Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal
ilustraciones, diagramas, mapas
- Autores:
-
González Alzate, Juan Pablo
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84078
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
380 - Comercio , comunicaciones, transporte::388 - Transporte
Vehículos eléctricos
Electricidad en el transporte
Electricity in transportation
Electric vehicles
Transport
Multimodal
Charging stations
Electric vehicles
Optimization
Urban traffic
Transporte
Multimodal
Estaciones de carga
Vehículos eléctricos
Optimización
Tráfico urbano
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_06393f98b0b17dbee2aa89f81e8d2a62 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84078 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal |
dc.title.translated.eng.fl_str_mv |
Decision-making system for the optimal location, sizing and dispatching of charging stations for the energy supply of a multimodal electric transport system |
title |
Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal |
spellingShingle |
Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 380 - Comercio , comunicaciones, transporte::388 - Transporte Vehículos eléctricos Electricidad en el transporte Electricity in transportation Electric vehicles Transport Multimodal Charging stations Electric vehicles Optimization Urban traffic Transporte Multimodal Estaciones de carga Vehículos eléctricos Optimización Tráfico urbano |
title_short |
Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal |
title_full |
Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal |
title_fullStr |
Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal |
title_full_unstemmed |
Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal |
title_sort |
Sistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal |
dc.creator.fl_str_mv |
González Alzate, Juan Pablo |
dc.contributor.advisor.none.fl_str_mv |
Espinosa Oviedo, Jairo José |
dc.contributor.author.none.fl_str_mv |
González Alzate, Juan Pablo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Automática de la Universidad Nacional Gaunal |
dc.contributor.orcid.spa.fl_str_mv |
Espinosa Oviedo, Jairo José [0000-0002-0969-741X] González Alzate, Juan Pablo [0000-0003-0449-4194] |
dc.contributor.cvlac.spa.fl_str_mv |
González Alzate, Juan Pablo [0001823119] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 380 - Comercio , comunicaciones, transporte::388 - Transporte |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 380 - Comercio , comunicaciones, transporte::388 - Transporte Vehículos eléctricos Electricidad en el transporte Electricity in transportation Electric vehicles Transport Multimodal Charging stations Electric vehicles Optimization Urban traffic Transporte Multimodal Estaciones de carga Vehículos eléctricos Optimización Tráfico urbano |
dc.subject.lemb.spa.fl_str_mv |
Vehículos eléctricos Electricidad en el transporte |
dc.subject.lemb.eng.fl_str_mv |
Electricity in transportation Electric vehicles |
dc.subject.proposal.eng.fl_str_mv |
Transport Multimodal Charging stations Electric vehicles Optimization Urban traffic |
dc.subject.proposal.spa.fl_str_mv |
Transporte Multimodal Estaciones de carga Vehículos eléctricos Optimización Tráfico urbano |
description |
ilustraciones, diagramas, mapas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-06-27T15:38:12Z |
dc.date.available.none.fl_str_mv |
2023-06-27T15:38:12Z |
dc.date.issued.none.fl_str_mv |
2023-05-17 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84078 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84078 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
A. K. Mathur, S. Charan T. ; Yemula, P. K.: Optimal Charging Schedule for Electric Vehicles in Parking Lot with Solar Power Generation. En: Int. Conf. Innov. Smart Grid Technol (2018) A. Sciarretta, P. Dewangan P. C.and Tona E. N.D. Bergshoeff C. Bordons L. Charmpa Ph Elbert L. Eriksson T. Hofman M. Hubacher P. Isenegger F. Lacandia A. Laveau H. Li D. Marcos T. N ̈uesch S. Onori P. Pisu J. Rios E. Silvas M. Sivertsson L. Tribiolivan der A. J. H. ; Wu, M.: A control benchmark on the energy management of a plug-in hybrid electric vehicle. En: Control Engineering Practice (2014) Abdulla Al Wahedi, Yusuf B.: Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar. En: Energy 243 (2022). ISSN 0360–5442 Ahmadreza Moradipari, Mahnoosh A.: Pricing and Routing Mechanisms for Differentiated Services in an Electric Vehicle Public Charging Station Network. En: IEEE TRANSACTIONS ON SMART GRID (2019) Ahn, Kyoungho ; Rakha, Hesham A.: A simple hybrid electric vehicle fuel consumption model for transpor- tation applications. En: Applied Electromechanical Devices and Machines for Electric Mobility Solutions (2020), p. 1–15 et al, G. L. Z.: Fast Charging Lithium Batteries: Recent Progress and Future Prospects. En: Small (2019) Ali Wirasingha, Sanjaka G.and E.: Classification and review of control strategies for plug-in hybrid electricles vehicles. En: IEEE Transactions on Vehicular Technology (2011) Anatole Desreveaux, Rochdi Trigui Elodie C. ; Klein, John: Impact of the Velocity Profile on Energy Consumption of Electric Vehicles. En: IEEE Transactions on Vehicular Technology 68 (2019), p. 1–1 Andrea Di Martino, Seyed Mahdi Miraftabzadeh. ; Longo, Michela: Review Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review. En: Energies (2022) Bahrami, Ali: EV Charging Definitions, Modes, Levels, Communication Protocols and Applied Standards Technical Report. En: Technical report, BorgWarner Corporate (2020) Bakirtzis A. G. Vagropoulos, S. I.: Optimal bidding strategy for electric vehicle aggregators in electricity markets. En: IEEE Transactions on Power Systems (2013) Baris Yildiz, Ahmet S.: The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations. En: Transportation Research Part B (2019) Bayram, George Devetsikiotis M.: Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees. En: IEEE Transactions on Smart Grid 6 (2015), p. 1292–1302. – ISSN 19493053 C. Bian, F. Wallin A. Avelin L. L. ; Yu, Z.: Finding the optimal location for public