A triangle inequality for angles in a hilbert space

Let  x,y,z be unit vectors in a Hilbert space, and define the angle θxy by cos θxy  = Re (x,y), 0 ≤ θxy ≤ π.  The object this note  is to give a proof of the following inequality (1)                   θxz   and lt; θxy  + θyz .

Autores:
Rao, D. K.
Tipo de recurso:
Article of journal
Fecha de publicación:
1976
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42485
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42485
http://bdigital.unal.edu.co/32582/
Palabra clave:
Unit vectors
Hilbert space
triangle inequality
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let  x,y,z be unit vectors in a Hilbert space, and define the angle θxy by cos θxy  = Re (x,y), 0 ≤ θxy ≤ π.  The object this note  is to give a proof of the following inequality (1)                   θxz   and lt; θxy  + θyz .