Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional

ilustraciones,

Autores:
Vélez Salazar, Fabián Mauricio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83900
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83900
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Electroporación - Modelos matemáticos
Cáncer
Modelos matemáticos
Simulación biocomputacional
Concentración extra-intracelular
Electroporación
Electroquimioterapia
Cancer
Mathematical models
Biocomputational simulation
Extra-intracellular concentration
Electroporation
Electrochemotherapy
Electroporación
Electroquimioterapia
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_04d7f033524d7cae44689cfaa73acb94
oai_identifier_str oai:repositorio.unal.edu.co:unal/83900
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional
dc.title.translated.eng.fl_str_mv Response of cancer to treatment by chemotherapy and electrochemical therapy using biocomputational modeling and simulation
title Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional
spellingShingle Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Electroporación - Modelos matemáticos
Cáncer
Modelos matemáticos
Simulación biocomputacional
Concentración extra-intracelular
Electroporación
Electroquimioterapia
Cancer
Mathematical models
Biocomputational simulation
Extra-intracellular concentration
Electroporation
Electrochemotherapy
Electroporación
Electroquimioterapia
title_short Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional
title_full Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional
title_fullStr Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional
title_full_unstemmed Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional
title_sort Respuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacional
dc.creator.fl_str_mv Vélez Salazar, Fabián Mauricio
dc.contributor.advisor.none.fl_str_mv Ruíz Villa, Carlos Alberto
Patiño Arcila, Iván David
dc.contributor.author.none.fl_str_mv Vélez Salazar, Fabián Mauricio
dc.contributor.orcid.spa.fl_str_mv Vélez Salazar, Fabián Mauricio [0000-0002-7299-5970]
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001521879
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Fabian-Velez-Salazar
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=56Sj_tYAAAAJ&hl=es
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
topic 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Electroporación - Modelos matemáticos
Cáncer
Modelos matemáticos
Simulación biocomputacional
Concentración extra-intracelular
Electroporación
Electroquimioterapia
Cancer
Mathematical models
Biocomputational simulation
Extra-intracellular concentration
Electroporation
Electrochemotherapy
Electroporación
Electroquimioterapia
dc.subject.lemb.none.fl_str_mv Electroporación - Modelos matemáticos
dc.subject.proposal.spa.fl_str_mv Cáncer
Modelos matemáticos
Simulación biocomputacional
Concentración extra-intracelular
Electroporación
Electroquimioterapia
dc.subject.proposal.eng.fl_str_mv Cancer
Mathematical models
Biocomputational simulation
Extra-intracellular concentration
Electroporation
Electrochemotherapy
dc.subject.wikidata.none.fl_str_mv Electroporación
Electroquimioterapia
description ilustraciones,
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07
dc.date.accessioned.none.fl_str_mv 2023-05-29T19:47:45Z
dc.date.available.none.fl_str_mv 2023-05-29T19:47:45Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83900
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83900
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Keng-Cheng Ang, “Analysis of a tumour growth model with MATLAB,” Electron. Proc. 14th Asian Technol. Conf. Math., no. December, pp. 17–21, 2009.
G. S. Stamatakos and N. Graf, “Multiscale Cancer Modeling and In Silico Oncology: Emerging Computational Frontiers in Basic and Translational Cancer Research,” J. Bioeng. Biomed. Sci., vol. 03, no. 02, pp. 3–5, 2013.
L. B. Edelman, J. A. Eddy, and N. D. Price, “In silico models of cancer,” WIREs Syst. Biol. Med., vol. 2, no. 4, pp. 438–459, Jul. 2010.
M. Belfiore, M. Pennisi, G. Aricò, S. Ronsisvalle, and F. Pappalardo, “In silico modeling of the immune system: cellular and molecular scale approaches.,” Biomed Res. Int., vol. 2014, p. 371809, 2014.
D. J. Gavaghan, J. M. Brady, C. P. Behrenbruch, R. P. Highnam, and P. K. Maini, “Breast Cancer: Modelling and Detection,” J. Theor. Med., vol. 4, no. 1, pp. 3–20, 2002.
Z. Wang, J. D. Butner, R. Kerketta, V. Cristini, and T. S. Deisboeck, “Simulating cancer growth with multiscale agent-based modeling,” Semin. Cancer Biol., vol. 30, pp. 70–78, Feb. 2015.
D. Gupta, L. Kumar, O. A. Bég, and B. Singh, “Finite element analysis of melting effects on MHD stagnation-point non-Newtonian flow and heat transfer from a stretching/shrinking sheet,” in AIP Conference Proceedings, 2019, vol. 2061, p. 020024.
R. Xu and T. Wu, “Finite volume method for solving the stochastic Helmholtz equation,” Adv. Differ. Equations, vol. 2019, no. 1, p. 84, Dec. 2019.
B. Boyd and S. Becker, “Macroscopic Modeling of In Vivo Drug Transport in Electroporated Tissue,” J. Biomech. Eng., vol. 138, no. 3, pp. 1–12, Mar. 2016.
M. E. Orme and M. A. J. Chaplain, “A mathematical model of vascular tumour growth and invasion,” Math. Comput. Model., vol. 23, no. 10, pp. 43–60, May 1996.
Z. Bajzer, M. Marušić, and S. Vuk-Pavlović, “Conceptual frameworks for mathematical modeling of tumor growth dynamics,” Math. Comput. Model., vol. 23, no. 6, pp. 31–46, Mar. 1996.
J. P. Ward and J. R. King, “Mathematical modelling of avascular-tumour growth.,” IMA J. Math. Appl. Med. Biol., vol. 14, no. 1, pp. 39–69, Mar. 1997.
A. Litan and S. A. Langhans, “Cancer as a channelopathy: ion channels and pumps in tumor development and progression,” Front. Cell. Neurosci., vol. 9, no. March, pp. 1–11, Mar. 2015.
H. Ouadid-Ahidouch, I. Dhennin-Duthille, M. Gautier, H. Sevestre, and A. Ahidouch, “TRP channels: diagnostic markers and therapeutic targets for breast cancer?,” Trends Mol. Med., vol. 19, no. 2, pp. 117–124, Feb. 2013.
V. Rao, M. Perez-Neut, S. Kaja, and S. Gentile, “Voltage-Gated Ion Channels in Cancer Cell Proliferation,” Cancers (Basel)., vol. 7, no. 2, pp. 849–875, May 2015.
N. Prevarskaya, L. Zhang, and G. Barritt, “TRP channels in cancer,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1772, no. 8, pp. 937–946, Aug. 2007.
L. V. Weber et al., “Expression and functionality of TRPV1 in breast cancer cells,” Breast Cancer Targets Ther., vol. Volume 8, pp. 243–252, Dec. 2016.
D. Banerjee, “Connexin’s Connection in Breast Cancer Growth and Progression,” Int. J. Cell Biol., vol. 2016, no. 5, pp. 1–11, Nov. 2016.
C. M. M. D. Burstein, Harold J. M.D., Ph.D., Polyak, Kornelia M.D., Ph.D., Wong, Julia S. M.D., Lester Susan C., M.D., Ph.D., and Kaelin, “Ductal Carcinoma In Situ of the Breast,” Int. J. Surg. Oncol., vol. 2012, no. 14, pp. 1–12, Apr. 2012.
S. J. Franks, H. M. Byrne, J. R. King, J. C. E. Underwood, and C. E. Lewis, “Modelling the early growth of ductal carcinoma in situ of the breast,” J. Math. Biol., vol. 47, no. 5, pp. 424–452, Nov. 2003.
D. Kumar, “Simple PDE Model of Ductal Carcinoma in situ and Vascularisation of Nutrient,” vol. 4, no. 2, pp. 69–79, 2013.
H. Shafiee, P. A. Garcia, and R. V. Davalos, “A preliminary study to delineate irreversible electroporation from thermal damage using the arrhenius equation,” J. Biomech. Eng., vol. 131, no. 7, pp. 1–5, Jul. 2009.
M. Pavlin et al., “Effect of Cell Electroporation on the Conductivity of a Cell Suspension,” Biophys. J., vol. 88, no. 6, pp. 4378–4390, Jun. 2005.
M. Pavlin, T. Kotnik, D. Miklavčič, P. Kramar, and A. Maček Lebar, “Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes,” Adv. Planar Lipid Bilayers Liposomes, vol. 6, no. 07, pp. 165–226, 2008.
S. Y. Ho and G. S. Mittal, “Electroporation of Cell Membranes: A Review,” Crit. Rev. Biotechnol., vol. 16, no. 4, pp. 349–362, Jan. 1996.
T. J. Lewis, “A model for bilayer membrane electroporation based on resultant electromechanical stress,” IEEE Trans. Dielectr. Electr. Insul., vol. 10, no. 5, pp. 769–777, Oct. 2003.
J. C. Weaver and Y. A. Chizmadzhev, “Theory of electroporation: A review,” Bioelectrochemistry Bioenerg., vol. 41, no. 2, pp. 135–160, Dec. 1996.
Y. Granot and B. Rubinsky, “Mass transfer model for drug delivery in tissue cells with reversible electroporation,” Int. J. Heat Mass Transf., vol. 51, no. 23–24, pp. 5610–5616, Nov. 2008.
J. C. Weaver, “Electroporation of biological membranes from multicellular to nano scales,” IEEE Trans. Dielectr. Electr. Insul., vol. 10, no. 5, pp. 754–768, Oct. 2003.
T. Kotnik, L. Rems, M. Tarek, and D. Miklavcic, “Membrane Electroporation and Electropermeabilization: Mechanisms and Models,” Annual Review of Biophysics, vol. 48, no. 1. Annual Reviews Inc., pp. 63–91, 06-May-2019.
Y. Antov, A. Barbul, and R. Korenstein, “Electroendocytosis: Stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields,” Exp. Cell Res., vol. 297, no. 2, pp. 348–362, 2004.
M. Puc, T. Kotnik, L. M. Mir, and D. Miklavčič, “Quantitative model of small molecules uptake after in vitro cell electropermeabilization,” Bioelectrochemistry, vol. 60, no. 1–2, pp. 1–10, Aug. 2003.