charging stations - A GIS-based MILP approach. En: Energy Procedia, (2019) Caicedo, C. R. P. ; Oviedo, J. J. E.: Desarrollo de un modelo dinámico de tráfico multimodal (automóviles, articulados, peatones y bicicletas) con fines de control. (2015) Camilo Vélez, Daniel V. ; Montoya, Alejandro: Infrastructure Estimation for a Freight/Personal Transport peration with an Electric Boat on the Magdalena River. En: Springer Nature Switzerland AG 2020 (2020) Candela. The journey how we redefined boating. https://candelaspeedboat.com/company/ Caron, Stéphane. Quadratic programming in Python Cedric De Cauwer, Thierry Coosemans Saphir F. ; Mierlo, Joeri V.: A data driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. En: Energies 10 (2017) Chen, Xiao XuWeihao HuWen LiuYuefang DuRui HuangQi H.: Risk management strategy for a renewable power supply system in commercial buildings considering thermal comfort and stochastic electric vehicle behaviors. En: Energy Conversion and Management (2021) Chiara Fiori, Kyoungho A. ; Rakha, Hesham A.: Microscopic series plug-in hybrid electric vehicle energy consumption model: Model development and validation. En: Transportation Research Part D: Transport and Environment (2018), p. 175–185 Clara Marina Martinez, Dongpu Cao Efstathios Velenis Bo G. ; Wellers, Matthias: Energy management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles perspective. En: IEEE Transactions on Vehicular Technology (2016) Cumbal Simba, J. R.: Análisis del desempeño de una vanet mediante el uso de protocolos de enrutamiento y la ubicación óptima de la infraestructura rsu para alcanzar un throughput eficiente en escenarios urbanos. (2017) Cáceres, J. A. C. ; Castellanos, J. A.: Simulación Microscópica De Tráfico Urbano Y Su Aplicación En Un Área De La Ciudad De Zaragoza. En: Cea-Ifac.Es, (2004) D. A. Howey, B. C. ; Lytton, L.: Comparative measurements of the energy consumption of 51 electric, hybrid and internal combustion engine vehicles. En: Transportation Research Part D: Transport and Environment (2011), p. 459–464 Daniel Villa, Alejandro M. ; Herrera, Aura M.: The Electric Riverboat Charging Station Location Problem. En: Journal of Advanced Transportation (2020) David Jiménez, Jesús Fraile-Ardanuy Javier Serrano Rubén F. ; Álvarez, Federico: Modelling the effect of driving events on electrical vehicle energy consumption using inertial sensors in smartphones. En: Energies 11 (2018), p. 412 De Lorenzo M. G. Consolidani M. Muzi, F.: New concepts on microgrid-prosumer nodes interaction. En: 2019 AEIT International Annual Conference (2019) Duncan E. Smith, Diana-Andra Borca-Tasciuc: Towards a standard approach for annual energy production of concentrator-based building-integrated photovoltaics. En: Renewable Energy (2022) E.Grossmann, José A. Caballero. I.: Una revisión del estado del arte en optimización. En: Revista Iberoamericana de Automática e Informática Industrial RIAI (2007 Erdelic, T ; Caric, T: A Survey on the Electric Vehicle Routing Problem: Variants and Solution Approaches. En: Journal of Advanced Transportation (2019), p. 1–48 G. Piazza, F. D. ; Siri, S.: Optimal design of electric mobility services for a Local Energy Community. En: Sustain. Energy, Grids Networks, (2021) Giyeon Hwang, Jongmyung Kim Kyu-Jin Lee-Sangyul L. ; 1, Minjae K.: Energy management optimization of series hybrid electric bus using an ultra-capacitor and novel efficiency improvement factor. En: Sustainability (2020), p. 7345 Glynn, Gary W Escalona-H J.: Ingeniería ambiental. En: Environmental Science and Engineering (1999). ISBN 970–17–0266–2 Gómez, Isabel C.: Coordinated Charging Strategy for a Network of Photovoltaic Charging Stations (PVCSs): a trade-off between Stations Operator and Electric Vehicles (EVs) users. (2020) H. Jamshidi, J. T. van E. ; N ̈okel, K.: Dynamic planning for simultaneous recharging and relocation of shared electric taxies: A sequential MILP approach. En: Transp. Res. Part C Emerg. Technol (2020) H. Vincent Poor, H. D. Tuan A. V. S. ; Duong, T. Q.: Model predictive control for smart grids with multiple electric-vehicle charging stations. En: IEEE Trans. Smart Grid, (2019) Haodong Wang, Zan Liu Songwei Zhang Zhiguo Li Tie Q.: Multi-parameters dynamic scheduling with energy management for electric vehicle charging stations. (2022) I. Sagaama, W. T. ; Kamoun, F.: Evaluation of the Energy Consumption Model Performance for Electric Vehicles in SUMO. En: Proc. - 2019 IEEE/ACM 23rd Int. Symp. Distrib. Simul. Real Time Appl. DS-RT 2019, (2019) J. Salas, A. Torrente: Mínimos cuadrados. 2021. http://ocw.uc3m.es/matematicas/ algebralineal. Jiangbo Wang, and Toshiyuki Y.: Improving electricity consumption estimation for electric vehicles based on sparse GPS observations. En: Energies 10 (2017), p. 19–22 Jin Li, Feng W. ; He, Yu: Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions. En: Sustainability (2020), p. 10537 Juan-David Mira, Esteban B. ; Mejía-Gutiérrez, Ricardo: Preliminary Sizing of a Propulsion Unit for an Electrically-Powered Vessel Using a Screw Propellers Performance Comparison Tool. En: WEA 2020. Communications in Computer and Information Science (2018) Juan-David Mira, Esteban B. ; Mejía-Gutiérrez, Ricardo: Preliminary Sizing of a Propulsion Unit for an Electrically-Powered Vessel Using a Screw Propellers Performance Comparison Tool. En: Applied Computer Sciences in Engineering (2020) Kai Liu, Toshiyuki Yamamoto Takayuki M.: Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption. En: Applied Energy 227 (2018), p. 324–331 Kasprzyk, Leszek: Modelling and analysis of dynamic states of the lead-acid batteries in electric vehicles. En: Maintenance and Reliability 19 (2017), p. 229–236 Kong, Bhaskar Prasad Bhattarai Bishnu P. Devetsikiotis M.: Cloud-Based Charging Management of Electric Vehicles in a Network of Charging Stations. En: IEEE International Conference on Communications (2018). – ISBN 9781538631805 Konstantinos N.Genikomsakis, Georgios M.: A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications. En: Transportation Research Part D: Transport and Environment 