Matrix methods in horadam sequences
Given the generalized Fibonacci sequence {Wn(a, b; p, q)} we can naturally associate a matrix of order 2, denoted by W(p, q), whose coefficients are integer numbers. In this paper, using this matrix, we find some identities and the Binet formula for the generalized Fibonacci–Lucas numbers.
- Autores:
-
Cerda, Gamaliel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2012
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/73810
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/73810
http://bdigital.unal.edu.co/38287/
- Palabra clave:
- generalized Fibonacci numbers
matrix methods
Binet formula.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_04bd52101b0d3df71bf14c53a531cc61 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/73810 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cerda, Gamaliele4238b77-9727-486e-b3dd-5066730281523002019-07-03T16:52:28Z2019-07-03T16:52:28Z2012https://repositorio.unal.edu.co/handle/unal/73810http://bdigital.unal.edu.co/38287/Given the generalized Fibonacci sequence {Wn(a, b; p, q)} we can naturally associate a matrix of order 2, denoted by W(p, q), whose coefficients are integer numbers. In this paper, using this matrix, we find some identities and the Binet formula for the generalized Fibonacci–Lucas numbers.application/pdfspaBoletín de Matemáticashttp://revistas.unal.edu.co/index.php/bolma/article/view/40860Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasBoletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 2357-6529 0120-0380Cerda, Gamaliel (2012) Matrix methods in horadam sequences. Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 2357-6529 0120-0380 .Matrix methods in horadam sequencesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTgeneralized Fibonacci numbersmatrix methodsBinet formula.ORIGINAL40860-184013-1-PB.pdfapplication/pdf93224https://repositorio.unal.edu.co/bitstream/unal/73810/1/40860-184013-1-PB.pdf1dad8dd60169d0f87a931bc4a8f8fe11MD51THUMBNAIL40860-184013-1-PB.pdf.jpg40860-184013-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4444https://repositorio.unal.edu.co/bitstream/unal/73810/2/40860-184013-1-PB.pdf.jpg3cbeb79f3af3f8bed1396e68e48950ccMD52unal/73810oai:repositorio.unal.edu.co:unal/738102024-06-26 23:10:37.432Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Matrix methods in horadam sequences |
title |
Matrix methods in horadam sequences |
spellingShingle |
Matrix methods in horadam sequences generalized Fibonacci numbers matrix methods Binet formula. |
title_short |
Matrix methods in horadam sequences |
title_full |
Matrix methods in horadam sequences |
title_fullStr |
Matrix methods in horadam sequences |
title_full_unstemmed |
Matrix methods in horadam sequences |
title_sort |
Matrix methods in horadam sequences |
dc.creator.fl_str_mv |
Cerda, Gamaliel |
dc.contributor.author.spa.fl_str_mv |
Cerda, Gamaliel |
dc.subject.proposal.spa.fl_str_mv |
generalized Fibonacci numbers matrix methods Binet formula. |
topic |
generalized Fibonacci numbers matrix methods Binet formula. |
description |
Given the generalized Fibonacci sequence {Wn(a, b; p, q)} we can naturally associate a matrix of order 2, denoted by W(p, q), whose coefficients are integer numbers. In this paper, using this matrix, we find some identities and the Binet formula for the generalized Fibonacci–Lucas numbers. |
publishDate |
2012 |
dc.date.issued.spa.fl_str_mv |
2012 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T16:52:28Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T16:52:28Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/73810 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/38287/ |
url |
https://repositorio.unal.edu.co/handle/unal/73810 http://bdigital.unal.edu.co/38287/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/bolma/article/view/40860 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas Boletín de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 2357-6529 0120-0380 |
dc.relation.references.spa.fl_str_mv |
Cerda, Gamaliel (2012) Matrix methods in horadam sequences. Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 2357-6529 0120-0380 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Boletín de Matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/73810/1/40860-184013-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/73810/2/40860-184013-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
1dad8dd60169d0f87a931bc4a8f8fe11 3cbeb79f3af3f8bed1396e68e48950cc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089325517733888 |