A triangle inequality for angles in a hilbert space
Let x,y,z be unit vectors in a Hilbert space, and define the angle θxy by cos θxy = Re (x,y), 0 ≤ θxy ≤ π. The object this note is to give a proof of the following inequality (1) θxz and lt; θxy + θyz .
- Autores:
-
Rao, D. K.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1976
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42485
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42485
http://bdigital.unal.edu.co/32582/
- Palabra clave:
- Unit vectors
Hilbert space
triangle inequality
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Let x,y,z be unit vectors in a Hilbert space, and define the angle θxy by cos θxy = Re (x,y), 0 ≤ θxy ≤ π. The object this note is to give a proof of the following inequality (1) θxz and lt; θxy + θyz . |
---|