G. Pucihar, T. Kotnik, D. Miklavčič, and J. Teissié, “Kinetics of Transmembrane Transport of Small Molecules into Electropermeabilized Cells,” Biophys. J., vol. 95, no. 6, pp. 2837–2848, Sep. 2008.
P. Kramar, D. Miklavcic, and A. M. Lebar, “A System for the Determination of Planar Lipid Bilayer Breakdown Voltage and Its Applications,” IEEE Trans. Nanobioscience, vol. 8, no. 2, pp. 132–138, Jun. 2009.
R. Shirakashi, V. L. Sukhorukov, I. Tanasawa, and U. Zimmermann, “Measurement of the permeability and resealing time constant of the electroporated mammalian cell membranes,” Int. J. Heat Mass Transf., vol. 47, no. 21, pp. 4517–4524, Oct. 2004.
J. Rubinsky, G. Onik, P. Mikus, and B. Rubinsky, “Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation,” J. Urol., vol. 180, no. 6, pp. 2668–2674, Dec. 2008.
N. Pavšelj, Z. Bregar, D. Cukjati, D. Batiuskaite, L. M. Mir, and D. Miklavčič, “The Course of Tissue Permeabilization Studied on a Mathematical Model of a Subcutaneous Tumor in Small Animals,” IEEE Trans. Biomed. Eng., vol. 52, no. 8, pp. 1373–1381, Aug. 2005.
N. Pavšelj, D. Miklavčič, and S. Becker, “Modeling Cell Electroporation and Its Measurable Effects in Tissue,” in Transport in Biological Media, Christichurch, New Zealand: Elsevier, 2013, pp. 493–520.
T. Y. Tsong, “Electroporation of cell membranes,” Biophys. J., vol. 60, no. 2, pp. 297–306, Aug. 1991.
E. Nilsson, “Modelling of the electrochemical treatment of tumours: Doctoral thesis,” Royal Institute of Technology, 2000.
M. Alló and P. Bertucci, Bio-logía molecular - La logia desconocida. Colección: LAS CIENCIAS NATURALES Y LA MATEMÁTICA. Buenos Aires: Artes Gráficas Rioplatense S. A., 2010.
F. M. Vélez Salazar, I. D. Patiño Arcila, and C. A. Ruiz Villa, “Simulation of the influence of voltage level and pulse spacing on the efficiency, aggressiveness and uniformity of the electroporation process in tissues using meshless techniques.,” Int. j. numer. method. biomed. eng., vol. 36, no. 3, p. e3304, Mar. 2020.
D. A. Zaharoff, R. C. Barr, C.-Y. Li, and F. Yuan, “Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery,” Gene Ther., vol. 9, no. 19, pp. 1286–1290, Oct. 2002.
S. M. Kennedy, Z. Ji, J. C. Hedstrom, J. H. Booske, and S. C. Hagness, “Quantification of Electroporative Uptake Kinetics and Electric Field Heterogeneity Effects in Cells,” Biophys. J., vol. 94, no. 12, pp. 5018–5027, Jun. 2008.
M. M. Sadik, J. Li, J. W. Shan, D. I. Shreiber, and H. Lin, “Quantification of propidium iodide delivery using millisecond electric pulses: Experiments,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 4, pp. 1322–1328, Apr. 2013.
D. C. Sweeney, J. C. Weaver, and R. V. Davalos, “Characterization of Cell Membrane Permeability In Vitro Part I: Transport Behavior Induced by Single-Pulse Electric Fields*,” Technol. Cancer Res. Treat., vol. 17, p. 153303381879249, Jan. 2018.
N. Pavšelj, V. Préat, and D. Miklavčič, “A Numerical Model of Skin Electropermeabilization Based on In Vivo Experiments,” Ann. Biomed. Eng., vol. 35, no. 12, pp. 2138–2144, Nov. 2007.
T. Batista Napotnik and D. Miklavčič, “In vitro electroporation detection methods – An overview,” Bioelectrochemistry, vol. 120, pp. 166–182, Apr. 2018.
B. Kos, “Treatment Planning for Electrochemotherapy and Irreversible Electroporation of Deep-Seated Tumors,” in Handbook of Electroporation, vol. 2, Cham: Springer International Publishing, 2017, pp. 1001–1017.
A. Golberg and B. Rubinsky, “A statistical model for multidimensional irreversible electroporation cell death in tissue,” Biomed. Eng. Online, vol. 9, no. 1, p. 13, 2010.
A. Meir and B. Rubinsky, “Electrical impedance tomographic imaging of a single cell electroporation,” Biomed. Microdevices, vol. 16, no. 3, pp. 427–437, Jun. 2014.
P. G. Turjanski, “Electroterapia y electroporación en el tratamiento de tumores : modelos teóricos y experimentales,” Universidad de Buenos Aires, 2011.
J. G. Scott, P. Gerlee, D. Basanta, A. G. Fletcher, P. K. Maini, and A. R. A. Anderson, “Mathematical Modeling of the Metastatic Process,” in Experimental Metastasis: Modeling and Analysis, A. Malek (., Dordrecht: Springer Netherlands, 2013, pp. 189–208.
N. Bellomo and L. Preziosi, “Modelling and mathematical problems related to tumor immune system interactions,” Math. Comput. Model., vol. 32, no. 00, 2000.
B. Ribba, T. Colin, and S. Schnell, “A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies,” Theor. Biol. Med. Model., vol. 3, no. 1, p. 7, Dec. 2006.
N. L. Komarova and D. Wodarz, Targeted Cancer Treatment in Silico, vol. 10, no. 9. 2014.
M. Kim, R. J. Gillies, and K. A. Rejniak, “Current Advances in Mathematical Modeling of Anti-Cancer Drug Penetration into Tumor Tissues,” Front. Oncol., vol. 3, no. November, pp. 1–10, 2013.
D. Deep Shikha, D. Kumar, S. Kumar, and J. and Rajesh, “A Mathematical Model of Chemotherapeutic Drug for Tumor Treatment,” Indian J. Appl. Res., vol. 3, no. 1, pp. 1–10, Oct. 2012.
T. Forjanič and D. Miklavčič, “Mathematical model of tumor volume dynamics in mice treated with electrochemotherapy,” Med. Biol. Eng. Comput., vol. 55, no. 7, pp. 1085–1096, Jul. 2017.
R. Roe-Dale, D. Isaacson, and M. Kupferschmid, “A Mathematical Model of Breast Cancer Treatment with CMF and Doxorubicin,” Bull. Math. Biol., vol. 73, no. 3, pp. 585–608, Mar. 2011.
S. Mahnič-Kalamiza, D. Miklavčič, and E. Vorobiev, “Dual-porosity model of solute diffusion in biological tissue modified by electroporation,” Biochim. Biophys. Acta - Biomembr., vol. 1838, no. 7, pp. 1950–1966, Jul. 2014.
B. Boyd and S. Becker, “Modeling of In Vivo Tissue Electroporation and Cellular Uptake Enhancement,” IFAC-PapersOnLine, vol. 48, no. 20, pp. 255–260, Sep. 2015.
F. Argus, B. Boyd, and S. M. Becker, “Electroporation of tissue and cells: A three-equation model of drug delivery,” Comput. Biol. Med., vol. 84, no. 1, pp. 226–234, May 2017.
I. Lacković, R. Magjarević, and D. Miklavčič, “Incorporating Electroporation-related Conductivity Changes into Models for the Calculation of the Electric Field Distribution in Tissue,” in IFMBE Proceedings, vol. 29, 2010, pp. 695–698.
S. Čorović, I. Lackovič, P. Šuštarič, T. Šuštar, T. Rodic, and D. Miklavčič, “Modeling of electric field distribution in tissues during electroporation.,” Biomed. Eng. Online, vol. 12, no. 1, p. 16, Feb. 2013.
A. T. Esser, K. C. Smith, T. R. Gowrishankar, and J. C. Weaver, “Towards Solid Tumor Treatment by Irreversible Electroporation: Intrinsic Redistribution of Fields and Currents in Tissue,” Technol. Cancer Res. Treat., vol. 6, no. 4, pp. 261–273, Aug. 2007.
A. L. Vera-Tizatl et al., “Computational Feasibility Analysis of Electrochemotherapy With Novel Needle-Electrode Arrays for the Treatment of Invasive Breast Ductal Carcinoma,” Technol. Cancer Res. Treat., vol. 17, p. 153303381879493, Jan. 2018.
W. Krassowska and P. D. Filev, “Modeling Electroporation in a Single Cell,” Biophys. J., vol. 92, no. 2, pp. 404–417, Jan. 2007.
J. C. Weaver and R. A. Mintzer, “Decreased bilayer stability due to transmembrane potentials,” Phys. Lett. A, vol. 86, no. 1, pp. 57–59, Oct. 1981.
K. A. DeBruin and W. Krassowska, “Modeling Electroporation in a Single Cell. I. Effects of Field Strength and Rest Potential,” Biophys. J., vol. 77, no. 3, pp. 1213–1224, Sep. 1999.
C. Jiang, R. V. Davalos, and J. C. Bischof, “A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy,” IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 4–20, Jan. 2015.
R. R. C. Lee, D. Zhang, and J. Hannig, “B i m e s t,” Annu. Rev. Biomed. Eng., pp. 477–509, 2000.
R. Susil, D. Šemrov, and D. Miklavčič, “Electric Field-Induced Transmembrane Potential Depends on Cell Density and Organizatio,” Electro- and Magnetobiology, vol. 17, no. 3, pp. 391–399, Jan. 1998.
A. J. de Jesus and T. W. Allen, “The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 864–876, Feb. 2013.
M. Tarek, “Membrane Electroporation: A Molecular Dynamics Simulation,” Biophys. J., vol. 88, no. 6, pp. 4045–4053, Jun. 2005.
I. van Uitert, S. Le Gac, and A. van den Berg, “The influence of different membrane components on the electrical stability of bilayer lipid membranes,” Biochim. Biophys. Acta - Biomembr., vol. 1798, no. 1, pp. 21–31, Jan. 2010.
N. Bao, T. T. Le, J.-X. Cheng, and C. Lu, “Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells,” Integr. Biol., vol. 2, no. 2–3, p. 113, 2010.
L. Miller, J. Leor, and B. Rubinsky, “Cancer Cells Ablation with Irreversible Electroporation,” Technol. Cancer Res. Treat., vol. 4, no. 6, pp. 699–705, Dec. 2005.
D. Šel, D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavčič, “Sequential Finite Element Model of Tissue Electropermeabilization,” IEEE Trans. Biomed. Eng., vol. 52, no. 5, pp. 816–827, May 2005.
E. Neumann, S. Kakorin, and K. Tœnsing, “Fundamentals of electroporative delivery of drugs and genes,” Bioelectrochemistry Bioenerg., vol. 48, no. 1, pp. 3–16, Feb. 1999.
D. Miklavčič, D. Sel, D. Cukjati, D. Batiuskaite, T. Slivnik, and L. M. Mir, “Sequential Finite Element Model of Tissue Electropermeabilisation,” in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, vol. 4, no. 5, pp. 3551–3554.
D. Miklavčič, D. Šemrov, H. Mekid, and L. M. Mir, “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochim. Biophys. Acta - Gen. Subj., vol. 1523, no. 1, pp. 73–83, Sep. 2000.
M. Golzio, J. Teissié, and M.-P. Rols, “Direct visualization at the single-cell level of electrically mediated gene delivery,” Proc. Natl. Acad. Sci., vol. 99, no. 3, pp. 1292–1297, Feb. 2002.
J. Teissié, J. Escoffre, M. Rols, and M. Golzio, “Time dependence of electric field effects on cell membranes. A review for a critical selection of pulse duration for therapeutical applications,” Radiol. Oncol., vol. 42, no. 4, pp. 196–206, Jan. 2008.
M. Yu, W. Tan, and H. Lin, “A stochastic model for DNA translocation through an electropore,” Biochim. Biophys. Acta - Biomembr., vol. 1818, no. 11, pp. 2494–2501, Nov. 2012.
J. Li and H. Lin, “Numerical simulation of molecular uptake via electroporation,” Bioelectrochemistry, vol. 82, no. 1, pp. 10–21, Aug. 2011.
M. S. Venslauskas, S. Šatkauskas, and R. Rodaitė-Riševičienė, “Efficiency of the delivery of small charged molecules into cells in vitro,” Bioelectrochemistry, vol. 79, no. 1, pp. 130–135, Aug. 2010.
D. Miklavčič and L. Towhidi, “Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells,” Radiol. Oncol., vol. 44, no. 1, pp. 34–41, Jan. 2010.
D. C. Sweeney, T. A. Douglas, and R. V. Davalos, “Characterization of Cell Membrane Permeability In Vitro Part II: Computational Model of Electroporation-Mediated Membrane Transport*,” Technol. Cancer Res. Treat., vol. 17, p. 153303381879249, Jan. 2018.
J. Dermol and D. Miklavčič, “Mathematical Models Describing Cell Death Due to Electroporation,” in Handbook of Electroporation, vol. 2, Cham: Springer International Publishing, 2017, pp. 1199–1218.
S. V. Patankar, Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, 1980.
E. J. Kansa, “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations,” Comput. Math. with Appl., vol. 19, no. 8–9, pp. 147–161, 1990.
S. Chantasiriwan, “Cartesian grid methods using radial basis functions for solving Poisson, Helmholtz, and diffusion–convection equations,” Eng. Anal. Bound. Elem., vol. 28, no. 12, pp. 1417–1425, Dec. 2004.
N. Mai-Duy and T. Tran-Cong, “Mesh-free radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson’s equations,” Eng. Anal. Bound. Elem., vol. 26, no. 2, pp. 133–156, Feb. 2002.
I. Boztosun and A. Charafi, “An analysis of the linear advection–diffusion equation using mesh-free and mesh-dependent methods,” Eng. Anal. Bound. Elem., vol. 26, no. 10, pp. 889–895, Dec. 2002.
H. Ding, C. Shu, K. S. Yeo, and D. Xu, “Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method,” Comput. Methods Appl. Mech. Eng., vol. 195, no. 7–8, pp. 516–533, Jan. 2006.
E. Divo and A. J. Kassab, “An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer,” J. Heat Transfer, vol. 129, no. 2, pp. 124–136, Feb. 2007.
B. Šarler and R. Vertnik, “Meshfree explicit local radial basis function collocation method for diffusion problems,” Comput. Math. with Appl., vol. 51, no. 8, pp. 1269–1282, Apr. 2006.
D. Stevens, H. Power, and H. Morvan, “An order-N complexity meshless algorithm for transport-type PDEs, based on local Hermitian interpolation,” Eng. Anal. Bound. Elem., vol. 33, no. 4, pp. 425–441, Apr. 2009.
N. Mai-Duy and T. Tran-Cong, “Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks,” Int. J. Numer. Methods Fluids, vol. 37, no. 1, pp. 65–86, Sep. 2001.
N. Mai-Duy and T. Tran-Cong, “Approximation of function and its derivatives using radial basis function networks,” Appl. Math. Model., vol. 27, no. 3, pp. 197–220, Mar. 2003.
G. Yao, B. Šarler, and C. S. Chen, “A comparison of three explicit local meshless methods using radial basis functions,” Eng. Anal. Bound. Elem., vol. 35, no. 3, pp. 600–609, Mar. 2011.
C. S. Chen, C. M. Fan, and P. H. Wen, “The method of approximate particular solutions for solving certain partial differential equations,” Numer. Methods Partial Differ. Equ., vol. 28, no. 2, pp. 506–522, Mar. 2012.
M. Pavlin and D. Miklavčič, “Effective Conductivity of a Suspension of Permeabilized Cells: A Theoretical Analysis,” Biophys. J., vol. 85, no. 2, pp. 719–729, Aug. 2003.
C. S. Djuzenova, U. Zimmermann, H. Frank, V. L. Sukhorukov, E. Richter, and G. Fuhr, “Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells,” Biochim. Biophys. Acta - Biomembr., vol. 1284, no. 2, pp. 143–152, Oct. 1996.
A. Golberg and M. L. Yarmush, “Nonthermal irreversible electroporation: fundamentals, applications, and challenges,” IEEE Trans. Biomed. Eng., vol. 60, no. 3, pp. 707–714, Mar. 2013.
E. W. Lee et al., “Electron Microscopic Demonstration and Evaluation of Irreversible Electroporation-Induced Nanopores on Hepatocyte Membranes,” J. Vasc. Interv. Radiol., vol. 23, no. 1, pp. 107–113, Jan. 2012.
R. E. Neal et al., “In Vivo Irreversible Electroporation Kidney Ablation: Experimentally Correlated Numerical Models,” IEEE Trans. Biomed. Eng., vol. 62, no. 2, pp. 561–569, Feb. 2015.
P. W. Partridge, “Towards criteria for selecting approximation functions in the Dual Reciprocity Method,” Eng. Anal. Bound. Elem., vol. 24, no. 7–8, pp. 519–529, Sep. 2000.
Y. Zhang and S. Zhu, “On the choice of interpolation functions used in the dual-reciprocity boundary-element method,” Eng. Anal. Bound. Elem., vol. 13, no. 4, pp. 387–396, Jan. 1994.
C. Shu, H. Ding, and K. . Yeo, “Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations,” Comput. Methods Appl. Mech. Eng., vol. 192, no. 7–8, pp. 941–954, Feb. 2003.
I. D. Patiño, H. Power, C. Nieto-Londoño, and W. F. Flórez, “Stokes–Brinkman formulation for prediction of void formation in dual-scale fibrous reinforcements: a BEM/DR-BEM simulation,” Comput. Mech., vol. 59, no. 4, pp. 555–577, Apr. 2017.
I. D. Patiño Arcila, H. Power, C. Nieto Londoño, and W. F. Flórez Escobar, “Boundary element simulation of void formation in fibrous reinforcements based on the Stokes-Darcy formulation,” Comput. Methods Appl. Mech. Eng., vol. 304, pp. 265–293, 2016.
I. Patiño Arcila, H. Power, C. Nieto Londoño, and W. Flórez Escobar, “Boundary Element Method for the dynamic evolution of intra-tow voids in dual-scale fibrous reinforcements using a Stokes–Darcy formulation,” Eng. Anal. Bound. Elem., vol. 87, pp. 133–152, Feb. 2018.
B. Šarler, J. Perko, D. Gobin, B. Goyeau, and H. Power, “Dual reciprocity boundary element method solution of natural convection in Darcy–Brinkman porous media,” Eng. Anal. Bound. Elem., vol. 28, no. 1, pp. 23–41, Jan. 2004.
A. Neumaier, “Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization,” SIAM Rev., vol. 40, no. 3, pp. 636–666, Jan. 1998.
A. Rap, L. Elliott, D. B. Ingham, D. Lesnic, and X. Wen, “DRBEM for Cauchy convection-diffusion problems with variable coefficients,” Eng. Anal. Bound. Elem., vol. 28, no. 11, pp. 1321–1333, Nov. 2004.
J. Dermol-Černe, J. Vidmar, J. Ščančar, K. Uršič, G. Serša, and D. Miklavčič, “Connecting the in vitro and in vivo experiments in electrochemotherapy - a feasibility study modeling cisplatin transport in mouse melanoma using the dual-porosity model,” J. Control. Release, vol. 286, pp. 33–45, Sep. 2018.
T. Murovec, D. C. Sweeney, E. Latouche, R. V. Davalos, and C. Brosseau, “Modeling of Transmembrane Potential in Realistic Multicellular Structures before Electroporation,” Biophys. J., vol. 111, no. 10, pp. 2286–2295, Nov. 2016.
P. A. Garcia, R. V. Davalos, and D. Miklavcic, “A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue,” PLoS One, vol. 9, no. 8, p. e103083, Aug. 2014.
A. Ongaro et al., “Evaluation of the Electroporation Efficiency of a Grid Electrode for Electrochemotherapy,” Technol. Cancer Res. Treat., vol. 15, no. 2, pp. 296–307, Apr. 2016.
