Matrix methods in horadam sequences

Given the generalized Fibonacci sequence {Wn(a, b; p, q)} we can naturally associate a matrix of order 2, denoted by W(p, q), whose coefficients are integer numbers. In this paper, using this matrix, we find some identities and the Binet formula for the generalized Fibonacci–Lucas numbers.

Autores:
Cerda, Gamaliel
Tipo de recurso:
Article of journal
Fecha de publicación:
2012
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73810
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73810
http://bdigital.unal.edu.co/38287/
Palabra clave:
generalized Fibonacci numbers
matrix methods
Binet formula.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_04bd52101b0d3df71bf14c53a531cc61
oai_identifier_str oai:repositorio.unal.edu.co:unal/73810
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cerda, Gamaliele4238b77-9727-486e-b3dd-5066730281523002019-07-03T16:52:28Z2019-07-03T16:52:28Z2012https://repositorio.unal.edu.co/handle/unal/73810http://bdigital.unal.edu.co/38287/Given the generalized Fibonacci sequence {Wn(a, b; p, q)} we can naturally associate a matrix of order 2, denoted by W(p, q), whose coefficients are integer numbers. In this paper, using this matrix, we find some identities and the Binet formula for the generalized Fibonacci–Lucas numbers.application/pdfspaBoletín de Matemáticashttp://revistas.unal.edu.co/index.php/bolma/article/view/40860Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasBoletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 2357-6529 0120-0380Cerda, Gamaliel (2012) Matrix methods in horadam sequences. Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 2357-6529 0120-0380 .Matrix methods in horadam sequencesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTgeneralized Fibonacci numbersmatrix methodsBinet formula.ORIGINAL40860-184013-1-PB.pdfapplication/pdf93224https://repositorio.unal.edu.co/bitstream/unal/73810/1/40860-184013-1-PB.pdf1dad8dd60169d0f87a931bc4a8f8fe11MD51THUMBNAIL40860-184013-1-PB.pdf.jpg40860-184013-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4444https://repositorio.unal.edu.co/bitstream/unal/73810/2/40860-184013-1-PB.pdf.jpg3cbeb79f3af3f8bed1396e68e48950ccMD52unal/73810oai:repositorio.unal.edu.co:unal/738102024-06-26 23:10:37.432Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Matrix methods in horadam sequences
title Matrix methods in horadam sequences
spellingShingle Matrix methods in horadam sequences
generalized Fibonacci numbers
matrix methods
Binet formula.
title_short Matrix methods in horadam sequences
title_full Matrix methods in horadam sequences
title_fullStr Matrix methods in horadam sequences
title_full_unstemmed Matrix methods in horadam sequences
title_sort Matrix methods in horadam sequences
dc.creator.fl_str_mv Cerda, Gamaliel
dc.contributor.author.spa.fl_str_mv Cerda, Gamaliel
dc.subject.proposal.spa.fl_str_mv generalized Fibonacci numbers
matrix methods
Binet formula.
topic generalized Fibonacci numbers
matrix methods
Binet formula.
description Given the generalized Fibonacci sequence {Wn(a, b; p, q)} we can naturally associate a matrix of order 2, denoted by W(p, q), whose coefficients are integer numbers. In this paper, using this matrix, we find some identities and the Binet formula for the generalized Fibonacci–Lucas numbers.
publishDate 2012
dc.date.issued.spa.fl_str_mv 2012
dc.date.accessioned.spa.fl_str_mv 2019-07-03T16:52:28Z
dc.date.available.spa.fl_str_mv 2019-07-03T16:52:28Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/73810
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/38287/
url https://repositorio.unal.edu.co/handle/unal/73810
http://bdigital.unal.edu.co/38287/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/bolma/article/view/40860
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas
Boletín de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 2357-6529 0120-0380
dc.relation.references.spa.fl_str_mv Cerda, Gamaliel (2012) Matrix methods in horadam sequences. Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 Boletín de Matemáticas; Vol. 19, núm. 2 (2012); 97-106 2357-6529 0120-0380 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Boletín de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/73810/1/40860-184013-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/73810/2/40860-184013-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 1dad8dd60169d0f87a931bc4a8f8fe11
3cbeb79f3af3f8bed1396e68e48950cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089325517733888