50 (2017), p. 98–118 Kurczveil, López P.A. Schnieder E.: Implementation of an Energy Model and a Charging Infrastructure in SUMO. In: Behrisch, M., Krajzewicz, D., Weber, M. (eds.) Simulation of Urban Mobility. Lecture Notes in Computer Science. En: Springer (2014), p. 33–43 Li Peng Zhang, Wei L. ; Qi, Bing N.: Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction. En: Energy (2020) Liu, Wenqian Yuan Xiaoling Niu M.: Reserving Charging Decision-Making Model and Route Plan for Electric Vehicles Considering Information of Traffic and Charging Station. En: Sustainability 2018 10 (2018), p. 1324. – ISSN 2071–1050 Luin, Petelin S. ; Al-Mansour, F: Microsimulation of Electric Vehicle Energy Consumption. En: Energy 174 (2019) Luis Eduardo Chavez Perdomo, José Luis Alba A.: Ministerio de transporte superintendencia de puertos y transporte superintendencia delegada de puertos proyecto de investigación infraestructura fluvial Manuel Molina: La distancia más corta. El método de los mínimos cuadrados. 2020. – https://anestesiar. org/2020/la-distancia-mas- corta-el-metodo-de-los-minimos-cuadrados Ángela María Orozco Gómez, Camilo Pabón Almanza Clara Margarita Montilla Herrera Edith Aristide Galvis Fredy David Gil R.: Transporte en Cifras 2021 Anuario Nacional de Transporte. (2022). – ISSN 2954–5730 Matos M. A. Bessa, R. J.: Global against divided optimization for the participation of an ev aggregator in the day-ahead electricity market. En: Part I: Theory. Electric Power Systems Research (2013) Md Abdul Quddus, Mohammad M.: Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources. En: Transportation Research Part E (2019) Millar, Jussi Lehtonen Matti Saarijarvi Eero Degefa Merkebu Koivisto M.: Probabilistic prosumer node modeling for estimating planning parameters in distribution networks with renewable energy sourcess. En: 58th Annual International Scientific Confererence on Power and Electrical Engineering of Riga Technical University, RTUCON 2017 Proceedings (2017), p. 1–8. ISBN 9781538638460 Minami, Shigeyuki ; Yamachika, Naoki: A practical theory of the performance of low velocity boat. En: Journal of Asian Electric Vehicles (2004), p. 535–539 Miri, Fotouhi A. ; Ewin, N: Electric vehicle energy consumption modelling and estimation—A case study. En: International Journal of Energy Research (2020) Montazeri-Gh, Morteza ; Mahmoodi-K, Mehdi: Optimized predictive energy management of plug-in hybrid electric vehicle based on traffic condition. En: Journal of cleaner production (2016) Muqeet, Intisar Ali Ahmad Aftab Iqbal Muhammad Muzaffar Ali Saqib Guerrero Josep M.: Optimal Operation of Energy Storage System for a Prosumer Microgrid Considering Economical and Environmental Effects. En: RAEE 2019 - International Symposium on Recent Advances in Electrical Engineering (2019), p. 8887002. ISBN 9781728130729 Neeraj Rama, Joshua Orlando Darrell R. ; Chen, Bo: Route-optimized energy management of connected and automated multimode plug-in hybrid electric vehicle using dynamic programming. En: SAE Technical Paper (2019) NSRDB: NSRDB Data Viewer. 2020. – https://maps.nrel.gov/nsrdb-viewer, Accedido en septiembre de 2019 P. Xu, J. Wang J. Li W. Z. ; Liu, H.: Dynamic pricing at electric vehicle charging stations for waiting time reduction. En: ACM Int. Conf. Proceeding Ser (2018) Programme D. Nations U. Nations, U.: Energy, the environment and human health. (1973) Ricardo Barrero, Xavier T. ; Mierlo, Joeri V.: Quasi-static simulation method for evaluation of energy consumption in hybrid light rail vehicles. En: 2008 IEEE Vehicle Power and Propulsion Conference (2008) Ricardo Mejia-Gutierrez, Jorge Hernán Córdoba Morales Mauricio Fernández Montoya Simón Polanía Restrepo Laura María Moreno Durango Federico Tirado Escoba Javier Emilio Sierra Carrillo Boris Alexander Medina Salgado José López Tatiana Manrique Espíndola Gustavo Andrés Moreno Edgar Rincón Gil Juan Camilo Tejada Orjuela Jhon Fernando Vargas Jaramillo Andrés Palacio Velásquez Felipe Henao Ramírez Felipe Mendoza G.: Diseño Preliminar: Kit de conversión a tracción eléctrica para movilidad terrestre / Universidad EAFIT. Medellín, 2023. – Informe de Investigación Ricardo Mejía-Gutiérrez, Juliana Carolina Acosta Jácome Alejandro Mora C.: Estado del arte y marco teórico - Modelos económicos aplicables a los nodos prosumidores de la red eléctrica / Universidad EAFIT. Medellín, 2022. – Informe de Investigación Ricardo Mejía-Gutiérrez, Jorge Hernán Córdoba Morales Laura María Moreno Durango Federico Tirado Escobar Mauricio Fernández Montoya Alejandro Castaño Posada Isabella Vera Arias Maria José Gallego Molina Tatiana Manrique Espíndola Jhon Fernando Vargas J.: Diseño de Detalle: Kit de conversión a tracción eléctrica para movilidad terrestre / Universidad EAFIT. Medellín, 2023. – Informe de Investigación Ricardo Mejía-Gutiérrez, Gilberto Osorio-Gómez, Jorge Hernán Córdoba Morales, Gustavo Andrés Moreno, Juan Camilo Tejada, Javier Emilio Sierra, Boris Alexander Medina, José Lopéz, Esteban Betancur, Mauricio Fernandez, Harvy Correa, Santiago Henao, Alejandro Castaño, Juan Manuel Posada, Felipe Mendoza, Laura María Moreno, Felipe Henao, Federico Tirado. Investigación de las condiciones y necesidades para la implementación del sistema de movilidad eléctrica terrestre en Magangué y Sincelejo / Universidad EAFIT. Medellín, 2021. – Informe de Investigación Ricardo Mejía-Gutiérrez, Camilo Vélez Erick Santiago Gómez Oviedo Sara López Valentina Gómez juan Pablo González Christian Portilla Felipe V.: Diseño y desarrollo - Sistema integrado de movilidad eléctrica multimodal (Moto+Bote+Estación) / Universidad EAFIT. Medellín, 2021. – Informe de Investigación Ricardo Mejía-Gutiérrez, Manuela Montoya Rivera Gilberto Osorio Gómez Maria Antonia Zapata Pérez Luisa Fernanda Ruiz Navarrete David Nicolás Márquez Navarrete Sara Restrepo Muñoz Juan Felipe Sanchez Arbeláez Jorge Luis Moreno Sabogal Juan Pablo Palacio Uribe Carlos Arturo Cepeda Coley Juan Camilo Giraldo Cano Juan-David Mira Pineda Felipe Mendoza Giraldo Mauricio Fernández Montoya Laura Flores Llano Maria Alejandra Cervera Robles Camilo Villa Tamayo Andrés Felipe Guerra Jimenez Juan Carlos Osorio M.: Fabricación de prototipo de la Embarcación Eléctro-Solar, parte II. / Universidad EAFIT. Medellín, 2021. – Informe de Investigación Ruisheng Wang, Qiang Xing Ziqi Z. ; Zhang, Tian: A Modified Rainbow-Based Deep Reinforcement Learning Method for Optimal Scheduling of Charging Station. En: Sustainability (2022) Ruiyang Jina, Chao Lub Jie S.: Deep reinforcement learning-based strategy for charging station participating in demand response Author links open overlay panel. En: Applied Energy (2022) S. Sachan, S.N. Singh P.P. Singh D.D. S.: Planning and operation of EV charging stations by chicken swarm optimization driven heuristics. En: Energy Conversion and Economics (2021) S. Suganya, S. C. R. ; Venkatesh, P.: Simultaneous coordination of distinct plugin Hybrid Electric Vehicle charging stations: A modified Particle Swarm Optimization approach. En: Energy (2017) Samia Boubaker, Ferid R. ; Kalboussi, Adel.: Estimating energy consumption of hybrid electric vehicle and gazoline classical vehicle. En: 2013 International Conference on Advanced Logistics and Transport, ICALT 2013 (2013), p. 221–226 Savitsk, Daniel: Hydrodynamic design of planing hulls. En: Marine Technology and SNAME News 1 (1964), p. 71–95 Shaobo Xie, Shanwei Qi Xiaolin Tang Kun Lang Zongke Xin James B.: Model Predictive Energy Management for Plug In Hybrid Electric Vehicles Considering Optimal Battery Depth of Discharge. En: Energy 173 (2019) Siddiqui A. Roman T. G. S. Soder L. Momber, I: Risk averse scheduling by a pev aggregator under uncertainty. En: IEEE Transactions on Power Systems (2015) Soini, David Patel Martin K.: Impact of prosumer battery operation on the cost of power supply. En: Journal of Energy Storage 29 (2020). – ISSN 2352152X Tao Zeng, Minghui Hu Yan Chen Changrong Yuan Jingrui C. ; Zhou, Anjian: Modelling and predicting energy consumption of a range extender fuel cell hybrid vehicle. En: Energy (2018), p. 187–197 Transporte, MT M. ; BID: Plan maestro de transporte (2010 – 2032). (2022) Unión Andina: ¿Por qué vivir en una ciudad intermedia puede aumentar tu calidad de vida? 2022. –https://www.unionandinacolombia.com/blog/ciudades-intermedias-mejoran-calidad-de-vida/: :text= %C2 %BFQu %C3 %A9 %20son %20las %20ciudades %20intermedias,son %20de %20un %20tama %C3 %B1o %20peque %C3 %B1o. UPME, Unidad de planeación minera e. Plan Energético Nacional 2020-2050. https://www1.upme.gov.co/DemandayEficiencia/Paginas/PEN.aspx Villa, Daniel ; Montoya, Alejandro: A Taxonomy of Energy Consumption Models for Electric Vehicles. En: MOVICI-MOYCOT 2018: Joint Conference for Urban Mobility in the Smart City (2018), p. 1–7 W. Xiong, X. Y. ; Yang, Y.: Energy Management Strategy of Photovoltaic Charging Station for Electric Vehicles in Commercial Area. En: IOP Conf. Ser. Mater. Sci. Eng (2018) Wang, Liuping: Model Predictive Control System Design and Implementation Using MATLAB. Springer, 2009 Wong, P. ; Alizadeh, M.: Congestion control and pricing in a network of electric vehicle public charging stations. En: 55th Annu. Allert. Conf. Commun. Control. Comput. Allert. (2018) Xingzhen Bai, Lei Zou Hongjian Liu Qiao S. ; Alsaadi, Fuad E.: Electric vehicle charging station planning with dynamic prediction of elastic charging demand: a hybrid particle swarm optimization algorithm. En: Complex Intelligent Systems (2022) Xinmei Yuan, Guokai Hong Xueqi Huang L.: Method for evaluating the real-world driving energy consumptions of electric vehicles. En: Energy 141 (2017), p. 1955–1968 Xuewei Qi, KanokBoriboonsomsin Matthew J.: Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under realworld traffic conditions. En: Transportation Research Part D: Transport and Environment (2017), p. 0–1 Z. Moghaddam, D. H. ; Phung, Q. V.: Smart Charging Strategy for Electric Vehicle Charging Stations. En: IEEE Trans. Transp. Electrif (2017) Zhan, Dingsong CuiZhenpo WangPeng LiuShuo WangDavid G. DorrellXiaohui L.: Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review. En: Energy (2022) Zhang, Wang Z. Liu P. ; Zhang, Z: Energy consumption analysis and prediction of electric vehicles based on real-world driving data. En: Applied Energy 174 (2020) Zheng, Yue Hill David J. Meng K.: Online Distributed MPC-Based Optimal Scheduling for EV Charging Stations in Distribution Systems. En: IEEE Transactions on Industrial Informatics 15 (2019), p. 638–649. – ISSN 15513203 Zonggen Yi, Peter H. B.: Adaptive multiresolution energy consumption prediction for electric vehicles. En: IEEE Transactions on Vehicular Technology 66 (2017), p. 10515–10525 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 120 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Automatización Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84078/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84078/2/1036668111.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84078/3/1036668111.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a bc2239a56ada430afbc5a8e1d84bd855 4e6a0ba395b93c19fd9167f1a2f08e66 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090034589990912 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Espinosa Oviedo, Jairo Joséad115e960b2989299b2018dae59e6ec2González Alzate, Juan Pablob0a1f5dbc3ce129a699124d22f4ffd94Grupo de Automática de la Universidad Nacional GaunalEspinosa Oviedo, Jairo José [0000-0002-0969-741X]González Alzate, Juan Pablo [0000-0003-0449-4194]González Alzate, Juan Pablo [0001823119]2023-06-27T15:38:12Z2023-06-27T15:38:12Z2023-05-17https://repositorio.unal.edu.co/handle/unal/84078Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasEn esta tesis se propone un sistema de toma de decisiones para la ubicación, el dimensionamiento y el despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodal, que impacte positivamente la movilidad, el transporte y el medio ambiente. El sistema se compone por motocicletas híbridas, embarcaciones eléctricas y estaciones de carga con generación de energía fotovoltaica, respaldo energético de baterías y conexión a la red eléctrica. La ubicación y el dimensionamiento de estaciones de carga se basa en la programación lineal entera mixta (MILP por sus siglas en inglés) que integra costos de inversión, mantenimiento y energía no suministrada, perfiles de demanda, precios de energía, radiación y variables binarias que describen la carga y la descarga del respaldo energético. Además, para el desarrollo del despacho de energía en la estación de carga, se empleó un modelo discreto de predicción y se soluciona por medio del método de programación cuadrática (QP por sus siglas en inglés) para la maximización del beneficio del operador de la estación de carga. Dicha implementación requirió un software de simulación de movilidad urbana para validar el sistema de transporte eléctrico multimodal. Este software cuenta con la herramienta TraCI que permite la conexión con Python y dispone de una alta variedad de redes de tráfico de todo el mundo. Con esta herramienta se simularon 5 escenarios donde se obtuvieron ventajas a favor de los usuarios de la estación y ganancias considerables para los operadores de la estación de carga, además, los errores respecto al suministro y la demanda son menores al 1%. Además, El método óptimo propuesto para la ubicación y el dimensionamiento óptimo de estaciones, establece una cantidad de 4 estaciones de carga, cada una con 22 paneles solares y 10 puntos de carga. Así mismo, para un escenario que incluye conexión a la red eléctrica, se encontraron dimensiones para 1 día de operación de 10000 W de capacidad de la red. (Texto tomado de la fuente)In this thesis, a decision-making system is proposed for the location, sizing and optimal dispatch of charging stations for the energy supply of a multimodal electric transport system, which positively impacts mobility, transport and the environment. The system is made up of hybrid motorcycles, electric boats and charging stations with photovoltaic energy generation, battery backup energy and connection to the electricity grid. The location and sizing of charging stations is based on mixed integer linear programming (MILP) that integrates investment, maintenance and non-supplied energy costs, demand profiles, energy prices, radiation and binary variables that describe the charging and discharging of the energy backup. In addition, for the development of the energy dispatch in the charging station, a discrete prediction model was used and it is solved by means of the quadratic programming (QP) method to maximize the benefit of the station operator of load. This implementation required urban mobility simulation software to validate the multimodal electric transport system. This software has the TraCI tool that allows connection with Python and has a wide variety of traffic networks from around the world. With this tool, 5 scenarios were simulated where advantages were obtained in favor of station users and considerable profits for charging station operators with errors regarding supply and demand of less than 1%. In addition, the optimal method proposed for the location and optimal sizing of stations establishes a number of 4 charging stations, each with 22 solar panels and 10 charging points. Likewise, for a scenario that includes connection to the electrical network, dimensions were found for 1 day of operation of 10000 W of network capacity.MaestríaMagíster en Ingeniería - Automatización IndustrialEl desarrollo de esta tesis de maestría está enmarcado dentro de una aproximación metodológica cuantitativa, teórica y práctica, basada en simulación.Matemáticas aplicadasÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Controlxvi, 120 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Automatización IndustrialFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería380 - Comercio , comunicaciones, transporte::388 - TransporteVehículos eléctricosElectricidad en el transporteElectricity in transportationElectric vehiclesTransportMultimodalCharging stationsElectric vehiclesOptimizationUrban trafficTransporteMultimodalEstaciones de cargaVehículos eléctricosOptimizaciónTráfico urbanoSistema de toma de decisiones para la ubicación, dimensionamiento y despacho óptimo de las estaciones de carga para el abastecimiento energético de un sistema de transporte eléctrico multimodalDecision-making system for the optimal location, sizing and dispatching of charging stations for the energy supply of a multimodal electric transport systemTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaA. K. Mathur, S. Charan T. ; Yemula, P. K.: Optimal Charging Schedule for Electric Vehicles in Parking Lot with Solar Power Generation. En: Int. Conf. Innov. Smart Grid Technol (2018)A. Sciarretta, P. Dewangan P. C.and Tona E. N.D. Bergshoeff C. Bordons L. Charmpa Ph Elbert L. Eriksson T. Hofman M. Hubacher P. Isenegger F. Lacandia A. Laveau H. Li D. Marcos T. N ̈uesch S. Onori P. Pisu J. Rios E. Silvas M. Sivertsson L. Tribiolivan der A. J. H. ; Wu, M.: A control benchmark on the energy management of a plug-in hybrid electric vehicle. En: Control Engineering Practice (2014)Abdulla Al Wahedi, Yusuf B.: Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar. En: Energy 243 (2022). ISSN 0360–5442Ahmadreza Moradipari, Mahnoosh A.: Pricing and Routing Mechanisms for Differentiated Services in an Electric Vehicle Public Charging Station Network. En: IEEE TRANSACTIONS ON SMART GRID (2019)Ahn, Kyoungho ; Rakha, Hesham A.: A simple hybrid electric vehicle fuel consumption model for transpor- tation applications. En: Applied Electromechanical Devices and Machines for Electric Mobility Solutions (2020), p. 1–15et al, G. L. Z.: Fast Charging Lithium Batteries: Recent Progress and Future Prospects. En: Small (2019)Ali Wirasingha, Sanjaka G.and E.: Classification and review of control strategies for plug-in hybrid electricles vehicles. En: IEEE Transactions on Vehicular Technology (2011)Anatole Desreveaux, Rochdi Trigui Elodie C. ; Klein, John: Impact of the Velocity Profile on Energy Consumption of Electric Vehicles. En: IEEE Transactions on Vehicular Technology 68 (2019), p. 1–1Andrea Di Martino, Seyed Mahdi Miraftabzadeh. ; Longo, Michela: Review Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review. En: Energies (2022)Bahrami, Ali: EV Charging Definitions, Modes, Levels, Communication Protocols and Applied Standards Technical Report. En: Technical report, BorgWarner Corporate (2020)Bakirtzis A. G. Vagropoulos, S. I.: Optimal bidding strategy for electric vehicle aggregators in electricity markets. En: IEEE Transactions on Power Systems (2013)Baris Yildiz, Ahmet S.: The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations. En: Transportation Research Part B (2019)Bayram, George Devetsikiotis M.: Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees. En: IEEE Transactions on Smart Grid 6 (2015), p. 1292–1302. – ISSN 19493053C. Bian, F. Wallin A. Avelin L. L. ; Yu, Z.: Finding the optimal location for public charging stations - A GIS-based MILP approach. En: Energy Procedia, (2019)Caicedo, C. R. P. ; Oviedo, J. J. E.: Desarrollo de un modelo dinámico de tráfico multimodal (automóviles, articulados, peatones y bicicletas) con fines de control. (2015)Camilo Vélez, Daniel V. ; Montoya, Alejandro: Infrastructure Estimation for a Freight/Personal Transport peration with an Electric Boat on the Magdalena River. En: Springer Nature Switzerland AG 2020 (2020)Candela. The journey how we redefined boating. https://candelaspeedboat.com/company/Caron, Stéphane. Quadratic programming in PythonCedric De Cauwer, Thierry Coosemans Saphir F. ; Mierlo, Joeri V.: A data driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. En: Energies 10 (2017)Chen, Xiao XuWeihao HuWen LiuYuefang DuRui HuangQi H.: Risk management strategy for a renewable power supply system in commercial buildings considering thermal comfort and stochastic electric vehicle behaviors. En: Energy Conversion and Management (2021)Chiara Fiori, Kyoungho A. ; Rakha, Hesham A.: Microscopic series plug-in hybrid electric vehicle energy consumption model: Model development and validation. En: Transportation Research Part D: Transport and Environment (2018), p. 175–185Clara Marina Martinez, Dongpu Cao Efstathios Velenis Bo G. ; Wellers, Matthias: Energy management in plug-in hybrid electric vehicles: Recent progress and a connected vehicles perspective. En: IEEE Transactions on Vehicular Technology (2016)Cumbal Simba, J. R.: Análisis del desempeño de una vanet mediante el uso de protocolos de enrutamiento y la ubicación óptima de la infraestructura rsu para alcanzar un throughput eficiente en escenarios urbanos. (2017)Cáceres, J. A. C. ; Castellanos, J. A.: Simulación Microscópica De Tráfico Urbano Y Su Aplicación En Un Área De La Ciudad De Zaragoza. En: Cea-Ifac.Es, (2004)D. A. Howey, B. C. ; Lytton, L.: Comparative measurements of the energy consumption of 51 electric, hybrid and internal combustion engine vehicles. En: Transportation Research Part D: Transport and Environment (2011), p. 459–464Daniel Villa, Alejandro M. ; Herrera, Aura M.: The Electric Riverboat Charging Station Location Problem. En: Journal of Advanced Transportation (2020)David Jiménez, Jesús Fraile-Ardanuy Javier Serrano Rubén F. ; Álvarez, Federico: Modelling the effect of driving events on electrical vehicle energy consumption using inertial sensors in smartphones. En: Energies 11 (2018), p. 412De Lorenzo M. G. Consolidani M. Muzi, F.: New concepts on microgrid-prosumer nodes interaction. En: 2019 AEIT International Annual Conference (2019)Duncan E. Smith, Diana-Andra Borca-Tasciuc: Towards a standard approach for annual energy production of concentrator-based building-integrated photovoltaics. En: Renewable Energy (2022)E.Grossmann, José A. Caballero. I.: Una revisión del estado del arte en optimización. En: Revista Iberoamericana de Automática e Informática Industrial RIAI (2007Erdelic, T ; Caric, T: A Survey on the Electric Vehicle Routing Problem: Variants and Solution Approaches. En: Journal of Advanced Transportation (2019), p. 1–48G. Piazza, F. D. ; Siri, S.: Optimal design of electric mobility services for a Local Energy Community. En: Sustain. Energy, Grids Networks, (2021)Giyeon Hwang, Jongmyung Kim Kyu-Jin Lee-Sangyul L. ; 1, Minjae K.: Energy management optimization of series hybrid electric bus using an ultra-capacitor and novel efficiency improvement factor. En: Sustainability (2020), p. 7345Glynn, Gary W Escalona-H J.: Ingeniería ambiental. En: Environmental Science and Engineering (1999). ISBN 970–17–0266–2Gómez, Isabel C.: Coordinated Charging Strategy for a Network of Photovoltaic Charging Stations (PVCSs): a trade-off between Stations Operator and Electric Vehicles (EVs) users. (2020)H. Jamshidi, J. T. van E. ; N ̈okel, K.: Dynamic planning for simultaneous recharging and relocation of shared electric taxies: A sequential MILP approach. En: Transp. Res. Part C Emerg. Technol (2020)H. Vincent Poor, H. D. Tuan A. V. S. ; Duong, T. Q.: Model predictive control for smart grids with multiple electric-vehicle charging stations. En: IEEE Trans. Smart Grid, (2019)Haodong Wang, Zan Liu Songwei Zhang Zhiguo Li Tie Q.: Multi-parameters dynamic scheduling with energy management for electric vehicle charging stations. (2022)I. Sagaama, W. T. ; Kamoun, F.: Evaluation of the Energy Consumption Model Performance for Electric Vehicles in SUMO. En: Proc. - 2019 IEEE/ACM 23rd Int. Symp. Distrib. Simul. Real Time Appl. DS-RT 2019, (2019)J. Salas, A. Torrente: Mínimos cuadrados. 