repositorio.unal.edu.co/bitstream/unal/21177/2/299813.2013.pdf.jpg |
bitstream.checksum.fl_str_mv |
1428f2cb1d0fa5a5b256dca887d9b3ac 0b9db207f284fe17c83992cef563ba83 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089940569423872 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, EduardoRueda Olarte, Andrea del Pilar1fe3211d-68d3-4d1e-aab0-bcf944d8a9583002019-06-25T19:02:06Z2019-06-25T19:02:06Z2013https://repositorio.unal.edu.co/handle/unal/21177http://bdigital.unal.edu.co/11932/Abstract. Medical diagnosis, treatment, follow-up and research activities are nowadays strongly supported on different types of diagnostic images, whose main goal is to provide an useful exchange of medical knowledge. This multi-modal information needs to be processed in order to extract information exploitable within the context of a particular medical task. In despite of the relevance of these complementary sources of medical knowledge, medical images are rarely further processed in actual clinical practice, so the specialists take decisions only based in the raw data. A new trend in the development of medical image processing and analysis tools follows the idea of biologically-inspired methods, which resemble the performance of the human vision system. Visual attention models and sparse representations are examples of this tendency. Based on this, the aim of this thesis was the development of a set of computational methods for automatic morph metrical analysis, combining the relevant region extraction power of visual attention models with the incorporation of a priori information capabilities of sparse representations. The combination of these biologically inspired tools with common machine learning techniques allowed the identification of visual patterns relevant for pathology discrimination, improving the accuracy and interpretability of morph metric measures and comparisons. After extensive validations with different image data sets, the computational methods proposed in this thesis seems to be promising tools for the definition of anatomical biomarkers, based on visual pattern analysis, and suitable for patient's diagnosis, prognosis and follow-up.Las actividades de diagnóstico, tratamiento, seguimiento e investigación en medicina están actualmente soportadas en diferentes clases de imágenes diagnósticas, cuyo objetivo principal es el de proveer un intercambio efectivo de conocimiento médico. Esta información multimodal necesita ser procesada con el objetivo de extraer información aprovechable en el contexto de una tarea médica particular. A pesar de la relevancia de estas fuentes complementarias de información clínica, las imágenes médicas son raramente procesadas en la práctica clínica actual, de forma que los especialistas sólo toman decisiones basados en los datos crudos. Una nueva tendencia en el desarrollo de herramientas de análisis y procesamiento de imágenes médicas persigue la idea de métodos biológicamente inspirados, que se asemejan al sistema de visión humana. Son ejemplos de esta tendencia los modelos de atención visual y las representaciones escasas (sparse representations). Con base en esto, el objetivo de esta tesis fue el desarrollo de un conjunto de métodos computacionales para soportar automáticamente los análisis morfo métricos, combinando el poder de extracción de regiones relevantes de los modelos de atención visual junto con la capacidad de incorporación de información a priori de las representaciones escasas. La combinación de estos métodos biológicamente inspirados con técnicas de aprendizaje de maquina facilito la identificación de patrones visuales relevantes para discriminar patologías cerebrales, mejorando la precisión e interpretabilidad de las medidas y comparaciones morfo métricas. Después de extensivas validaciones con diferentes conjuntos de imágenes, los métodos computacionales propuestos en esta tesis se perfilan como herramientas prometedoras para la definición de biomarcadores anatómicos, basados en el análisis visual de patrones, y convenientes para el diagnóstico, pronóstico y seguimiento del paciente.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialRueda Olarte, Andrea del Pilar (2013) Visual attention models and arse representations for morphometrical image analysis. Doctorado thesis, Universidad Nacional de Colombia.46 Lenguas española y portuguesa / Specific languages61 Ciencias médicas; Medicina / Medicine and health62 Ingeniería y operaciones afines / EngineeringComputational neuroanantomySparse representationsVisual attention modelsMachine learning techniquesAlzheimer's diseaseSemantic-based representationsVisual pattern analysisNeuroanatomía computacionalRepresentaciones escasasModelos de atención visualTécnicas de aprendizaje de máquinaEnfermedad de AlzheimerRepresentaciones basadas en semánticaAnálisis de patrones visualesVisual attention models and arse representations for morphometrical image analysisTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL299813.2013.pdfapplication/pdf12850293https://repositorio.unal.edu.co/bitstream/unal/21177/1/299813.2013.pdf1428f2cb1d0fa5a5b256dca887d9b3acMD51THUMBNAIL299813.2013.pdf.jpg299813.2013.pdf.jpgGenerated Thumbnailimage/jpeg4336https://repositorio.unal.edu.co/bitstream/unal/21177/2/299813.2013.pdf.jpg0b9db207f284fe17c83992cef563ba83MD52unal/21177oai:repositorio.unal.edu.co:unal/211772023-09-30 23:05:48.826Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |