Principio de concentración-compacidad y aplicaciones

diagramas

Autores:
Durango Higinio, Juan Diego
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83362
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83362
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas
Ecuaciones Diferenciales Parciales
Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Principio de concentración-compacidad
Minimización
Ecuaciones diferenciales parciales
Problema de la constante óptima
Concentration-compactness principle
Minimization
Partial differential equations
Optimal constant problem
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_0675e6dcce2cbedcd3b094ea2fab8828
oai_identifier_str oai:repositorio.unal.edu.co:unal/83362
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Principio de concentración-compacidad y aplicaciones
dc.title.translated.eng.fl_str_mv Concentration-compactness principle and applications
title Principio de concentración-compacidad y aplicaciones
spellingShingle Principio de concentración-compacidad y aplicaciones
510 - Matemáticas
Ecuaciones Diferenciales Parciales
Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Principio de concentración-compacidad
Minimización
Ecuaciones diferenciales parciales
Problema de la constante óptima
Concentration-compactness principle
Minimization
Partial differential equations
Optimal constant problem
title_short Principio de concentración-compacidad y aplicaciones
title_full Principio de concentración-compacidad y aplicaciones
title_fullStr Principio de concentración-compacidad y aplicaciones
title_full_unstemmed Principio de concentración-compacidad y aplicaciones
title_sort Principio de concentración-compacidad y aplicaciones
dc.creator.fl_str_mv Durango Higinio, Juan Diego
dc.contributor.advisor.none.fl_str_mv Vélez López, Carlos Augusto
Agudelo Rico, Oscar Iván
dc.contributor.author.none.fl_str_mv Durango Higinio, Juan Diego
dc.contributor.orcid.spa.fl_str_mv Agudelo Rico, Óscar Iván [0000-0002-2588-9999]
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
topic 510 - Matemáticas
Ecuaciones Diferenciales Parciales
Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Principio de concentración-compacidad
Minimización
Ecuaciones diferenciales parciales
Problema de la constante óptima
Concentration-compactness principle
Minimization
Partial differential equations
Optimal constant problem
dc.subject.other.none.fl_str_mv Ecuaciones Diferenciales Parciales
dc.subject.lemb.none.fl_str_mv Ecuaciones diferenciales no lineales
Differential equations, nonlinear
dc.subject.proposal.spa.fl_str_mv Principio de concentración-compacidad
Minimización
Ecuaciones diferenciales parciales
Problema de la constante óptima
dc.subject.proposal.eng.fl_str_mv Concentration-compactness principle
Minimization
Partial differential equations
Optimal constant problem
description diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-08-29
dc.date.accessioned.none.fl_str_mv 2023-02-07T18:32:17Z
dc.date.available.none.fl_str_mv 2023-02-07T18:32:17Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83362
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83362
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Billingsley, Patrick: Convergence of Probability Measures, 2nd Ed. John Wiley & Sons Inc., 1999. – ISBN 0–471–19745–9
Brezis, Haim: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2010. – ISBN 978–0–387–70913–0
Brezis, Haim ; Lieb, Elliot: A relation between pointwise convergence of functions and convergence of functionals. (1983)
Burrill, Claude W.: Measure, Integration, and Probability. McGraw Hill, 1972. – ISBN 978–0070092235
Chabrowski, J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. (1994)
Chabrowski, Jan: Variational Methods for Potential Operator Equations With Applications to Nonlinear Elliptic Equations. Walter de Gruyter, 1997. – ISBN 3–11–015269–X
Drábek, Pavel ; Milota, Jaroslav: Methods of Nonlinear Analysis: Applications to Differential Equations. Birkhäuser, 2007. – ISBN 978–3–0348–0386– 1
Folland, Gerald B.: Real Analysis: Modern Techniques and Their Applications. Wiley, 2007. – ISBN 978–0471317166
Jones, Frank: Lebesgue Integration on Euclidean Spaces. Jones Bartlett Learning, 2001. – ISBN 0–7637–1708–8
Kavian, Otared: Introduction à la théorie des points critiques. Springer, 1993. – ISBN 978–3–540–59619–6
Kreyszig, Erwin: Introdutory Functional Analysis with Applications. Wiley, 1989. – ISBN 978–0–471–50459–7
Lages Lima, Elon: Espacos métricos. Edgard Blücher, Ltda, 1977. – ISBN 978–8524401589
Lions, Pierre-Louis: The concentration-compactness principle in the calculus of variations. The Limit Case, Part I. (1984)
Lions, Pierre-Louis: The concentration-compactness principle in the calculus of variations. The Limit Case, Part II. (1984)
Lions, Pierre-Louis: The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 1. (1984)
Lions, Pierre-Louis: The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 2. (1984)
Lévy, Paul-Pierre: Théorie de l’addition des variables aléatoires. Gauthiers-Villars, Paris. (1954)
Munkres, James: Topology, 2nd Ed. Pearson, 2014. – ISBN 978–1–292–02362–5
Nestruev, Jet: Smooth Manifolds and Observables. Springer, 2000. – ISBN 0–387–95543–7
Parini, Enea ; Salort, Ariel: Compactness and dichotomy in nonlocal shape optimization. (2018)
Rudin, Walter: Principles of Mathematical Analysis. McGraw Hill, 1976. – ISBN 0–07–085613–3
Rudin,Walter: Real and Complex Analysis. McGraw Hill, 1986. – ISBN 0–07–100276–6
Schindler, I. ; Tintarev, K.: An abstract version of the concentration-compactness principle. (2002)
Struwe, Michael: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, 2008. – ISBN 978–3–540–74012–4