2021. http://ocw.uc3m.es/matematicas/ algebralineal.Jiangbo Wang, and Toshiyuki Y.: Improving electricity consumption estimation for electric vehicles based on sparse GPS observations. En: Energies 10 (2017), p. 19–22Jin Li, Feng W. ; He, Yu: Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions. En: Sustainability (2020), p. 10537Juan-David Mira, Esteban B. ; Mejía-Gutiérrez, Ricardo: Preliminary Sizing of a Propulsion Unit for an Electrically-Powered Vessel Using a Screw Propellers Performance Comparison Tool. En: WEA 2020. Communications in Computer and Information Science (2018)Juan-David Mira, Esteban B. ; Mejía-Gutiérrez, Ricardo: Preliminary Sizing of a Propulsion Unit for an Electrically-Powered Vessel Using a Screw Propellers Performance Comparison Tool. En: Applied Computer Sciences in Engineering (2020)Kai Liu, Toshiyuki Yamamoto Takayuki M.: Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption. En: Applied Energy 227 (2018), p. 324–331Kasprzyk, Leszek: Modelling and analysis of dynamic states of the lead-acid batteries in electric vehicles. En: Maintenance and Reliability 19 (2017), p. 229–236Kong, Bhaskar Prasad Bhattarai Bishnu P. Devetsikiotis M.: Cloud-Based Charging Management of Electric Vehicles in a Network of Charging Stations. En: IEEE International Conference on Communications (2018). – ISBN 9781538631805Konstantinos N.Genikomsakis, Georgios M.: A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications. En: Transportation Research Part D: Transport and Environment 50 (2017), p. 98–118Kurczveil, López P.A. Schnieder E.: Implementation of an Energy Model and a Charging Infrastructure in SUMO. In: Behrisch, M., Krajzewicz, D., Weber, M. (eds.) Simulation of Urban Mobility. Lecture Notes in Computer Science. En: Springer (2014), p. 33–43Li Peng Zhang, Wei L. ; Qi, Bing N.: Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction. En: Energy (2020)Liu, Wenqian Yuan Xiaoling Niu M.: Reserving Charging Decision-Making Model and Route Plan for Electric Vehicles Considering Information of Traffic and Charging Station. En: Sustainability 2018 10 (2018), p. 1324. – ISSN 2071–1050Luin, Petelin S. ; Al-Mansour, F: Microsimulation of Electric Vehicle Energy Consumption. En: Energy 174 (2019)Luis Eduardo Chavez Perdomo, José Luis Alba A.: Ministerio de transporte superintendencia de puertos y transporte superintendencia delegada de puertos proyecto de investigación infraestructura fluvialManuel Molina: La distancia más corta. El método de los mínimos cuadrados. 2020. – https://anestesiar. org/2020/la-distancia-mas- corta-el-metodo-de-los-minimos-cuadradosÁngela María Orozco Gómez, Camilo Pabón Almanza Clara Margarita Montilla Herrera Edith Aristide Galvis Fredy David Gil R.: Transporte en Cifras 2021 Anuario Nacional de Transporte. (2022). – ISSN 2954–5730Matos M. A. Bessa, R. J.: Global against divided optimization for the participation of an ev aggregator in the day-ahead electricity market. En: Part I: Theory. Electric Power Systems Research (2013)Md Abdul Quddus, Mohammad M.: Modeling electric vehicle charging station expansion with an integration of renewable energy and Vehicle-to-Grid sources. En: Transportation Research Part E (2019)Millar, Jussi Lehtonen Matti Saarijarvi Eero Degefa Merkebu Koivisto M.: Probabilistic prosumer node modeling for estimating planning parameters in distribution networks with renewable energy sourcess. En: 58th Annual International Scientific Confererence on Power and Electrical Engineering of Riga Technical University, RTUCON 2017 Proceedings (2017), p. 1–8. ISBN 9781538638460Minami, Shigeyuki ; Yamachika, Naoki: A practical theory of the performance of low velocity boat. En: Journal of Asian Electric Vehicles (2004), p. 535–539Miri, Fotouhi A. ; Ewin, N: Electric vehicle energy consumption modelling and estimation—A case study. En: International Journal of Energy Research (2020)Montazeri-Gh, Morteza ; Mahmoodi-K, Mehdi: Optimized predictive energy management of plug-in hybrid electric vehicle based on traffic condition. En: Journal of cleaner production (2016)Muqeet, Intisar Ali Ahmad Aftab Iqbal Muhammad Muzaffar Ali Saqib Guerrero Josep M.: Optimal Operation of Energy Storage System for a Prosumer Microgrid Considering Economical and Environmental Effects. En: RAEE 2019 - International Symposium on Recent Advances in Electrical Engineering (2019), p. 8887002. ISBN 9781728130729Neeraj Rama, Joshua Orlando Darrell R. ; Chen, Bo: Route-optimized energy management of connected and automated multimode plug-in hybrid electric vehicle using dynamic programming. En: SAE Technical Paper (2019)NSRDB: NSRDB Data Viewer. 2020. – https://maps.nrel.gov/nsrdb-viewer, Accedido en septiembre de 2019P. Xu, J. Wang J. Li W. Z. ; Liu, H.: Dynamic pricing at electric vehicle charging stations for waiting time reduction. En: ACM Int. Conf. Proceeding Ser (2018)Programme D. Nations U. Nations, U.: Energy, the environment and human health. (1973)Ricardo Barrero, Xavier T. ; Mierlo, Joeri V.: Quasi-static simulation method for evaluation of energy consumption in hybrid light rail vehicles. En: 2008 IEEE Vehicle Power and Propulsion Conference (2008)Ricardo Mejia-Gutierrez, Jorge Hernán Córdoba Morales Mauricio Fernández Montoya Simón Polanía Restrepo Laura María Moreno Durango Federico Tirado Escoba Javier Emilio Sierra Carrillo Boris Alexander Medina Salgado José López Tatiana Manrique Espíndola Gustavo Andrés Moreno Edgar Rincón Gil Juan Camilo Tejada Orjuela Jhon Fernando Vargas Jaramillo Andrés Palacio Velásquez Felipe Henao Ramírez Felipe Mendoza G.: Diseño Preliminar: Kit de conversión a tracción eléctrica para movilidad terrestre / Universidad EAFIT. Medellín, 2023. – Informe de InvestigaciónRicardo Mejía-Gutiérrez, Juliana Carolina Acosta Jácome Alejandro Mora C.: Estado del arte y marco teórico - Modelos económicos aplicables a los nodos prosumidores de la red eléctrica / Universidad EAFIT. Medellín, 2022. – Informe de InvestigaciónRicardo Mejía-Gutiérrez, Jorge Hernán Córdoba Morales Laura María Moreno Durango Federico Tirado Escobar Mauricio Fernández Montoya Alejandro Castaño Posada Isabella Vera Arias Maria José Gallego Molina Tatiana Manrique Espíndola Jhon Fernando Vargas J.: Diseño de Detalle: Kit de conversión a tracción eléctrica para movilidad terrestre / Universidad EAFIT. Medellín, 2023. – Informe de InvestigaciónRicardo Mejía-Gutiérrez, Gilberto Osorio-Gómez, Jorge Hernán Córdoba Morales, Gustavo Andrés Moreno, Juan Camilo Tejada, Javier Emilio Sierra, Boris Alexander Medina, José Lopéz, Esteban Betancur, Mauricio Fernandez, Harvy Correa, Santiago Henao, Alejandro Castaño, Juan Manuel Posada, Felipe Mendoza, Laura María Moreno, Felipe Henao, Federico Tirado. Investigación de las condiciones y necesidades para la implementación del sistema de