D. Voyer, A. Silve, L. M. Mir, R. Scorretti, and C. Poignard, “Dynamical modeling of tissue electroporation,” Bioelectrochemistry, vol. 119, pp. 98–110, Feb. 2018.
J. Chen, Y. Chu, J. Wang, and Z. Long, “Simultaneous visualization for coexpression of multiple neurotrophic factors in living Schwann cells,” African J. Biotechnol., vol. 9, no. 4, pp. 536–544, 2010.
S. Ma, S. Wang, C. Zhang, and S. Zhang, “A method to improve the efficiency of an electric aircraft propulsion system,” Energy, vol. 140, pp. 436–443, Dec. 2017.
S.-Y. Kim et al., “Correlation between electrical conductivity and apparent diffusion coefficient in breast cancer: effect of necrosis on magnetic resonance imaging,” Eur. Radiol., vol. 28, no. 8, pp. 3204–3214, Aug. 2018.
J. Lankelma, R. Fernández Luque, H. Dekker, W. Schinkel, and H. M. Pinedo, “A Mathematical Model of Drug Transport in Human Breast Cancer,” Microvasc. Res., vol. 59, no. 1, pp. 149–161, Jan. 2000.
N. C. for information Biotechnology, “Compound summary Doxorubicin,” 2022. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Doxorubicin. [Accessed: 13-May-2022].
D. S. Wishart et al., “DrugBank 5.0: a major update to the DrugBank database for 2018,” Nucleic Acids Res., vol. 46, no. D1, pp. D1074–D1082, Jan. 2018.
S. Eikenberry, “A tumor cord model for Doxorubicin delivery and dose optimization in solid tumors,” Theor. Biol. Med. Model., vol. 6, no. 1, p. 16, Dec. 2009.
T. L. Jackson, “Intracellular Accumulation and Mechanism of Action of Doxorubicin in a Spatio-temporal Tumor Model,” J. Theor. Biol., vol. 220, no. 2, pp. 201–213, Jan. 2003.
M. E. Hubbard, M. Jove, P. M. Loadman, R. M. Phillips, C. J. Twelves, and S. W. Smye, “Drug delivery in a tumour cord model: a computational simulation,” R. Soc. Open Sci., vol. 4, no. 5, p. 170014, May 2017.
C. M. Groh et al., “Mathematical and computational models of drug transport in tumours,” J. R. Soc. Interface, vol. 11, no. 94, p. 20131173, May 2014.
E. Bellard et al., “Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization,” J. Control. Release, vol. 163, no. 3, pp. 396–403, 2012.
M. Brinton, Y. Mandel, I. Schachar, and D. Palanker, “Mechanisms of electrical vasoconstriction,” J. Neuroeng. Rehabil., vol. 15, no. 1, pp. 1–10, 2018.
S. Corovic, B. Markelc, M. Dolinar, M. Cemazar, and T. Jarm, “Modeling of microvascular permeability changes after electroporation.,” PLoS One, vol. 10, no. 3, p. e0121370, Mar. 2015.
Y. Mandel et al., “Vasoconstriction by Electrical Stimulation: New Approach to Control of Non-Compressible Hemorrhage,” Sci. Rep., vol. 3, no. 1, p. 2111, Dec. 2013.
J. Gehl, T. Skovsgaard, and L. M. Mir, “Vascular reactions to in vivo electroporation: Characterization and consequences for drug and gene delivery,” Biochim. Biophys. Acta - Gen. Subj., vol. 1569, no. 1–3, pp. 51–58, 2002.
C. J. W. Meulenberg, V. Todorovic, and M. Cemazar, “Differential Cellular Effects of Electroporation and Electrochemotherapy in Monolayers of Human Microvascular Endothelial Cells,” PLoS One, vol. 7, no. 12, pp. 1–9, 2012.
B. Markelc et al., “Increased permeability of blood vessels after reversible electroporation is facilitated by alterations in endothelial cell-to-cell junctions,” J. Control. Release, vol. 276, no. 9, pp. 30–41, Apr. 2018.
B. Markelc, M. Čemažar, and G. Serša, “Effects of Reversible and Irreversible Electroporation on Endothelial Cells and Tissue Blood Flow,” in Handbook of Electroporation, Cham: Springer International Publishing, 2017, pp. 607–620.
S. Ozawa, Y. Sugiyama, Y. Mitsuhashi, T. Kobayashi, and M. Inaba, “Cell killing action of cell cycle phase-non-specific antitumor agents is dependent on concentration-time product,” Cancer Chemother. Pharmacol., vol. 21, no. 3, pp. 185–190, 1988.
A. W. El-Kareh and T. W. Secomb, “Two-mechanism peak concentration model for cellular pharmacodynamics of doxorubicin,” Neoplasia, vol. 7, no. 7, pp. 705–713, 2005.
N. J. Millenbaugh, M. G. Wientjes, and J. L. S. Au, “A pharmacodynamic analysis method to determine the relative importance of drug concentration and treatment time on effect,” Cancer Chemother. Pharmacol., vol. 45, no. 4, pp. 265–272, 2000.
J. D. Vanegas and I. D. Patiño, “Filling simulation of the RTM process in isotropic homogeneous/non-homogeneous media using the boundary element method,” Adv. Compos. Mater., vol. 24, no. 2, pp. 113–139, 2015.
K. E. L. Harrouni, D. Ouazar, L. C. Wrobel, C. A. Brebbia, U. M. V, and E. Mohammadia, “Method for Heterogeneous Porous Media,” Comput. Mech. Publ., no. C, pp. 5–6, 1992.
K. E. L. Harrouni, D. Ouazar, L. C. Wrobel, and A. H. D. Cheng, “Global interpolation function based DRBEM applied to Darcy’s flow in heterogeneous media,” Eng. Anal. Bound. Elem., vol. 16, no. 3, pp. 281–285, 1995.
P. W. Partridge and C. A. Brebbia, “Computer implementation of the BEM dual reciprocity method for the solution of general field equations,” Commun. Appl. Numer. Methods, vol. 6, no. 2, pp. 83–92, 1990.
A. J. Nowak and P. W. Partridge, “Comparison of the dual reciprocity and the multiple reciprocity methods,” Eng. Anal. Bound. Elem., vol. 10, no. 2, pp. 155–160, 1992.
J. M. Granados, H. Power, C. A. Bustamante, W. F. Flórez, and A. F. Hill, “A global particular solution meshless approach for the four-sided lid-driven cavity flow problem in the presence of magnetic fields,” Comput. Fluids, vol. 160, pp. 120–137, 2018.
S. J. Jackson, D. Stevens, D. Giddings, and H. Power, “An adaptive RBF finite collocation approach to track transport processes across moving fronts,” Comput. Math. with Appl., vol. 71, no. 1, pp. 278–300, 2016.
S. J. Jackson, H. Power, and D. Giddings, “Immiscible thermo-viscous fingering in Hele-Shaw cells,” Comput. Fluids, vol. 156, pp. 621–641, 2017.
D. Stevens and H. Power, “The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems,” J. Comput. Phys., vol. 298, pp. 423–445, 2015.
S. K. Karode, “Laminar flow in channels with porous walls, revisited,” J. Memb. Sci., vol. 191, no. 1–2, pp. 237–241, 2001.
T. Mohammed, M. Singh, J. G. Tiu, and A. S. Kim, “Etiology and management of hypertension in patients with cancer,” Cardio-Oncology, vol. 7, no. 1, pp. 1–13, 2021.
F. D. Ramirez, V. Y. Reddy, R. Viswanathan, M. Hocini, and P. Jaïs, “Emerging Technologies for Pulmonary Vein Isolation,” Circ. Res., vol. 127, no. 1, pp. 170–183, 2020.
L. D. J. Fiederer et al., “The role of blood vessels in high-resolution volume conductor head modeling of EEG,” Neuroimage, vol. 128, pp. 193–208, 2016.
A. Khorasani, “A numerical study on the effect of conductivity change in cell kill distribution in irreversible electroporation,” Polish J. Med. Phys. Eng., vol. 26, no. 2, pp. 69–76, 2020.
J. Robert, A. Illiadis, B. Hoerni, J. P. Cano, M. Durand, and C. Lagarde, “Pharmacokinetics of adriamycin in patients with breast cancer: Correlation between pharmacokinetic parameters and clinical short-term response,” Eur. J. Cancer Clin. Oncol., vol. 18, no. 8, pp. 739–745, 1982.
S. Movahed and D. Li, “Microfluidics cell electroporation,” Microfluidics and Nanofluidics, vol. 10, no. 4. Springer, pp. 703–734, 19-Apr-2011.
B. Markelc et al., “In Vivo Molecular Imaging and Histological Analysis of Changes Induced by Electric Pulses Used for Plasmid DNA Electrotransfer to the Skin: A Study in a Dorsal Window Chamber in Mice,” J. Membr. Biol., vol. 245, no. 9, pp. 545–554, Sep. 2012.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 206 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Industria y Organizaciones
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83900/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83900/2/75077047.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83900/3/75077047.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e8105eaee5ce0883a1ccf774e60301e5
cf5876763f39de2c3598235b13b61639
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089300217692160
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ruíz Villa, Carlos Alberto19826264d7b95033280a44a5d10f6336Patiño Arcila, Iván Davidbb268ea0b50c78030285624ac021191aVélez Salazar, Fabián Mauricio90b06d48a0201ee4a4467083db44a81dVélez Salazar, Fabián Mauricio [0000-0002-7299-5970]https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001521879https://www.researchgate.net/profile/Fabian-Velez-Salazarhttps://scholar.google.com/citations?user=56Sj_tYAAAAJ&hl=es2023-05-29T19:47:45Z2023-05-29T19:47:45Z2022-07https://repositorio.unal.edu.co/handle/unal/83900Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones,Los modelos de electroporación y electroquimioterapia son esquemas teóricos que describen procesos electrofisiológicos basados en formulaciones matemáticas que ayudan a comprender y predecir el comportamiento de fenómenos de transporte y dosificación de medicamentos mediante modelado y simulación computacional. En este trabajo se simuló el transporte de masa en tejidos electroporados usando técnicas sin malla mediante un estudio paramétrico de la influencia del voltaje y el espaciamiento entre pulsos en la eficiencia, agresividad y uniformidad del proceso de electroporación analizando el cambio de concentración de medicamentos entre los espacios extracelular e intracelular. Se utilizó el método de Funciones de Base Radial (RBF) para resolver el sistema de ecuaciones diferenciales del fenómeno y se simuló el transporte de fármacos quimioterapéuticos clásicos en tejidos electroporados a través del Método Global MAPS, estudiando la influencia de las dos variables sobre la magnitud y distribución del campo eléctrico, las concentraciones extracelulares e intracelulares y la eficiencia y agresividad del protocolo de electroporación. Los análisis se centran en la comparación de la respuesta de dos medicamentos quimioterapéuticos al cambio de los parámetros de electroporación y la influencia de esta respuesta en la eficiencia y agresividad del tratamiento. Se obtuvo que para ambos medicamentos la agresividad es inversamente proporcional al espaciamiento entre pulsos y directamente proporcional al voltaje. Para el protocolo menos agresivo de ambos medicamentos la eficacia es adecuada para la doxorrubicina y muy baja para el cisplatino. Como conclusión, la agresividad de un protocolo no es necesariamente proporcional a su eficacia; esta relación es determinada por el tipo de medicamento (texto tomado de la fuente)Electroporation and electrochemotherapy models are theoretical schemes that describe electrophysiological processes based on mathematical formulations that help to understand and predict the behavior of drug transport and dosing phenomena through modeling and computational simulation. In this work, mass transport in electroporated tissues was simulated using mesh-free techniques through a parametric study of the influence of voltage and pulse spacing on the efficiency, aggressiveness and uniformity of the electroporation process by analyzing the change in drug concentration between the extracellular and intracellular spaces. The Radial Basis Functions (RBF) method was used to solve the system of differential equations of the phenomenon and the transport of classical chemotherapeutic drugs in electroporated tissues was simulated through the Global MAPS Method, studying the influence of the two variables on the magnitude and distribution of the electric field, the extracellular and intracellular concentrations and the efficiency and aggressiveness of the electroporation protocol. The analyses focus on the comparison of the response of two chemotherapeutic drugs to the change of the electroporation parameters and the influence of this response on the efficiency and aggressiveness of the treatment. It was obtained that for both drugs aggressiveness is inversely proportional to pulse spacing and directly proportional to voltage. For the less aggressive protocol of both drugs the efficacy is adequate for doxorubicin and very low for cisplatin. As a conclusion, the aggressiveness of a protocol is not necessarily proportional to its efficacy; this relationship is determined by the type of drugDoctoradoDoctor en IngenieríaOrganizaciones, Gestión Tecnológica y Tic’sÁrea Curricular de Ingeniería Administrativa e Ingeniería Industrial206 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Industria y OrganizacionesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónElectroporación - Modelos matemáticosCáncerModelos matemáticosSimulación biocomputacionalConcentración extra-intracelularElectroporaciónElectroquimioterapiaCancerMathematical modelsBiocomputational simulationExtra-intracellular concentrationElectroporationElectrochemotherapyElectroporaciónElectroquimioterapiaRespuesta del cáncer al tratamiento mediante quimioterapia y terapia electroquímica utilizando modelado y simulación biocomputacionalResponse of cancer to treatment by chemotherapy and electrochemical therapy using biocomputational modeling and simulationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaKeng-Cheng Ang, “Analysis of a tumour growth model with MATLAB,” Electron. Proc. 14th Asian Technol. Conf. Math., no. December, pp. 17–21, 2009.G. S. Stamatakos and N. Graf, “Multiscale Cancer Modeling and In Silico Oncology: Emerging Computational Frontiers in Basic and Translational Cancer Research,” J. Bioeng. Biomed. Sci., vol. 03, no. 02, pp. 3–5, 2013.L. B. Edelman, J. A. Eddy, and N. D. Price, “In silico models of cancer,” WIREs Syst. Biol. Med., vol. 2, no. 4, pp. 438–459, Jul. 2010.M. Belfiore, M. Pennisi, G. Aricò, S. Ronsisvalle, and F. Pappalardo, “In silico modeling of the immune system: cellular and molecular scale approaches.,” Biomed Res. Int., vol. 2014, p. 371809, 2014.D. J. Gavaghan, J. M. Brady, C. P. Behrenbruch, R. P. Highnam, and P. K. Maini, “Breast Cancer: Modelling and Detection,” J. Theor. Med., vol. 4, no. 1, pp. 3–20, 2002.Z. Wang, J. D. Butner, R. Kerketta, V. Cristini, and T. S. Deisboeck, “Simulating cancer growth with multiscale agent-based modeling,” Semin. Cancer Biol., vol. 30, pp. 70–78, Feb. 2015.D. Gupta, L. Kumar, O. A. Bég, and B. Singh, “Finite element analysis of melting effects on MHD stagnation-point non-Newtonian flow and heat transfer from a stretching/shrinking sheet,” in AIP Conference Proceedings, 2019, vol. 2061, p. 020024.R. Xu and T. Wu, “Finite volume method for solving the stochastic Helmholtz equation,” Adv. Differ. Equations, vol. 2019, no. 1, p. 84, Dec. 2019.B. Boyd and S. Becker, “Macroscopic Modeling of In Vivo Drug Transport in Electroporated Tissue,” J. Biomech. Eng., vol. 138, no. 3, pp. 1–12, Mar. 2016.M. E. Orme and M. A. J. Chaplain, “A mathematical model of vascular tumour growth and invasion,” Math. Comput. Model., vol. 23, no. 10, pp. 43–60, May 1996.Z. Bajzer, M. Marušić, and S. Vuk-Pavlović, “Conceptual frameworks for mathematical modeling of tumor growth dynamics,” Math. Comput. Model., vol. 23, no. 6, pp. 31–46, Mar. 1996.J. P. Ward and J. R. King, “Mathematical modelling of avascular-tumour growth.,” IMA J. Math. Appl. Med. Biol., vol. 14, no. 1, pp. 39–69, Mar. 1997.A. Litan and S. A. Langhans, “Cancer as a channelopathy: ion channels and pumps in tumor development and progression,” Front. Cell. Neurosci., vol. 9, no. March, pp. 1–11, Mar. 2015.H. Ouadid-Ahidouch, I. Dhennin-Duthille, M. Gautier, H. Sevestre, and A. Ahidouch, “TRP channels: diagnostic markers and therapeutic targets for breast cancer?,” Trends Mol. Med., vol. 19, no. 2, pp. 117–124, Feb. 2013.V. Rao, M. Perez-Neut, S. Kaja, and S. Gentile, “Voltage-Gated Ion Channels in Cancer Cell Proliferation,” Cancers (Basel)., vol. 7, no. 2, pp. 849–875, May 2015.N. Prevarskaya, L. Zhang, and G. Barritt, “TRP channels in cancer,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1772, no. 8, pp. 937–946, Aug. 2007.L. V. Weber et al., “Expression and functionality of TRPV1 in breast cancer cells,” Breast Cancer Targets Ther., vol. Volume 8, pp. 243–252, Dec. 2016.D. Banerjee, “Connexin’s Connection in Breast Cancer Growth and Progression,” Int. J. Cell Biol., vol. 2016, no. 5, pp. 1–11, Nov. 2016.C. M. M. D. Burstein, Harold J. M.D., Ph.D., Polyak, Kornelia M.D., Ph.D., Wong, Julia S. M.D., Lester Susan C., M.D., Ph.D., and Kaelin, “Ductal Carcinoma In Situ of the Breast,” Int. J. Surg. Oncol., vol. 2012, no. 14, pp. 1–12, Apr. 2012.S. J. Franks, H. M. Byrne, J. R. King, J. C. E. Underwood, and C. E. Lewis, “Modelling the early growth of ductal carcinoma in situ of the breast,” J. Math. Biol., vol. 47, no. 5, pp. 424–452, Nov. 2003.D. Kumar, “Simple PDE Model of Ductal Carcinoma in situ and Vascularisation of Nutrient,” vol. 4, no. 2, pp. 69–79, 2013.H. Shafiee, P. A. Garcia, and R. V. Davalos, “A preliminary study to delineate irreversible electroporation from thermal damage using the arrhenius equation,” J. Biomech. Eng., vol. 131, no. 7, pp. 1–5, Jul. 2009.M. Pavlin et al., “Effect of Cell Electroporation on the Conductivity of a Cell Suspension,” Biophys. J., vol. 88, no. 6, pp. 4378–4390, Jun. 2005.M. Pavlin, T. Kotnik, D. Miklavčič, P. Kramar, and A. Maček Lebar, “Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes,” Adv. Planar Lipid Bilayers Liposomes, vol. 6, no. 07, pp. 165–226, 2008.S. Y. Ho and G. S. Mittal, “Electroporation of Cell Membranes: A Review,” Crit. Rev. Biotechnol., vol. 16, no. 4, pp. 349–362, Jan. 1996.T. J. Lewis, “A model for bilayer membrane electroporation based on resultant electromechanical stress,” IEEE Trans. Dielectr. Electr. Insul., vol. 10, no. 5, pp. 769–777, Oct. 2003.J. C. Weaver and Y. A. Chizmadzhev, “Theory of electroporation: A review,” Bioelectrochemistry Bioenerg., vol. 41, no. 2, pp. 135–160, Dec. 1996.Y. Granot and B. Rubinsky, “Mass transfer model for drug delivery in tissue cells with reversible electroporation,” Int. J. Heat Mass Transf., vol. 51, no. 23–24, pp. 5610–5616, Nov. 2008.J. C. Weaver, “Electroporation of biological membranes from multicellular to nano scales,” IEEE Trans. Dielectr. Electr. Insul., vol. 10, no. 5, pp. 754–768, Oct. 2003.T. Kotnik, L. Rems, M. Tarek, and D. Miklavcic, “Membrane Electroporation and Electropermeabilization: Mechanisms and Models,” Annual Review of Biophysics, vol. 48, no. 1. Annual Reviews Inc., pp. 63–91, 06-May-2019.Y. Antov, A. Barbul, and R. Korenstein, “Electroendocytosis: Stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields,” Exp. Cell Res., vol. 297, no. 2, pp. 348–362, 2004.M. Puc, T. Kotnik, L. M. Mir, and D. Miklavčič, “Quantitative model of small molecules uptake after in vitro cell electropermeabilization,” Bioelectrochemistry, vol. 60, no. 1–2, pp. 1–10, Aug. 2003.G. Pucihar, T. Kotnik, D. Miklavčič, and J. Teissié, “Kinetics of Transmembrane Transport of Small Molecules into Electropermeabilized Cells,” Biophys. J., vol. 95, no. 6, pp. 2837–2848, Sep. 2008.P. Kramar, D. Miklavcic, and A. M. Lebar, “A System for the Determination of Planar Lipid Bilayer Breakdown Voltage and Its Applications,” IEEE Trans. Nanobioscience, vol. 8, no. 2, pp. 132–138, Jun. 2009.R. Shirakashi, V. L. Sukhorukov, I. Tanasawa, and U. Zimmermann, “Measurement of the permeability and resealing time constant of the electroporated mammalian cell membranes,” Int. J. Heat Mass Transf., vol. 47, no. 21, pp. 4517–4524, Oct. 2004.J. Rubinsky, G. Onik, P. Mikus, and B. Rubinsky, “Optimal Parameters for the Destruction of Prostate Cancer Using Irreversible Electroporation,” J. Urol., vol. 180, no. 6, pp. 2668–2674, Dec. 2008.N. Pavšelj, Z. Bregar, D. Cukjati, D. Batiuskaite, L. M. Mir, and D. Miklavčič, “The Course of Tissue Permeabilization Studied on a Mathematical Model of a Subcutaneous Tumor in Small Animals,” IEEE Trans. Biomed. Eng., vol. 52, no. 8, pp. 1373–1381, Aug. 2005.N. Pavšelj, D. Miklavčič, and S. Becker, “Modeling Cell Electroporation and Its Measurable Effects in Tissue,” in Transport in Biological Media, Christichurch, New Zealand: Elsevier, 2013, pp. 493–520.T. Y. Tsong, “Electroporation of cell membranes,” Biophys. J., vol. 60, no. 2, pp. 297–306, Aug. 1991.E. Nilsson, “Modelling of the electrochemical treatment of tumours: Doctoral thesis,” Royal Institute of Technology, 2000.M. Alló and P. Bertucci, Bio-logía molecular - La logia desconocida. Colección: LAS CIENCIAS NATURALES Y LA MATEMÁTICA. Buenos Aires: Artes Gráficas Rioplatense S. A., 2010.F. M. Vélez Salazar, I. D. Patiño Arcila, and C. A. Ruiz Villa, “Simulation of the influence of voltage level and pulse spacing on the efficiency, aggressiveness and uniformity of the electroporation process in tissues using meshless techniques.,” Int. j. numer. method. biomed. eng., vol. 36, no. 3, p. e3304, Mar. 2020.D. A. Zaharoff, R. C. Barr, C.-Y. Li, and F. Yuan, “Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery,” Gene Ther., vol. 9, no. 19, pp. 1286–1290, Oct. 2002.S. M. Kennedy, Z. Ji, J. C. Hedstrom, J. H. Booske, and S. C. Hagness, “Quantification of Electroporative Uptake Kinetics and Electric Field Heterogeneity Effects in Cells,” Biophys. J., vol. 94, no. 12, pp. 5018–5027, Jun. 2008.M. M. Sadik, J. Li, J. W. Shan, D. I. Shreiber, and H. Lin, “Quantification of propidium iodide delivery using millisecond electric pulses: Experiments,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 4, pp. 1322–1328, Apr. 2013.D. C. Sweeney, J. C. Weaver, and R. V. Davalos, “Characterization of Cell Membrane Permeability In Vitro Part I: Transport Behavior Induced by Single-Pulse Electric Fields*,” Technol. Cancer Res. Treat., vol. 17, p. 153303381879249, Jan. 2018.N. Pavšelj, V. Préat, and D. Miklavčič, “A Numerical Model of Skin Electropermeabilization Based on In Vivo Experiments,” Ann. Biomed. Eng., vol. 35, no. 12, pp. 2138–2144, Nov. 2007.T. Batista Napotnik and D. Miklavčič, “In vitro electroporation detection methods – An overview,” Bioelectrochemistry, vol. 120, pp. 166–182, Apr. 2018.B. Kos, “Treatment Planning for Electrochemotherapy and Irreversible Electroporation of Deep-Seated Tumors,” in Handbook of Electroporation, vol. 2, Cham: Springer International Publishing, 2017, pp. 1001–1017.A. Golberg and B. Rubinsky, “A statistical model for multidimensional irreversible electroporation cell death in tissue,” Biomed. Eng. Online, vol. 9, no. 1, p. 13, 2010.A. Meir and B. Rubinsky, “Electrical impedance tomographic imaging of a single cell electroporation,” Biomed. Microdevices, vol. 16, no. 3, pp. 427–437, Jun. 2014.P. G. Turjanski, “Electroterapia y electroporación en el tratamiento de tumores : modelos teóricos y experimentales,” Universidad de Buenos Aires, 2011.J. G. Scott, P. Gerlee, D. Basanta, A. G. Fletcher, P. K. Maini, and A. R. A. Anderson, “Mathematical Modeling of the Metastatic Process,” in Experimental Metastasis: Modeling and Analysis, A. Malek (., Dordrecht: Springer Netherlands, 2013, pp. 189–208.N. Bellomo and L. Preziosi, “Modelling and mathematical problems related to tumor immune system interactions,” Math. Comput. Model., vol. 32, no. 00, 2000.B. Ribba, T. Colin, and S. Schnell, “A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies,” Theor. Biol. Med. Model., vol. 3, no. 1, p. 7, Dec. 2006.N. L. Komarova and D. Wodarz, Targeted Cancer Treatment in Silico, vol. 10, no. 9. 2014.M. Kim, R. J. Gillies, and K. A. Rejniak, “Current Advances in Mathematical Modeling of Anti-Cancer Drug Penetration into Tumor Tissues,” Front. Oncol., vol. 3, no. November, pp. 1–10, 2013.D. Deep Shikha, D. Kumar, S. Kumar, and J. and Rajesh, “A Mathematical Model of Chemotherapeutic Drug for Tumor Treatment,” Indian J. Appl. Res., vol. 3, no. 1, pp. 1–10, Oct. 2012.T. Forjanič and D. Miklavčič, “Mathematical model of tumor volume dynamics in mice treated with electrochemotherapy,” Med. Biol. Eng. Comput., vol. 55, no. 7, pp. 1085–1096, Jul. 2017.R. Roe-Dale, D. Isaacson, and M. Kupferschmid, “A Mathematical Model of Breast Cancer Treatment with CMF and Doxorubicin,” Bull. Math. Biol., vol. 73, no. 3, pp. 585–608, Mar. 2011.S. Mahnič-Kalamiza, D. Miklavčič, and E. Vorobiev, “Dual-porosity model of solute diffusion in biological tissue modified by electroporation,” Biochim. Biophys. Acta - Biomembr., vol. 1838, no. 7, pp. 1950–1966, Jul. 2014.B. Boyd and S. Becker, “Modeling of In Vivo Tissue Electroporation and Cellular Uptake Enhancement,” IFAC-PapersOnLine, vol. 48, no. 20, pp. 255–260, Sep. 2015.F. Argus, B. Boyd, and S. M. Becker, “Electroporation of tissue and cells: A three-equation model of drug delivery,” Comput. Biol. Med., vol. 84, no. 1, pp. 226–234, May 2017.I. Lacković, R. Magjarević, and D. Miklavčič, “Incorporating Electroporation-related Conductivity Changes into Models for the Calculation of the Electric Field Distribution in Tissue,” in IFMBE Proceedings, vol. 29, 2010, pp. 695–698.S. Čorović, I. Lackovič, P. Šuštarič, T. Šuštar, T. Rodic, and D. Miklavčič, “Modeling of electric field distribution in tissues during electroporation.,” Biomed. Eng. Online, vol. 12, no. 1, p. 16, Feb. 2013.A. T. Esser, K. C. Smith, T. R. Gowrishankar, and J. C. Weaver, “Towards Solid Tumor Treatment by Irreversible Electroporation: Intrinsic Redistribution of Fields and Currents in Tissue,” Technol. Cancer Res. Treat., vol. 6, no. 4, pp. 261–273, Aug. 2007.A. L. Vera-Tizatl et al., “Computational Feasibility Analysis of Electrochemotherapy With Novel Needle-Electrode Arrays for the Treatment of Invasive Breast Ductal Carcinoma,” Technol. Cancer Res. Treat., vol. 17, p. 153303381879493, Jan. 2018.W. Krassowska and P. D. Filev, “Modeling Electroporation in a Single Cell,” Biophys. J., vol. 92, no. 2, pp. 404–417, Jan. 2007.J. C. Weaver and R. A. Mintzer, “Decreased bilayer stability due to transmembrane potentials,” Phys. Lett. A, vol. 86, no. 1, pp. 57–59, Oct. 1981.K. A. DeBruin and W. Krassowska, “Modeling Electroporation in a Single Cell. I. Effects of Field Strength and Rest Potential,” Biophys. J., vol. 77, no. 3, pp. 1213–1224, Sep. 1999.C. Jiang, R. V. Davalos, and J. C. Bischof, “A Review of Basic to Clinical Studies of Irreversible Electroporation Therapy,” IEEE Trans. Biomed. Eng., vol. 62, no. 1, pp. 4–20, Jan. 2015.R. R. C. Lee, D. Zhang, and J. Hannig, “B i m e s t,” Annu. Rev. Biomed. Eng., pp. 477–509, 2000.R. Susil, D. Šemrov, and D. Miklavčič, “Electric Field-Induced Transmembrane Potential Depends on Cell Density and Organizatio,” Electro- and Magnetobiology, vol. 17, no. 3, pp. 391–399, Jan. 1998.A. J. de Jesus and T. W. Allen, “The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 864–876, Feb. 2013.M. Tarek, “Membrane Electroporation: A Molecular Dynamics Simulation,” Biophys. J., vol. 88, no. 6, pp. 4045–4053, Jun. 2005.I. van Uitert, S. Le Gac, and A. van den Berg, “The influence of different membrane components on the electrical stability of bilayer lipid membranes,” Biochim. Biophys. Acta - Biomembr., vol. 1798, no. 1, pp. 21–31, Jan. 2010.N. Bao, T. T. Le, J.-X. Cheng, and C. Lu, “Microfluidic electroporation of tumor and blood cells: observation of nucleus expansion and implications on selective analysis and purging of circulating tumor cells,” Integr. Biol., vol. 2, no. 2–3, p. 113, 2010.L. Miller, J. Leor, and B. Rubinsky, “Cancer Cells Ablation with Irreversible Electroporation,” Technol. Cancer Res. Treat., vol. 4, no. 6, pp. 699–705, Dec. 2005.D. Šel, D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavčič, “Sequential Finite Element Model of Tissue Electropermeabilization,” IEEE Trans. Biomed. Eng., vol. 52, no. 5, pp. 816–827, May 2005.E. Neumann, S. Kakorin, and K. Tœnsing, “Fundamentals of electroporative delivery of drugs and genes,” Bioelectrochemistry Bioenerg., vol. 48, no. 1, pp. 3–16, Feb. 1999.D. Miklavčič, D. Sel, D. Cukjati, D. Batiuskaite, T. Slivnik, and L. M. Mir, “Sequential Finite Element Model of Tissue Electropermeabilisation,” in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2004, vol. 4, no. 5, pp. 3551–3554.D. Miklavčič, D. Šemrov, H. Mekid, and L. M. Mir, “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochim. Biophys. Acta - Gen. Subj., vol. 1523, no. 1, pp. 73–83, Sep. 2000.M. Golzio, J. Teissié, and M.-P. Rols, “Direct visualization at the single-cell level of electrically mediated gene delivery,” Proc. Natl. Acad. Sci., vol. 99, no. 3, pp. 1292–1297, Feb. 2002.J. Teissié, J. Escoffre, M. Rols, and M. Golzio, “Time dependence of electric field effects on cell membranes. A review for a critical selection of pulse duration for therapeutical applications,” Radiol. Oncol., vol. 42, no. 4, pp. 196–206, Jan. 2008.M. Yu, W. Tan, and H. Lin, “A stochastic model for DNA translocation through an electropore,” Biochim. Biophys. Acta - Biomembr., vol. 1818, no. 11, pp. 2494–2501, Nov. 2012.J. Li and H. Lin, “Numerical simulation of molecular uptake via electroporation,” Bioelectrochemistry, vol. 82, no. 1, pp. 10–21, Aug. 2011.M. S. Venslauskas, S. Šatkauskas, and R. Rodaitė-Riševičienė, “Efficiency of the delivery of small charged molecules into cells in vitro,” Bioelectrochemistry, vol. 79, no. 1, pp. 130–135, Aug. 2010.D. Miklavčič and L. Towhidi, “Numerical study of the electroporation pulse shape effect on molecular uptake of biological cells,” Radiol. Oncol., vol. 44, no. 1, pp. 34–41, Jan. 2010.D. C. Sweeney, T. A. Douglas, and R. V. Davalos, “Characterization of Cell Membrane Permeability In Vitro Part II: Computational Model of Electroporation-Mediated Membrane Transport*,” Technol. Cancer Res. Treat., vol. 17, p. 153303381879249, Jan. 2018.J. Dermol and D. Miklavčič, “Mathematical Models Describing Cell Death Due to Electroporation,” in Handbook of Electroporation, vol. 2, Cham: Springer International Publishing, 2017, pp. 1199–1218.S. V. Patankar, Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, 1980.E. J. Kansa, “Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations,” Comput. Math. with Appl., vol. 19, no. 8–9, pp. 147–161, 1990.S. Chantasiriwan, “Cartesian grid methods using radial basis functions for solving Poisson, Helmholtz, and diffusion–convection equations,” Eng. Anal. Bound. Elem., vol. 28, no. 12, pp. 1417–1425, Dec. 2004.N. Mai-Duy and T. Tran-Cong, “Mesh-free radial basis function network methods with domain decomposition for approximation of functions and numerical solution of Poisson’s equations,” Eng. Anal. Bound. Elem., vol. 26, no. 2, pp. 133–156, Feb. 2002.I. Boztosun and A. Charafi, “An analysis of the linear advection–diffusion equation using mesh-free and mesh-dependent methods,” Eng. Anal. Bound. Elem., vol. 26, no. 10, pp. 889–895, Dec. 2002.H. Ding, C. Shu, K. S. Yeo, and D. Xu, “Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method,” Comput. Methods Appl. Mech. Eng., vol. 195, no. 7–8, pp. 516–533, Jan. 2006.E. Divo and A. J. Kassab, “An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer,” J. Heat Transfer, vol. 129, no. 2, pp. 124–136, Feb. 2007.B. Šarler and R. Vertnik, “Meshfree explicit local radial basis function collocation method for diffusion problems,” Comput. Math. with Appl., vol. 51, no. 8, pp. 1269–1282, Apr. 2006.D. Stevens, H. Power, and H. Morvan, “An order-N complexity meshless algorithm for transport-type PDEs, based on local Hermitian interpolation,” Eng. Anal. Bound. Elem., vol. 33, no. 4, pp. 425–441, Apr. 2009.N. Mai-Duy and T. Tran-Cong, “Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks,” Int. J. Numer. Methods Fluids, vol. 37, no. 1, pp. 65–86, Sep. 2001.N. Mai-Duy and T. Tran-Cong, “Approximation of function and its derivatives using radial basis function networks,” Appl. Math. Model., vol. 27, no. 3, pp. 197–220, Mar. 2003.G. Yao, B. Šarler, and C. S. Chen, “A comparison of three explicit local meshless methods using radial basis functions,” Eng. Anal. Bound. Elem., vol. 35, no. 3, pp. 600–609, Mar. 2011.C. S. Chen, C. M. Fan, and P. H. Wen, “The method of approximate particular solutions for solving certain partial differential equations,” Numer. Methods Partial Differ. Equ., vol. 28, no. 2, pp. 506–522, Mar. 2012.M. Pavlin and D. Miklavčič, “Effective Conductivity of a Suspension of Permeabilized Cells: A Theoretical Analysis,” Biophys. J., vol. 85, no. 2, pp. 719–729, Aug. 2003.C. S. Djuzenova, U. Zimmermann, H. Frank, V. L. Sukhorukov, E. Richter, and G. Fuhr, “Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells,” Biochim. Biophys. Acta - Biomembr., vol. 1284, no. 2, pp. 143–152, Oct. 1996.A. Golberg and M. L. Yarmush, “Nonthermal irreversible electroporation: fundamentals, applications, and challenges,” IEEE Trans. Biomed. Eng., vol. 60, no. 3, pp. 707–714, Mar. 2013.E. W. Lee et al., “Electron Microscopic Demonstration and Evaluation of Irreversible Electroporation-Induced Nanopores on Hepatocyte Membranes,” J. Vasc. Interv. Radiol., vol. 23, no. 1, pp. 107–113, Jan. 2012.R. E. Neal et al., “In Vivo Irreversible Electroporation Kidney Ablation: Experimentally Correlated Numerical Models,” IEEE Trans. Biomed. Eng., vol. 62, no. 2, pp. 561–569, Feb. 2015.P. W. Partridge, “Towards criteria for selecting approximation functions in the Dual Reciprocity Method,” Eng. Anal. Bound. Elem., vol. 24, no. 7–8, pp. 519–529, Sep. 2000.Y. Zhang and S. Zhu, “On the choice of interpolation functions used in the dual-reciprocity boundary-element method,” Eng. Anal. Bound. Elem., vol. 13, no. 4, pp. 387–396, Jan. 1994.C. Shu, H. Ding, and K. . Yeo, “Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations,” Comput. Methods Appl. Mech. Eng., vol. 192, no. 7–8, pp. 941–954, Feb. 2003.I. D. Patiño, H. Power, C. Nieto-Londoño, and W. F. Flórez, “Stokes–Brinkman formulation for prediction of void formation in dual-scale fibrous reinforcements: a BEM/DR-BEM simulation,” Comput. Mech., vol. 59, no. 4, pp. 555–577, Apr. 2017.I. D. Patiño Arcila, H. Power, C. Nieto Londoño, and W. F. Flórez Escobar, “Boundary element simulation of void formation in fibrous reinforcements based on the Stokes-Darcy formulation,” Comput. Methods Appl. Mech. Eng., vol. 304, pp. 265–293, 2016.I. Patiño Arcila, H. Power, C. Nieto Londoño, and W. Flórez Escobar, “Boundary Element Method for the dynamic evolution of intra-tow voids in dual-scale fibrous reinforcements using a Stokes–Darcy formulation,” Eng. Anal. Bound. Elem., vol. 87, pp. 133–152, Feb. 2018.B. Šarler, J. Perko, D. Gobin, B. Goyeau, and H. Power, “Dual reciprocity boundary element method solution of natural convection in Darcy–Brinkman porous media,” Eng. Anal. Bound. Elem., vol. 28, no. 1, pp. 23–41, Jan. 2004.A. Neumaier, “Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization,” SIAM Rev., vol. 40, no. 3, pp. 636–666, Jan. 1998.A. Rap, L. Elliott, D. B. Ingham, D. Lesnic, and X. Wen, “DRBEM for Cauchy convection-diffusion problems with variable coefficients,” Eng. Anal. Bound. Elem., vol. 28, no. 11, pp. 1321–1333, Nov. 2004.J. Dermol-Černe, J. Vidmar, J. Ščančar, K. Uršič, G. Serša, and D. Miklavčič, “Connecting the in vitro and in vivo experiments in electrochemotherapy - a feasibility study modeling cisplatin transport in mouse melanoma using the dual-porosity model,” J. Control. Release, vol. 286, pp. 33–45, Sep. 2018.T. Murovec, D. C. Sweeney, E. Latouche, R. V. Davalos, and C. Brosseau, “Modeling of Transmembrane Potential in Realistic Multicellular Structures before Electroporation,” Biophys. J., vol. 111, no. 10, pp. 2286–2295, Nov. 2016.P. A. Garcia, R. V. Davalos, and D. Miklavcic, “A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in Tissue,” PLoS One, vol. 9, no. 8, p. e103083, Aug. 2014.A. Ongaro et al., “Evaluation of the Electroporation Efficiency of a Grid Electrode for Electrochemotherapy,” Technol. Cancer Res. Treat., vol. 15, no. 2, pp. 296–307, Apr. 2016.D. Voyer, A. Silve, L. M. Mir, R. Scorretti, and C. Poignard, “Dynamical modeling of tissue electroporation,” Bioelectrochemistry, vol. 119, pp. 98–110, Feb. 2018.J. Chen, Y. Chu, J. Wang, and Z. Long, “Simultaneous visualization for coexpression of multiple neurotrophic factors in living Schwann cells,” African J. Biotechnol., vol. 9, no. 4, pp. 536–544, 2010.S. Ma, S. Wang, C. Zhang, and S. Zhang, “A method to improve the efficiency of an electric aircraft propulsion system,” Energy, vol. 140, pp. 436–443, Dec. 2017.S.-Y. Kim et al., “Correlation between electrical conductivity and apparent diffusion coefficient in breast cancer: effect of necrosis on magnetic resonance imaging,” Eur. Radiol., vol. 28, no. 8, pp. 3204–3214, Aug. 2018.J. Lankelma, R. Fernández Luque, H. Dekker, W. Schinkel, and H. M. Pinedo, “A Mathematical Model of Drug Transport in Human Breast Cancer,” Microvasc. Res., vol. 59, no. 1, pp. 149–161, Jan. 2000.N. C. for information Biotechnology, “Compound summary Doxorubicin,” 2022. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Doxorubicin. [Accessed: 13-May-2022].D. S. Wishart et al., “DrugBank 5.0: a major update to the DrugBank database for 2018,” Nucleic Acids Res., vol. 46, no. D1, pp. D1074–D1082, Jan. 2018.S. Eikenberry, “A tumor cord model for Doxorubicin delivery and dose optimization in solid tumors,” Theor. Biol. Med. Model., vol. 6, no. 1, p. 16, Dec. 2009.T. L. Jackson, “Intracellular Accumulation and Mechanism of Action of Doxorubicin in a Spatio-temporal Tumor Model,” J. Theor. Biol., vol. 220, no. 2, pp. 201–213, Jan. 2003.M. E. Hubbard, M. Jove, P. M. Loadman, R. M. Phillips, C. J. Twelves, and S. W. Smye, “Drug delivery in a tumour cord model: a computational simulation,” R. Soc. Open Sci., vol. 4, no. 5, p. 170014, May 2017.C. M. Groh et al., “Mathematical and computational models of drug transport in tumours,” J. R. Soc. Interface, vol. 11, no. 94, p. 20131173, May 2014.E. Bellard et al., “Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization,” J. Control. Release, vol. 163, no. 3, pp. 396–403, 2012.M. Brinton, Y. Mandel, I. Schachar, and D. Palanker, “Mechanisms of electrical vasoconstriction,” J. Neuroeng. Rehabil., vol. 15, no. 1, pp. 1–10, 2018.S. Corovic, B. Markelc, M. Dolinar, M. Cemazar, and T. Jarm, “Modeling of microvascular permeability changes after electroporation.,” PLoS One, vol. 10, no. 3, p. e0121370, Mar. 2015.Y. Mandel et al., “Vasoconstriction by Electrical Stimulation: New Approach to Control of Non-Compressible Hemorrhage,” Sci. Rep., vol. 3, no. 1, p. 2111, Dec. 2013.J. Gehl, T. Skovsgaard, and L. M. Mir, “Vascular reactions to in vivo electroporation: Characterization and consequences for drug and gene delivery,” Biochim. Biophys. Acta - Gen. Subj., vol. 1569, no. 1–3, pp. 51–58, 2002.C. J. W. Meulenberg, V. Todorovic, and M. Cemazar, “Differential Cellular Effects of Electroporation and Electrochemotherapy in Monolayers of Human Microvascular Endothelial Cells,” PLoS One, vol. 7, no. 12, pp. 1–9, 2012.B. Markelc et al., “Increased permeability of blood vessels after reversible electroporation is facilitated by alterations in endothelial cell-to-cell junctions,” J. Control. Release, vol. 276, no. 9, pp. 30–41, Apr. 2018.B. Markelc, M. Čemažar, and G. Serša, “Effects of Reversible and Irreversible Electroporation on Endothelial Cells and Tissue Blood Flow,” in Handbook of Electroporation, Cham: Springer International Publishing, 2017, pp. 607–620.S. Ozawa, Y. Sugiyama, Y. Mitsuhashi, T. Kobayashi, and M. Inaba, “Cell killing action of cell cycle phase-non-specific antitumor agents is dependent on concentration-time product,” Cancer Chemother. Pharmacol., vol. 21, no. 3, pp. 185–190, 1988.A. W. El-Kareh and T. W. Secomb, “Two-mechanism peak concentration model for cellular pharmacodynamics of doxorubicin,” Neoplasia, vol. 7, no. 7, pp. 705–713, 2005.N. J. Millenbaugh, M. G. Wientjes, and J. L. S. Au, “A pharmacodynamic analysis method to determine the relative importance of drug concentration and treatment time on effect,” Cancer Chemother. Pharmacol., vol. 45, no. 4, pp. 265–272, 2000.J. D. Vanegas and I. D. Patiño, “Filling simulation of the RTM process in isotropic homogeneous/non-homogeneous media using the boundary element method,” Adv. Compos. Mater., vol. 24, no. 2, pp. 113–139, 2015.K. E. L. Harrouni, D. Ouazar, L. C. Wrobel, C. A. Brebbia, U. M. V, and E. Mohammadia, “Method for Heterogeneous Porous Media,” Comput. Mech. Publ., no. C, pp. 5–6, 1992.K. E. L. Harrouni, D. Ouazar, L. C. Wrobel, and A. H. D. Cheng, “Global interpolation function based DRBEM applied to Darcy’s flow in heterogeneous media,” Eng. Anal. Bound. Elem., vol. 16, no. 3, pp. 281–285, 1995.P. W. Partridge and C. A. Brebbia, “Computer implementation of the BEM dual reciprocity method for the solution of general field equations,” Commun. Appl. Numer. Methods, vol. 6, no. 2, pp. 83–92, 1990.A. J. Nowak and P. W. Partridge, “Comparison of the dual reciprocity and the multiple reciprocity methods,” Eng. Anal. Bound. Elem., vol. 10, no. 2, pp. 155–160, 1992.J. M. Granados, H. Power, C. A. Bustamante, W. F. Flórez, and A. F. Hill, “A global particular solution meshless approach for the four-sided lid-driven cavity flow problem in the presence of magnetic fields,” Comput. Fluids, vol. 160, pp. 120–137, 2018.S. J. Jackson, D. Stevens, D. Giddings, and H. Power, “An adaptive RBF finite collocation approach to track transport processes across moving fronts,” Comput. Math. with Appl., vol. 71, no. 1, pp. 278–300, 2016.S. J. Jackson, H. Power, and D. Giddings, “Immiscible thermo-viscous fingering in Hele-Shaw cells,” Comput. Fluids, vol. 156, pp. 621–641, 2017.D. Stevens and H. Power, “The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems,” J. Comput. Phys., vol. 298, pp. 423–445, 2015.S. K. Karode, “Laminar flow in channels with porous walls, revisited,” J. Memb. Sci., vol. 191, no. 1–2, pp. 237–241, 2001.T. Mohammed, M. Singh, J. G. Tiu, and A. S. Kim, “Etiology and management of hypertension in patients with cancer,” Cardio-Oncology, vol. 7, no. 1, pp. 1–13, 2021.F. D. Ramirez, V. Y. Reddy, R. Viswanathan, M. Hocini, and P. Jaïs, “Emerging Technologies for Pulmonary Vein Isolation,” Circ. Res., vol. 127, no. 1, pp. 170–183, 2020.L. D. J. Fiederer et al., “The role of blood vessels in high-resolution volume conductor head modeling of EEG,” Neuroimage, vol. 128, pp. 193–208, 2016.A. Khorasani, “A numerical study on the effect of conductivity change in cell kill distribution in irreversible electroporation,” Polish J. Med. Phys. Eng., vol. 26, no. 2, pp. 69–76, 2020.J. Robert, A. Illiadis, B. Hoerni, J. P. Cano, M. Durand, and C. Lagarde, “Pharmacokinetics of adriamycin in patients with breast cancer: Correlation between pharmacokinetic parameters and clinical short-term response,” Eur. J. Cancer Clin. Oncol., vol. 18, no. 8, pp. 739–745, 1982.S. Movahed and D. Li, “Microfluidics cell electroporation,” Microfluidics and Nanofluidics, vol. 10, no. 4. Springer, pp. 703–734, 19-Apr-2011.B. Markelc et al., “In Vivo Molecular Imaging and Histological Analysis of Changes Induced by Electric Pulses Used for Plasmid DNA Electrotransfer to the Skin: A Study in a Dorsal Window Chamber in Mice,” J. Membr. Biol., vol. 245, no. 9, pp. 545–554, Sep. 2012.Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83900/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL75077047.2023.pdf75077047.2023.pdfTesis de Doctorado en Ingenieríaapplication/pdf8382194https://repositorio.unal.edu.co/bitstream/unal/83900/2/75077047.2023.pdfe8105eaee5ce0883a1ccf774e60301e5MD52THUMBNAIL75077047.2023.pdf.jpg75077047.2023.pdf.jpgGenerated Thumbnailimage/jpeg5634https://repositorio.unal.edu.co/bitstream/unal/83900/3/75077047.2023.pdf.jpgcf5876763f39de2c3598235b13b61639MD53unal/83900oai:repositorio.unal.edu.co:unal/839002023-08-07 23:03:45.953Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=