Talenti, Giorgio: Best Constant in Sobolev Inequality. (1976)
Willem, Michel: Minimax Theorems. Birkhäuser, 1996. – ISBN 978–0–8176–3913–6
Willem, Michel: Functional Analysis: Fundamentals and Applications. Birkhäuser, 2013. – ISBN 978–1–4614–7003–8
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 120 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83362/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83362/4/1038411097.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83362/5/1038411097.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a96a449371b1f25c9a2e90bd8b39b20f
73eeb076faee1b58d441d934abd8362d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089372909174784
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vélez López, Carlos Augusto307ed4a067d93d3c61c5543492c0517eAgudelo Rico, Oscar Iván07389b3b1199ca529362e4748c7b93a7600Durango Higinio, Juan Diego52f1d3ed51712489969794dc2ddd2345Agudelo Rico, Óscar Iván [0000-0002-2588-9999]2023-02-07T18:32:17Z2023-02-07T18:32:17Z2022-08-29https://repositorio.unal.edu.co/handle/unal/83362Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramasEn el presente trabajo estudiamos el Principio de Concentración-Compacidad, desarrollado por el matemático francés Pierre-Louis Lions, y realizamos algunas aplicaciones en las áreas de las Ecuaciones Diferenciales Parciales y el Análisis No Lineal. (Texto tomado de la fuente)In this work we study the Concentration-Compactness Principle, developed by the french mathematician Pierre-Louis Lions, and we give some applications to Partial Differential Equations and Nonlinear Analysis.MaestríaMagíster en Ciencias - MatemáticasAnálisis No LinealÁrea Curricular en Matemáticasxiii, 120 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín510 - MatemáticasEcuaciones Diferenciales ParcialesEcuaciones diferenciales no linealesDifferential equations, nonlinearPrincipio de concentración-compacidadMinimizaciónEcuaciones diferenciales parcialesProblema de la constante óptimaConcentration-compactness principleMinimizationPartial differential equationsOptimal constant problemPrincipio de concentración-compacidad y aplicacionesConcentration-compactness principle and applicationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaBillingsley, Patrick: Convergence of Probability Measures, 2nd Ed. John Wiley & Sons Inc., 1999. – ISBN 0–471–19745–9Brezis, Haim: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2010. – ISBN 978–0–387–70913–0Brezis, Haim ; Lieb, Elliot: A relation between pointwise convergence of functions and convergence of functionals. (1983)Burrill, Claude W.: Measure, Integration, and Probability. McGraw Hill, 1972. – ISBN 978–0070092235Chabrowski, J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents. (1994)Chabrowski, Jan: Variational Methods for Potential Operator Equations With Applications to Nonlinear Elliptic Equations. Walter de Gruyter, 1997. – ISBN 3–11–015269–XDrábek, Pavel ; Milota, Jaroslav: Methods of Nonlinear Analysis: Applications to Differential Equations. Birkhäuser, 2007. – ISBN 978–3–0348–0386– 1Folland, Gerald B.: Real Analysis: Modern Techniques and Their Applications. Wiley, 2007. – ISBN 978–0471317166Jones, Frank: Lebesgue Integration on Euclidean Spaces. Jones Bartlett Learning, 2001. – ISBN 0–7637–1708–8Kavian, Otared: Introduction à la théorie des points critiques. Springer, 1993. – ISBN 978–3–540–59619–6Kreyszig, Erwin: Introdutory Functional Analysis with Applications. Wiley, 1989. – ISBN 978–0–471–50459–7Lages Lima, Elon: Espacos métricos. Edgard Blücher, Ltda, 1977. – ISBN 978–8524401589Lions, Pierre-Louis: The concentration-compactness principle in the calculus of variations. The Limit Case, Part I. (1984)Lions, Pierre-Louis: The concentration-compactness principle in the calculus of variations. The Limit Case, Part II. (1984)Lions, Pierre-Louis: The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 1. (1984)Lions, Pierre-Louis: The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 2. (1984)Lévy, Paul-Pierre: Théorie de l’addition des variables aléatoires. Gauthiers-Villars, Paris. (1954)Munkres, James: Topology, 2nd Ed. Pearson, 2014. – ISBN 978–1–292–02362–5Nestruev, Jet: Smooth Manifolds and Observables. Springer, 2000. – ISBN 0–387–95543–7Parini, Enea ; Salort, Ariel: Compactness and dichotomy in nonlocal shape optimization. (2018)Rudin, Walter: Principles of Mathematical Analysis. McGraw Hill, 1976. – ISBN 0–07–085613–3Rudin,Walter: Real and Complex Analysis. McGraw Hill, 1986. – ISBN 0–07–100276–6Schindler, I. ; Tintarev, K.: An abstract version of the concentration-compactness principle. (2002)Struwe, Michael: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, 2008. – ISBN 978–3–540–74012–4Talenti, Giorgio: Best Constant in Sobolev Inequality. (1976)Willem, Michel: Minimax Theorems. Birkhäuser, 1996. – ISBN 978–0–8176–3913–6Willem, Michel: Functional Analysis: Fundamentals and Applications. Birkhäuser, 2013. – ISBN 978–1–4614–7003–8Problemas en ecuaciones diferenciales de tipo elíptico o dispersivo, Hermes 53815EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83362/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1038411097.2022.pdf1038411097.2022.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf1049722https://repositorio.unal.edu.co/bitstream/unal/83362/4/1038411097.2022.pdfa96a449371b1f25c9a2e90bd8b39b20fMD54THUMBNAIL1038411097.2022.pdf.jpg1038411097.2022.pdf.jpgGenerated Thumbnailimage/jpeg4006https://repositorio.unal.edu.co/bitstream/unal/83362/5/1038411097.2022.pdf.jpg73eeb076faee1b58d441d934abd8362dMD55unal/83362oai:repositorio.unal.edu.co:unal/833622023-08-15 23:04:39.974Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=