movilidad eléctrica terrestre en Magangué y Sincelejo / Universidad EAFIT. Medellín, 2021. – Informe de InvestigaciónRicardo Mejía-Gutiérrez, Camilo Vélez Erick Santiago Gómez Oviedo Sara López Valentina Gómez juan Pablo González Christian Portilla Felipe V.: Diseño y desarrollo - Sistema integrado de movilidad eléctrica multimodal (Moto+Bote+Estación) / Universidad EAFIT. Medellín, 2021. – Informe de InvestigaciónRicardo Mejía-Gutiérrez, Manuela Montoya Rivera Gilberto Osorio Gómez Maria Antonia Zapata Pérez Luisa Fernanda Ruiz Navarrete David Nicolás Márquez Navarrete Sara Restrepo Muñoz Juan Felipe Sanchez Arbeláez Jorge Luis Moreno Sabogal Juan Pablo Palacio Uribe Carlos Arturo Cepeda Coley Juan Camilo Giraldo Cano Juan-David Mira Pineda Felipe Mendoza Giraldo Mauricio Fernández Montoya Laura Flores Llano Maria Alejandra Cervera Robles Camilo Villa Tamayo Andrés Felipe Guerra Jimenez Juan Carlos Osorio M.: Fabricación de prototipo de la Embarcación Eléctro-Solar, parte II. / Universidad EAFIT. Medellín, 2021. – Informe de InvestigaciónRuisheng Wang, Qiang Xing Ziqi Z. ; Zhang, Tian: A Modified Rainbow-Based Deep Reinforcement Learning Method for Optimal Scheduling of Charging Station. En: Sustainability (2022)Ruiyang Jina, Chao Lub Jie S.: Deep reinforcement learning-based strategy for charging station participating in demand response Author links open overlay panel. En: Applied Energy (2022)S. Sachan, S.N. Singh P.P. Singh D.D. S.: Planning and operation of EV charging stations by chicken swarm optimization driven heuristics. En: Energy Conversion and Economics (2021)S. Suganya, S. C. R. ; Venkatesh, P.: Simultaneous coordination of distinct plugin Hybrid Electric Vehicle charging stations: A modified Particle Swarm Optimization approach. En: Energy (2017)Samia Boubaker, Ferid R. ; Kalboussi, Adel.: Estimating energy consumption of hybrid electric vehicle and gazoline classical vehicle. En: 2013 International Conference on Advanced Logistics and Transport, ICALT 2013 (2013), p. 221–226Savitsk, Daniel: Hydrodynamic design of planing hulls. En: Marine Technology and SNAME News 1 (1964), p. 71–95Shaobo Xie, Shanwei Qi Xiaolin Tang Kun Lang Zongke Xin James B.: Model Predictive Energy Management for Plug In Hybrid Electric Vehicles Considering Optimal Battery Depth of Discharge. En: Energy 173 (2019)Siddiqui A. Roman T. G. S. Soder L. Momber, I: Risk averse scheduling by a pev aggregator under uncertainty. En: IEEE Transactions on Power Systems (2015)Soini, David Patel Martin K.: Impact of prosumer battery operation on the cost of power supply. En: Journal of Energy Storage 29 (2020). – ISSN 2352152XTao Zeng, Minghui Hu Yan Chen Changrong Yuan Jingrui C. ; Zhou, Anjian: Modelling and predicting energy consumption of a range extender fuel cell hybrid vehicle. En: Energy (2018), p. 187–197Transporte, MT M. ; BID: Plan maestro de transporte (2010 – 2032). (2022)Unión Andina: ¿Por qué vivir en una ciudad intermedia puede aumentar tu calidad de vida? 2022. –https://www.unionandinacolombia.com/blog/ciudades-intermedias-mejoran-calidad-de-vida/: :text= %C2 %BFQu %C3 %A9 %20son %20las %20ciudades %20intermedias,son %20de %20un %20tama %C3 %B1o %20peque %C3 %B1o.UPME, Unidad de planeación minera e. Plan Energético Nacional 2020-2050. https://www1.upme.gov.co/DemandayEficiencia/Paginas/PEN.aspxVilla, Daniel ; Montoya, Alejandro: A Taxonomy of Energy Consumption Models for Electric Vehicles. En: MOVICI-MOYCOT 2018: Joint Conference for Urban Mobility in the Smart City (2018), p. 1–7W. Xiong, X. Y. ; Yang, Y.: Energy Management Strategy of Photovoltaic Charging Station for Electric Vehicles in Commercial Area. En: IOP Conf. Ser. Mater. Sci. Eng (2018)Wang, Liuping: Model Predictive Control System Design and Implementation Using MATLAB. Springer, 2009Wong, P. ; Alizadeh, M.: Congestion control and pricing in a network of electric vehicle public charging stations. En: 55th Annu. Allert. Conf. Commun. Control. Comput. Allert. (2018)Xingzhen Bai, Lei Zou Hongjian Liu Qiao S. ; Alsaadi, Fuad E.: Electric vehicle charging station planning with dynamic prediction of elastic charging demand: a hybrid particle swarm optimization algorithm. En: Complex Intelligent Systems (2022)Xinmei Yuan, Guokai Hong Xueqi Huang L.: Method for evaluating the real-world driving energy consumptions of electric vehicles. En: Energy 141 (2017), p. 1955–1968Xuewei Qi, KanokBoriboonsomsin Matthew J.: Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under realworld traffic conditions. En: Transportation Research Part D: Transport and Environment (2017), p. 0–1Z. Moghaddam, D. H. ; Phung, Q. V.: Smart Charging Strategy for Electric Vehicle Charging Stations. En: IEEE Trans. Transp. Electrif (2017)Zhan, Dingsong CuiZhenpo WangPeng LiuShuo WangDavid G. DorrellXiaohui L.: Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review. En: Energy (2022)Zhang, Wang Z. Liu P. ; Zhang, Z: Energy consumption analysis and prediction of electric vehicles based on real-world driving data. En: Applied Energy 174 (2020)Zheng, Yue Hill David J. Meng K.: Online Distributed MPC-Based Optimal Scheduling for EV Charging Stations in Distribution Systems. En: IEEE Transactions on Industrial Informatics 15 (2019), p. 638–649. – ISSN 15513203Zonggen Yi, Peter H. B.: Adaptive multiresolution energy consumption prediction for electric vehicles. En: IEEE Transactions on Vehicular Technology 66 (2017), p. 10515–10525Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84078/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1036668111.2023.pdf1036668111.2023.pdfTesis de Maestría en Ingeniería - Automatización Industrialapplication/pdf31310678https://repositorio.unal.edu.co/bitstream/unal/84078/2/1036668111.2023.pdfbc2239a56ada430afbc5a8e1d84bd855MD52THUMBNAIL1036668111.2023.pdf.jpg1036668111.2023.pdf.jpgGenerated Thumbnailimage/jpeg5660https://repositorio.unal.edu.co/bitstream/unal/84078/3/1036668111.2023.pdf.jpg4e6a0ba395b93c19fd9167f1a2f08e66MD53unal/84078oai:repositorio.unal.edu.co:unal/840782024-08-12 01:59:56.366Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |