Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.

ilustraciones, mapas, diagramas

Autores:
Feria Cáceres, Pedro Felipe
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80355
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80355
https://repositorio.unal.edu.co/
Palabra clave:
500 - Ciencias naturales y matemáticas
Contaminación de suelos
Soils - bacteriology
Bacteriología de suelos
Soil pollution
Cacao
Cadmio (Cd)
Suelos
Gen ARNr16S
Bacterias
Cadmium (Cd)
Soils
RNAr 16S gene
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_04b601295cc180f300b924f90f3d637b
oai_identifier_str oai:repositorio.unal.edu.co:unal/80355
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.
dc.title.translated.eng.fl_str_mv Study of microbial diversity associated with cocoa soils with presence of cadmium (Cd) and bioremediation potencial evaluation.
title Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.
spellingShingle Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.
500 - Ciencias naturales y matemáticas
Contaminación de suelos
Soils - bacteriology
Bacteriología de suelos
Soil pollution
Cacao
Cadmio (Cd)
Suelos
Gen ARNr16S
Bacterias
Cadmium (Cd)
Soils
RNAr 16S gene
title_short Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.
title_full Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.
title_fullStr Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.
title_full_unstemmed Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.
title_sort Estudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.
dc.creator.fl_str_mv Feria Cáceres, Pedro Felipe
dc.contributor.advisor.none.fl_str_mv Moreno Herrera, Claudia Ximena
Penagos Vélez, Lucas
dc.contributor.author.none.fl_str_mv Feria Cáceres, Pedro Felipe
dc.contributor.researchgroup.spa.fl_str_mv Microbiodiversidad y Bioprospección
dc.subject.ddc.spa.fl_str_mv 500 - Ciencias naturales y matemáticas
topic 500 - Ciencias naturales y matemáticas
Contaminación de suelos
Soils - bacteriology
Bacteriología de suelos
Soil pollution
Cacao
Cadmio (Cd)
Suelos
Gen ARNr16S
Bacterias
Cadmium (Cd)
Soils
RNAr 16S gene
dc.subject.lemb.none.fl_str_mv Contaminación de suelos
Soils - bacteriology
Bacteriología de suelos
Soil pollution
dc.subject.proposal.spa.fl_str_mv Cacao
Cadmio (Cd)
Suelos
Gen ARNr16S
Bacterias
dc.subject.proposal.eng.fl_str_mv Cadmium (Cd)
Soils
RNAr 16S gene
description ilustraciones, mapas, diagramas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-02T16:10:54Z
dc.date.available.none.fl_str_mv 2021-10-02T16:10:54Z
dc.date.issued.none.fl_str_mv 2021-10-01
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80355
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80355
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Afzal, A., Rasool, M., Wassen, M. 2017. Assesment of heavy metal tolerance and biosorptive potencial of Klebsiella variicola isolated from industrial effluents. AMB Express, 7, 184. https://doi-org.ezproxy.unal.edu.co/10.1186/s13568-017-0482-2.
2. Aiking, H., Kok, H., Heerikhuizen, H., Riet, J. 1982. Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture procedes mainly via formation of Cadmium sulfide. Appl.Environ. Microbiol. 44,938–944.
3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Oxford University Press, 25(17), 3389–3402.
4. An, M., Chang, D., Hong, D., Fan, H., Wang, K. 2021. Metabolic regulation in soil microbial succession and niche differentiation by the polymer amendment under cadmium stress. Journal of Hazardous Materials. 416. 126094. https://doi.org/10.1016/j.jhazmat.2021.126094.
5. Apprill, A., Mcnally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75(2), 129–137. https://doi.org/10.3354/ame01753.
6. Arévalo-Gardini, E., Arévalo-Hernández, C., Baligar, V., He, Z. 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment. 605-606. 792 – 800. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.06.122 0048-9697.
7. Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., Montalvo, D., 2019. Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: a nationwide survey in Ecuador. Sci. Total Environ. 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292.
8. Atlas, M., Bartha, R. 2002. Ecología microbiana y microbiología ambiental. Cuarta edición. Addison Wesley. New York, USA. 217 – 262.
9. Becerra-Castro C, Kidd PS, Prieto-Fernandez A, Weyens N, Acea MJ, Vangronsveld J. 2011. Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterization. Plant and Soil. 340:413-433. https://doi.org/10.1007/s11104-010-0613-x.
10. Bhattacharya, A., Naik, S., Khare, S., 2018. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management. 215. 143-152. https://doi.org/10.1016/j.jenvman.2018.03.055
11. Bissett, A., Brown, M. V., Siciliano, S. D., Thrall, P. H., 2013. Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology Letters. 16,128. doi: https://doi.org/10.1111/ele.12109.
12. Bolívar, H., Contreras, M., Teherán, L. 2016. Burkholderia tropica una bacteria con gran potencial para su uso en agricultura. Revista Especializada en Ciencias Químico-Biológicas, 19(2):102-108, 2016. https://doi.org/10.1016/j.recqb.2016.06.003.
13. Böhmer, M.; Ozdín, D.; Račko, M.; Lichvár, M.; Budiš, J.; Szemes, T. 2020. Identification of Bacterial and Fungal Communities in the Roots of Orchids and Surrounding Soil in Heavy Metal Contaminated Area of Mining Heaps. Applied Science. 10. 7367. https://doi.org/10.3390/app10207367
14. Bravo, D., Pardo-Díaz, S., Benavides-Erazo, J., Rengifo-Estrada, G., Brassiant, O., Leon-Moreno, C. 2018. Cadmium and Cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. J Appl Microbiol. 2018 May; 124(5):1175-1194. doi: https: //10.1111/jam.13698. Epub 2018 Feb 26.
15. Bravo, D., Leon-Moreno, C., Martinez, C., Varon-Ramirez, V., Araujo-Carrillo, G., Vargas, R., Quiroga-Mateus, R., Zamora, A., Gutierrez, E. 2021. The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Agronomy. 11. 761. doi: https://doi.org/10.3390/agronomy11040761
16. Burges, A., Epelde, L., Garbisu, C. 2015. Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere. 120,8–15.doi: https://doi.org/10.1016/j.chemosphere.2014.05.037.
17. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference fromIllumina amplicon data. Nat. Methods 13. 7. 581–583.
18. Cao, X., Luo, J., Wang, X, Chen, Z., Liu, G., Khan, M., Kang, K., Feng, Y., He, Z., Yang, X. 2020. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Science of The Total Environment. 723, 138-152. doi: https://doi.org/10.1016/j.scitotenv.2020.138152.
19. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G. a, Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C. a, Mcdonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W. a, Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat. Publ. Gr. 7, 335–336. doi: https://doi.org/10.1038/nmeth0510-335.
20. Carlon, C., 2007. Derivation Methods of Soil Screening Values in Europe: A Review and Evaluation of National Procedures Towards Harmonization. European Commission, Joint Research Centre, Ispra (EUR 22805-EN).
21. Carter, J., Rice, E., Buchberger, S., Lee, Y. 2000. Relationships between levels of heterotrophic bacteria and water quality parameters in a drinking water distribution system, Water Research, Volume 34, Issue 5, Pages 1495-1502, https://doi.org/10.1016/S0043-1354(99)00310-3.
22. Castañeda, V., Junca, H., García, E., Montoya, O., Moreno, C., 2019. Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus), Aquaculture, 512, 734325. https://doi.org/10.1016/j.aquaculture.2019.734325.
23. Ceribasi, I, et al., 2001. Biosorption of Ni (II) and Pb (II) by Phanaerochaete chysosporium from a binary metal system- kinetics. Water SA. 27 (1), 15-19, DOI: 10.4314/wsa.v27i1.5004
24. Chavez, E., He, Z., Stofella, P., Mylavarapu, R., Li, Y., Moyano, B., Baligar, V., 2015. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment 533. 205–214. doi: https://doi.org/10.1016/j.scitotenv.2015.06.106.
25. Chavez, E., He, Z., Stoffella, P., Mylavarapu, R., Li, Y., Baligar, V. 2016. Chemical speciation of cadmium: An approach to evaluate plantavailable cadmium in Ecuadorian soils under cacao production. Chemosphere. 150. 57–62. doi: http://dx.doi.org/10.1016/j.chemosphere.2016.02.013.
26. Chakravarty, R and Banerjee, P., 2012. Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresource Technology 108, 176–183. doi: https://doi.org/10.1016/j.biortech.2011.12.100.
27. Chavez, C., et al., 2014. Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage. Comprehensive Reviews in food science and foos safety. 13. doi: https://doi.org/10.1111/1541-4337.12098.
28. Chen, Y., Chen, F., Xie, M., Jiang, Q., Ao, T. 2020. The impact of stabilizing amendments on the microbial community and metabolism in cadmium-contaminated paddy soils. Chemical Engineering Journal. 395, 125132. doi: https://doi.org/10.1016/j.cej.2020.125132.
29. Chen, Y., Zhu, Q., Dong, X., Huang, W., Du, Ch., Lu, D. 2019. How Serratia marcescens HB-4 absorbs Cadmium and its implication on phytoremediation. Ecology and Environmental Safety, 185, 109723, https://doi.org/10.1016/j.ecoenv.2019.109723.
30. Chi, M.-C., & Li, C.-S. 2007. Fluorochrome in Monitoring Atmospheric Bioaerosols and Correlations with Meteorological Factors and Air Pollutants. Aerosol Science and Technology, 41(7), 672–678. http://doi.org/10.1080/02786820701383181.
31. Chi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., Zhang, D. 2020. Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsortion and resistence to cadmium. Science of the total environment 741, 140422, https://doi.org/10.1016/j.scitotenv.2020.140422.
32. Chodak, M., Go, I., Ebiewski, M., Morawska-Ploskonka, J., Kuduk, K., Niklínska, M., 2013. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl soil Ecol. 64, 7-14. doi: https://doi.org/10.1016/j.apsoil.2012.11.004.
33. Chojnacka, K. 2010. Biosorption and bioaccumation – The prospects for practical applications. Review article. Environment International. 36. 299 – 307. doi:10.1016/j.envint.2009.12.001.
34. Chun, S., Kim, Y., Cui, Y., Nam, K. 2021. Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea. Environmental Pollution. 289. 117851. doi: https://doi.org/10.1016/j.envpol.2021.117851.
35. Chun-yu, J., Xia-fang, S., Meng, Q., Qing-ya, W. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, Volume 72, Issue 2, Pages 157-164 https://doi.org/10.1016/j.chemosphere.2008.02.006.
36. Cole, J., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R., Tiedje, J. (2009). The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, 141–145. https://doi.org/10.1093/nar/gkn879.
37. Daims H. 2014. The Family Nitrospiraceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-38954-2_126.
38. Davidova, I., Wawrik, B., Callaghan, A., Duncan, K., Marks, C., Suflita, J. 2016. Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family Desulfarculaceae. International Journal od Systematic and Evolutionary Microbiology. 66: 1242-1248. doi: https://doi.org/10.1099/ijsem.0.000864.
39. Ding, C., Ma, Y., Li, X., Zhang, T., Wang, X. 2018. Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assesment. Science of the Total Environment. 619-620. 700 – 706. doi: https://doi.org/10.1016/j.scitotenv.2017.11.137.
40. Duan, C., Liu, Y., Zhang, H., Chen, G., Song, J. 2020. Cadmium Pollution Impact on the Bacterial Community of Haplic Cambisols in Northeast China and Inference of Resistant Genera. Journal of Soil Science and Plant Nutrition. 20. 1156–1170. https://doi.org/10.1007/s42729-020-00201-5.
41. Edgar, R., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. doi: https://doi.org/10.1093/bioinformatics/btq461.
42. Ehsan M., K. Santamaría-Delgado, A. Vázquez-Alarcón, et al. 2009. Phytostabilization of cadmium contaminated soils by “Lupinus uncinatus” Schdl. Journal of Agricultural Research 7(2): 390-397.
43. EU, 2014. COMMISSION REGULATION (EU) No 488/2014 amending regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off. J. Eur. Union 138, 75.
44. Evanko, C., Dzombak, D., 1997. Remediation of metals-contaminated soils and groundwater. Technology Evaluation Report (TE-97-01). Ground-Water Remediation Technologies Analysis Center (GWRTAC - E Series). October 1997.
45. Ezekoye CC, Chikere CB, Okpokwasili GC (2018). Field Metagenomics of Bacterial Community Involved in Bioremediation of Crude Oil Polluted Soil. J Bioremediat Biodegrad 9. 5: 449. doi:10.4172/2155-6199.1000449.
47. FEDECACAO. Departamento de Estadística y Recaudos; Reporte de Febrero 2020; Version en línea: Nelsy Yanira Alvarado; Federación Nacional de Cacaoteros: Bogotá, Colombia, 2020; disponible en web: https://www.fedecacao.com.co/portal/index.php/es/2015-2 002-2012-2017-2020-2059/nacionales (acceso 30 Abril de 2020).
48. Feng, G., Xie, T., Wang, X., Bai, J., Tang, L., Zhao, H., Wei, W., Wang, M., Zhao, Y. 2018. Metagenomic analyst of microbial community and fuction involved in Cd Contaminated soil. BMC Microbiology. 18. 11. https://doi.org/10.1186/s12866-018-1152-5.
49. Ferreira, Paulo Ademar Avelar, Bomfeti, Cleide Aparecida, Soares, Cláudio Roberto Fonsêca de Souza, Soares, Bruno Lima, & Moreira, Fatima Maria de Souza. 2018. Cupriavidus necator strains: zinc and cadmium tolerance and bioaccumulation. Scientia Agricola, 75(6), 452-460. https://doi.org/10.1590/1678-992x-2017-0071.
50. Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., Owens, S., Gilbert, J. A., Wall, D. H., Caporaso, J. G., 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America. 109, 52, 21390-21395. doi: https://doi.org/10.1073/pnas.1215210110.
51. Fierer, N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology. 15. 579–590. doi: https://doi.org/10.1038/nrmicro.2017.87.
52. Gadd, G. 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46, 834–840. https://doi-org.ezproxy.unal.edu.co/10.1007/BF01935534
53. Gómez, A., Yannarell, A., Sims, G., Cadavid, R., Moreno, C. 2011. Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biology & Biochemistry 43, 1275-1284. doi: https://doi.org/10.1016/j.soilbio.2011.02.018.
54. Gómez-Sagasti, M. T., Alkorta, I., Becerril, J. M., Epelde, L., Anza, M., Garbisu, C.,2012. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Poll. 223:3249–3262. doi: https://doi.org/10.1007/s11270-012-1106-8.
55. Gosai, H., Sachaniya, B., Panseriya, H., Dave, B. 2018. Functional and phylogenetic diversity assessment of microbial communities at Gulf of Kachchh, India: An ecological footprint. Ecological Indicators. 93. 65-75. https://doi.org/10.1016/j.ecolind.2018.04.072.
56. Gramlich, A., Tandy, S., Andres, C., Chincheros, J., Armengot, L., Scheneider, M., Schulin, R. 2016. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment. 580, 677 – 686. https://doi.org/10.1016/j.scitotenv.2016.12.014.
57. Gramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., Schulin, R. 2018. Soil cadmium uptake by cocoa in Honduras. Science of the Total Environment. 612. 370 – 378. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.08.145.
58. Griffin, D. et al., 2007. Airborne desert dust and aero-microbiology over the Turkish Mediterranean coastline. Atmospheric Environment, 41(19), 4050–4062. http://doi.org/10.1016/j.atmosenv.2007.01.023.
59. Grimont, P., Grimont F., 2005. Genus: Klebsiella, In: Volume Two: Нe Proteobacteria, Part B: Нe Gammaproteobacteria. In: Brenner DJ, Krieg NR, Staley JT (Edn.) Bergey’s Manual of Systematic Bacteriology, (2nd edn), Springer, New York, pp. 685-693.
60. Gundacker, C., Gencik, M., Hengstschläger, M., 2010. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutation Research. 705. 130–140.
61. Guo, H., Nasir, M., Lv, J., Dai, Y., Gao, J., 2017. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicoogy Environment Safety. 144. 300–306.
62. Hashimoto, T., Whang, K., Nagaoka, K., 2006. A quantitative evaluation and phylogenetic characterization of oligotrophic denitrifying bacteria harbored in subsurface upland soil using improved culturability. Biology Fertility Soils. 42.3.179-185.
63. He, S., He, Z., Yang, X., Stoffella, P. J., Baligar, V. C., 2015. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils. Advances in Agronomy 134, pp. 135–225. https://doi.org/10.1016/bs.agron.2015.06.005.
64. Holmes, D., Nevin, K., Lovley, D., 2004. Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 54, 1591-1599. doi: https://doi.org/10.1099/ijs.0.02958-0.
65. Holmes, J., Richardson D., Saed, S., Evans-Gowing, R., Russell, A., Sodeau, J. 1997. Cadmium-specific formation of metal sulfide ‘Q-particles’ by Klebsiella pneumoniae. Microbiology 143, 2521– 2530. https://doi.org/10.1099/00221287-143-8-2521.
66. Holmgren, G., Meyer, M., Chaney, R., Daniels, R. 1993. Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal Environment Quality 22, 335-348. doi: https://doi.org/10.2134/jeq1993.00472425002200020015x
67. Huang, F., Dang, Z., Guo, Ch., Lu, X., Zhang, X., 2013. Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids and Surfaces B: Biointerfaces, Volume 107, 11-18. https://doi.org/10.1016/j.colsurfb.2013.01.062.
68. Huang, F., Guo, Ch., Lu, G., Yi, X., 2014. Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere, Volume 109, 134-142. https://doi.org/10.1016/j.chemosphere.2014.01.066.
69. Hseu, Z.Y., Chen, Z.S., Tsai, C.C., Tsui, C.C., Cheng, S.F., Liu, C.L., Lin, H.T., 2002. Digestion methods for total heavy metals in sediments and soils. Water Air Soil Pollut. 141, 189–205. doi: 10.1023/A:1021302405128.
70. Jan, R., Khan, M., Asaf, S., Lubna, Lee, I., Kim, K. 2019. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza Sativa, via regulating its antioxidant machinery and endogenous hormones. Plants. 8. 363. doi:10.3390/plants8100363.
71. Jensen M., Webster J. and Straus N. (1993). Method for rapid identification of bacteria based on Polymerase Chain-Reaction amplified ribosomal DNA spacer poly-morphisms. Appl. Environ. Microb. 59 (4), 945-952.
72. Jezequel, K., Lebeau, T., 2008. Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresource Technology, Volume 99, Issue 4, 690-698. https://doi.org/10.1016/j.biortech.2007.02.002.
73. Jiang, C., Sheng, X., Qian, M., Wang, Q. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere. 72, 157 – 164. doi:10.1016/j.chemosphere.2008.02.006.
74. Jiménez, C., 2015. Estado legal mundial del cadmio en cacao (Theobroma cacao): fantasía o realidad. Artículo de Revisión / Review Article / Artigo de Revisão. Producción + Limpia. 10, 1, 89–104. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S19094552015000100009&lng=en&nrm=iso.
75. Joseph, S. J., Hugenholz, P., Sangwan, P., Osborne, C. A. y Janssen, P. H. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied Environment Microbiology. 69, 7210-7215. doi: 10.1128/AEM.69.12.7210-7215.2003.
76. Kief, T., Soroker, E., Firestone, M., 1987. Microbial biomass response to a rapid increase in water potencial when dry soil is wetted. Soil Biol. Biochem. 19: 119 – 126 https://doi.org/10.1016/0038-0717(87)90070-8.
77. Kim, S., Jin, M., Chung, C., Yun, Y., Jahng, K., Yu, K. 2015. Biosortion of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain. Journal of bioscience and bioengineering 119, 4, 433-439. http://dx.doi.org/10.1016/j.jbiosc.2014.09.022.
78. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.
79. Kirkham, M. (2006). Cadmium in plants on polluted soils: effect of soil factors, hyperaccumulation and amendments. Geoderma 137, 19e32.
80. Kongor, J., Hinneh, M., Van de Walle, D., Afoakwa, E., Boeckx, P., Dewettinck, K. 2016. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review Food Research International 82, 44 – 52. http://dx.doi.org/10.1016/j.foodres.2016.01.012 0963-9969.
81. Kumari, D., Pan, X., Lee, D., Achal, V., 2014. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. Short communication. International Biodeterioration & Biodegradation, Volume 94, 98-102. https://doi.org/10.1016/j.ibiod.2014.07.007.
82. Lata, S., Kaur, H. P., & Mishra, T. (2019). Cadmium Bioremediation: a Review. International Journal of Pharmaceutical Sciences and Research, 10(9), 4120–4128. https://doi.org/10.13040/IJPSR.0975-8232.10(9).4120-28.
83. Lauber, C., Hamady, M., Knight, R., Fierer, N. (2009). Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied and environmental microbiology, Aug. 2009, p. 5111–5120 Vol. 75, No. 15. doi: 10.1128/AEM.00335-09.
84. Lazzaro, A., Hartmann, M., Blaser, P., Widmer, F., Schulin, R., Frey., B., 2006. Bacterial community structure and activity in diferent Cd-treated forest soils. FEMS Microbiol Ecol 58 (2006) 278–292. https://doi.org/10.1111/j.1574-6941.2006.00163.x.
85. Lee, K., Liu, C., Anzai, Y., Kim, H., Aono, T., Oyaizu, H. 2005. The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology. 55, 1907-1919. doi: https://doi.org/10.1099/ijs.0.63663-0.
86. Lemos, L. N., Fulthorpe, R. R., Triplett, E. W., & Roesch, L. F. W. (2011). Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of Microbiological Methods, 86(1), 42–51. https://doi.org/10.1016/j.mimet.2011.03.014.
87. Lewin, G., Carlos, C., Chevrette, M., Horn, H., Mcdonald, B., Stankey, R., Stankey, R., Fox., B., Currie, C. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol. 2016; 70: 235–254. doi:10.1146/annurev-micro-102215-095748.
88. Li, J., Liu, Y., Zhang, L., He, J. 2019. Sorption mechanism and distribution of cadmium by different microbial species. Journal of Environmental Management. 237. 552 – 559. https://doi.org/10.1016/j.jenvman.2019.02.057.
89. Liang Xia., He Chi-Quan, Ni Gang Tang, Gui-E., Chen Xue-Ping, Lei Yan-Ru. 2014. Growth and Cd Accumulation or Orychophragmus violaceus as Affected by Inoculation of Cd-Tolerant Bacteria Strains. Pedosphere 24(3): 322-329. https://doi.org/10.1016/S1002-0160(14)60018-7.
90. Li, Y., Yu, X., Cui, Y., Tu, W., Shen, T., Yan, M., Wei, Y., Chen, X., Wang, Q., Chen, Q., Gu, Y., Zhao, K., Xiang, Q., Zou, L., Ma, M. 2018. The potential of cadmium ion-immobilized Rhizobium pusense KG2 to prevent soybean root from absorbing cadmium in cadmium-contaminated soil. Journal of Applied Microbiology. 126. 919 – 930. doi:10.1111/jam.14165.
91. Liu H, Xie Y, Li J, Zeng G, Li H, Xu F, Feng S, Xu H (2020) Efect of Serratia sp. K3 combined with organic materials on cadmium migration in soil-Vetiveria zizanioides L. system and bacterial community in contaminated soil. Chemosphere 242:125164. https://doi.org/10.1016/j.chemosphere.2019.125164.
92. Ludlow, C., Cromie, G., Garmendia-Torres, C., Sirr, A., Hays, M., Field, C., Jeffery, E., Fay, J., Dudley, A. 2016. Independent Origins of Yeast Associated with Coffee and Cacao Fermentation. Current biology 26, 965 – 971. http://dx.doi.org/10.1016/j.cub.2016.02.012.
93. Luo, L., Xie, I., Jin, D., Mi, B., Wang, D., Dai, X., Zou, X., Zhang, Z., 2019. Bacterial community response to cadmium contamination of agricultural paddy soil. Applied Soil Ecology, 139, 100-106. doi: https://doi.org/10.1016/j.apsoil.2019.03.022.
94. Ma, Y.; Wang, Y.; Chen, Q.; Li, Y.; Guo, D.; Nie, X.; Peng, X. Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils. Ecol. Indic. 2020, 117, 106626
95. Madigan, M.T., J.M. Martinko, D.A. Stahl, D.P. Clark. 2012. Brock Biology of Microorganisms, 13ª ed. Benjamin Cummings.
96. McGrath, S., Zhao, F., Dunham, S., Crosland, A., Coleman, K. 2000. Long term changes in the extractability and bioavailability of Zinc and Cadmium after sludge application. Journal of environment quality. 29, 3, 875-883. doi: https://doi.org/10.2134/jeq2000.00472425002900030025x.
97. Mann, C., Lynch, D., Fillmore, S., Mills, A. 2019. Relationships between field management, soil health, and microbial community composition. Applied Soil Ecology 144, 12-21. doi: https://doi.org/10.1016/j.apsoil.2019.06.012.
98. McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217.
99. Mantilla, L., Bissig, T., Valencia, V., Hart, C. 2013. The magmatic history of the Vetas-California mining district, Santander Massif, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 45. 235-249. doi: https://doi.org/10.1016/j.jsames.2013.03.006.
100. Mathew, B.B., Biju, V.G. & Nideghatta Beeregowda, K. Accumulation of lead (Pb II) metal ions by Bacillus toyonensis SCE1 species, innate to industrial-area ground water and nanoparticle synthesis. Appl Nanosci 9, 49–66 (2019). https://doi.org/10.1007/s13204-018-0892-8.
101. Margensin, R. P., Laza, G. A., Kasenbacher, S. 2011. Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere. 82, 1583–1588. doi: https://doi.org/10.1016/j.chemosphere.2010.11.056.
102. Ministerio de Agricultura 2019. Agronet: Reporte: Área, Producción, Rendimiento y Participación Municipal en el Departamento por Cultivo. https://www.agronet.gov.co.
103. Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in Cacao From Latin America and The Caribbean. A Review of Research and Potential Mitigation Solutions. Caracas: CAF. Retrieved from http://scioteca.caf.com/handle/123456789/1506
104. Mite, F., Carrillo, M., Durango, W., 2010. Avances del monitoreo de presencia de Cadmio en almendras de Cacao, suelos y aguas en Ecuador. XII congreso ecuatoriano de la ciencia del Suelo. Santo Domingo, 17-19 de noviembre del 2010.
105. Mitra, S., Pramanik, K., Kumar, P., Soren, T., Sarkar, A., Sundar, R., Pandey, S., Kanti, T. 2018. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress, Microbiological Research. 210. 12-25, https://doi.org/10.1016/j.micres.2018.03.003.
106. Mohapatra, B., Gould, W., Dinardo, O., Koren, D., 2011. Tracking the prokaryotic diversity in acid mine drainage-contaminated environments: a review of molecular methods. Minerals Engineer. 24, 709–718.
107. Montaño, P.C.; Nova, G.; Bayona, G.; Mahecha, H.; Ayala, C.; Jaramillo, C.; De La Parra, F. 2016. Análisis de secuencias y procedencia en sucesiones sedimentarias de grano fino: Un ejemplo de la formación Umir y base de la formación Lisama, en el sector de Simacota (Santander, Colombia). Boletín Geología, 38, 51–72.
108. Moreno C., Romero J. and Espejo R. (2002). Polymor¬phism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology 148 (4), 1233-1239. DOI: 10.1099/00221287-148-4-1233.
109. Motamayor, J. C., Risterucci, A. M., López, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. 2002. Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity, 89(5), 380–386. https://doi.org/10.1038/sj.hdy.6800156
110. Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., Schulin, R. 2019. Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment. 678. 660–670 https://doi.org/10.1016/j.scitotenv.2019.05.001.
111. Naomi L., Challacombe, J., Janssen, P., Henrissat, B., Coutinho, P., Wu, M., Xie, G., Haft, D., Sait, M., Badger, J., Barabote, R., Bradley, B., Brettin, T., Brinkac, L., Bruce, D., Creasy, T., Daugherty, S., Davidsen, T., DeBoy, R., Detter, C., Dodson, R., Durkin, S., Ganapathy, A., Gwinn-Giglio, M., Han, C., Khouri, H., Kiss, H., Kothari, S., Madupu, R., Nelson, K., Nelson, W., Paulsen, I., Penn, K., Ren, Q., Rosovitz, M., Selengut, J., Shrivastava, S., Sullivan, S., Tapia, R., Thompson, S., Watkins, S., Yang, Q., Yu, C., Zafar, N., Zhou, L., Kuske C. 2009. Three genomes from the Phyla Acidobacter provide insight into the lifestyles ot these microorganism in soils. Applied and environmental microbiology, p. 2046–2056. doi:10.1128/AEM.02294-08.
112. Navarrete, A., Soares, T., Rossetto, R., Van Veen, J., Tsai, S., Kuramae, E. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie van Leeuwenhoek (2015) 108:741–752. doi: 10.1007/s10482-015-0530-3.
113. Nies, D. 1999. Microbial heavy-metal resistance. Applied Microbiology Biotechnology. 51. 730–750. https://doi-org.ezproxy.unal.edu.co/10.1007/s002530051457.
114. Nies, D. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 2-3, 313 – 339, https://doi.org/10.1016/S0168-6445(03)00048-2.
115. NTC 4113-6. 2017. Gestión Ambiental. Calidad de suelo. Muestreo. Guía para la recolección, manejo y almacenamiento de suelo para la evaluación de procesos microbianos aeróbicos en el laboratorio. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) 2016. https://www.icontec.org.
116. Oladipo, O., Ezeokoli, O., Maboeta, M., Bezuidenhout, J., Tiedjt, L., Jordaan, A., Bezuidenhout, C. 2018. Tolerance and growth kinetics of bacteria isolated from gold and gemstone mining sites in response to heavy metal concentrations, Journal of Environmental Management, 212, 357-366, https://doi.org/10.1016/j.jenvman.2018.01.038.
117. Oren A., Xu XW. (2014) The Family Hyphomicrobiaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-30197-1_257.
118. Osorio, W., Ruiz, O. 2013. Guía para el muestreo. Laboratorio de suelos. Universidad Nacional de Colombia, sede Medellín, Colombia. https://ciencias.medellin.unal.edu.co/laboratorios/suelos/.
119. Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., Güven, K. 2009. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sP. Decanicus and Geobacillus thermoleovorans sub.sP. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J., 152 (1) (2009), pp. 195-206, 10.1016/j.cej.2009.04.041.
120. Pabon, M., Sepúlveda, W., Herrera, L., 2014. Caracterización de la producción de cacao en Santander y analisis de la presencia de Cadmio en los suelos y cultivos. Proyecto de investigación financiado por Colciencias Convocatoria 586 de 2012, Contrato 822 de 2012. http://repositorio.colciencias.gov.co:80/handle/11146/2441.
121. Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023
122. Park, Y., Ko, J., Yun, S., Lee, E., Kim, S., Kang, S, Lee, B., Kim, S. 2008. Enhancement of bioremediation by Ralstonia sp. HM-1 in sediment polluted by Cd and Zn. Bioresource Technology 99, 7458-7463. https://doi.org/10.1016/j.biortech.2008.02.024.
123. Pathom, W., Nogi, Y., Ward, A., Horikoshi, K., Bull, A., Goodfellow, M. (2006). Dermacoccus barathi sp. nov., novel actinomycetes isolated from Deep-sea mud of the Mariana Trench. International Journal of Systematic and Evolutionary Microbiology. 56, 2303-2307. https://doi.org/10.1099/ijs.0.64250-0.
124. Pereira De Araújo, R., De Almeida, A., Pereira, L., Mangabeira, P., Souza, J., Pirovania, C., Ahnerta, D., Baligarc, V. 2017. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety. 144, 148 – 157. http://dx.doi.org/10.1016/j.ecoenv.2017.06.006.
125. Pereira, L., Vicentini, R., Ottobini, L. 2015. Short Communicarion. Characterization of the core microbiota of the drainage and surrounding soil of Brazilian copper mine. Genet. Mol. Biol. 38, 4, 484-489. doi: http://dx.doi.org/10.1590/S1415-475738420150025.
126. Pérez-Jaramillo, J.E., Carrión, V.J., Bosse, M., Ferrão, L.F.V., De Hollander, M., Garcia, A.A.F., Ramírez, C.A., Mendes, R., Raaijmakers, J.M., 2017. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244–2257. https://doi.org/10.1038/ismej.2017.85.
127. Porras, L., Torres, J., Gil, M., Martinez, O. 2019. Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International 115, 259-267. doi: https://doi.org/10.1016/j.foodres.2018.08.084.
128. Prabha K. Padmavathiamma & Loretta Y. Li Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water Air Soil Pollut (2007) 184:105–126. DOI 10.1007/s11270-007-9401-5.
129. Pramanik, K., Mitra, S., Sarkar, A., Kanti, T.2018. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092, Journal of Hazardous Materials, Volume 351, Pages 317-329, https://doi.org/10.1016/j.jhazmat.2018.03.009.
130. Prosser J.I., Head I.M., Stein L.Y. (2014) The Family Nitrosomonadaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-30197-1_372.
131. Pugazhendhi, A., Boovaragamoorthy, G., Ranganathan, K., Naushad, M., Kaliannan, T. 2018. New insight into effective biosorption of lead from aqueos solution using Ralstonia solanacearum: Characterization and mechanism studies. Journal of cleaner production, 174, 1234-1239. https://doi.org/10.1016/j.jclepro.2017.11.061.
132. Qi, F., Lamb, D., Naidu, R., Bolan, N., Yan, Y., Ok, Y., Rahman, M., Choppala, G. 2018. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci Total Environ 610:1457–1466. https://doi.org/10.1016/j.scitotenv.2017.08.228.
133. Rajendran, P., Muthukrishnan, J., Gunasekaran, P. 2003. Microbes in heavy metal remediation. Indian Journal of Experimental Biology. 41, 935-944.
134. Ryan T. Jones, et al., 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses, ISME J. 3. 4. 442–453.
135. Rodríguez Albarrcín, H.S.; Darghan Contreras, A.E.; Henao, M.C. Spatial regression modeling of soils with high cadmium content in a cocoa producing area of central Colombia. Geoderma Reg. 2019, 16, 1–13. doi: https://doi.org/10.1016/j.geodrs.2019.e00214.
136. Nelino, R., Hildauro, J., Paucar, G., Salinas, S., Mamani, F., García, T. 2019. Efecto del compost y NPK sobre los niveles de microorganismos y cadmio en suelo y almendra de cacao. Revista de Investigaciones Altoandinas. 21, 4. http://dx.doi.org/10.18271/ria.2019.503.
137. Sabir, A., Naveed, M., Bashir, M., Hussain, A., Mustafa, A., Zahir, Z., Kamran, M., Ditta, A., Núñez-Delgado, A., Saeed, Q., Qadeer, A. 2020. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. Journal of Environmental Management. 265. 110522. https://doi.org/10.1016/j.jenvman.2020.110522.
138. Saitou N. and Nei M. (1987). The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (4), 406-425. doi: 10.1093/oxfordjournals.molbev.a040454.
139. Sangkhobol, V., Skerman, B. 1981. Chitinophaga, a new genus of Chitinolytic myxobacteria. International Journal of Systematic Bacteriology, 31, 3, pág.: 285 – 293. https://doi.org/10.1099/00207713-31-3-285.
140. Sauvé, S, Norvell, W.A, McBride, M. Hendershot, W. Speciation and complexation of cadmium in extracted soil solutions. Environmental Science and TechnologyVolume 34, Issue 2, 15 January 2000, Pages 291-296. DOI: 10.1021/es990202z.
141. Sea, B., Wendell, A., Murray, M., Hendershot, W. 2000. Speciation and Complexation of Cadmium in Extracted Soil Solutions. Environ. Sci. Technol. 2000, 34, 291-296. doi: 10.1021/es990202.
142. Shahid, M., Dumat, C., Khalid, S., Niazi, N., Antunes, P. 2016. Cadmium bioavailability, uptake, toxicity and detoxifcation in soilplant system. Rev Environ Contam Toxicol 241:73–137 DOI: 10.1007/398_2016_8.
143. Shamin, S. and Rehman, A. 2012. Cadmium resistance and acumulation potencial of Klebsiella pneumoniae strain CBL-1 isolated from industrial wastewater. Pakistan J. Zool., 44, 1, 203-208.
144. She, J., Wang, J., Wei, X., Zhang, Q., Xie, Z., Beiyuan, J., Xiao, E., Yang, X., Liu, J., Zhou, Y., Xiao, T., Wang, Y., Chen, N., Tsang, D. 2021. Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination. Science of The Total Environment. 774. 145143. https://doi.org/10.1016/j.scitotenv.2021.145143.
145. Sheng, Y., Wang, Y., Yang, X., Zhang, B., He, X., Xu, W., Huang, K. 2016. Cadmium tolerant characteristic of a newly isolated Lactococcus lactis subsp. lactis. Environmental toxicology and pharmacology. 48, 183-190. https://doi.org/10.1016/j.etap.2016.10.007.
146. Shi, Z., Zhang, Z., Yuan, M., Wang, S., Yang, M., Yao, O., Ba, W., Zhao, J., Xie, B. 2020. Characterization of a high cadmium accumulating soil bacterium, Cupriavidus sp. WS2, Chemosphere, Volume 247, 125834, https://doi.org/10.1016/j.chemosphere.2020.125834.
147. Siripornadulsil, S. and Siripornadulsil, W. 2013. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation, Ecotoxicology and Environmental Safety, Volume 94, Pages 94-103, https://doi.org/10.1016/j.ecoenv.2013.05.002.
148. Song L, Pan Z, Dai Y, Chen L, Zhang L, Liao Q, Yu X, Guo H, Zhou G. 2020. Characterization and comparison of the bacterial communities of rhizosphere and bulk soils from cadmium-polluted wheat fields. PeerJ 8:e10302 http://doi.org/10.7717/peerj.10302.
149. Soliman, T., Yang, S., Yamazaki, T., Kodama, H. 2017. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise. PeerJ 5:e4178. doi: https://doi.org/10.7717/peerj.4178.
150. Spain, A., Krumholz, L., Elshahed, M. 2009. Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal (2009) 3, 992–1000; doi:10.1038/ismej.2009.43.
151. Sriram, M. I., Gayathiri, S., Gnanaselvi, U., Jenifer, P. S., Mohan Raj, S., & Gurunathan, S. (2011). Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresource Technology, 102, 9291-9295 doi:10.1016/j.biortech.2011.06.094.
152. Stefanowicz, A. M., Niklinska, M., Kapusta, P., Szarek-Łukaszewska, G.,2010. Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Sci Total Environ. 408,6134–6141.doi: https://doi.org/10.1016/j.scitotenv.2010.08.056.
153. Stuart, E., Jones, J., Lennon, T. 2010. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. Unit. States Am. 107. 13. 5881–5886.
154. Sun, R., Wang, L., Huang, R., Huang, F., Gan, D., Wang, J., Guan, R., Han, W., Qu, J., Yan, L., Zhang, Y. 2020. Cadmium resistance mechanisms of a functional strain Enterobacter sp. DNB-S2, isolated from black soil in Northeast China, Environmental Pollution, Volume 263, Part B, 114612, https://doi.org/10.1016/j.envpol.2020.114612.
155. Sun, L. N., Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M., Sheng, X. F.,2010. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology. 101,501–509. doi: https://doi.org/10.1016/j.biortech.2009.08.011.
156. Sun, R., Wang, L., Huang, R., Huang, F., Gan, D., Wang, J., Guan, R., Han, W., Qu, J., Yan, L., Zhang, Y. 2020. Cadmium resistance mechanisms of a functional strain Enterobacter sp. DNB-S2, isolated from black soil in Northeast China. Environmenttal Pollution. 263, 114612. doi: https://doi.org/10.1016/j.envpol.2020.114612.
157. Sylvia, D., Fuhrmann, J., Hartel, P., Zuberer, D. 2005. Principles and aplications of soil microbiology. Prentice Hall. New Jersey, USA. 53. 218 – 256.
158. Tchakounté, G., Berger, B., Patz, S., Fankem, H., Ruppel, S. 2018. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiological Research. 214. 47-59. https://doi.org/10.1016/j.micres.2018.05.008.
159. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673.
160. Tossapol, L., Sooksawat, N., Sumarnrote, A., Awutpet, T., Kruatrache, M., Pokethitiyook, P., Auesukaree, C. 2015. Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicology and Environmental Safety, 122, 322 – 330, https://doi.org/10.1016/j.ecoenv.2015.08.013.
161. Uribe, A., Méndez H. y Mantilla J. (2009). Efecto de niveles de nitrógeno, fósforo y potasio sobre la producción de cacao en suelo del Departamento de Santander. Revista Suelos Ecuatoriales, Nro. 28:31-36.
162. US Department of Health and Human Services. 2008. Draft Toxicological Profile for Cadmium. Atlanta, Georgia. Agency for Toxic Substances and Disease Registry Division of Toxicology and Human Health Sciences (proposed) Environmental Toxicology Branch (proposed).
163. USEPA soil screening Levels. 2013. Versión 1. http://www.gahp.net/new/wp-content/uploads/2013/12/GUIDANCE-ON-SCREENING-LEVELS-Version-1-Dec-2013.pdf.
164. Vanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J., Umaharan, P., Chavez, E., Sarret, G., Smolders, E. 2021. Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of The Total Environment. 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779.
165. Valls, M., Gonzalez-Duarte, R., Atrian, S., De Lorenzo, V., 1998. Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs. Biochimie 80, 855–861. https://doi.org/10.1016/S0300-9084(00)88880-X.
166. Veglio, F. and Beolchini, F., 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 44, 3, 301 – 316, https://doi.org/10.1016/S0304-386X(96)00059-X.
167. Venkatachalam, S., Vatharamattathil, M., Vadakke, S., Dinesh, L., Mahesh, M., Kottekkatu, K. Bacterial diversity and community structure along the glacier foreland of Midtre Lovénbreen, Svalbard, Arctic. 2021. Ecological Indicators. 126. 107704. https://doi.org/10.1016/j.ecolind.2021.107704.
168. Verbruggen, N., Hermans, C., Schat, H., 2009. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 12, 364–372. DOI: 10.1016/j.pbi.2009.05.001.
169. Vijayaraghavan, K., and Yun, Y.S., 2008. Bacterial biosorbents and biosorption, Biotechnology Advances, 26, 3, 266–291, https://doi.org/10.1016/j.biotechadv.2008.02.002.
170. Wang, G., Yang, D., Wang, W., Ji, J., Jin, C., Guan, C. 2021. Endophytic bacteria associated with the enhanced cadmium resistance in NHX1- overexpressing tobacco plants. Environmental and Experimental Botany. 188. 104524. https://doi.org/10.1016/j.envexpbot.2021.104524.
171. Wang, X., Ya, T., Zhang, M., Liu, L., Hou, P., Hou, P., Lu, S. 2019. Cadmium (II) alters the microbial community structure and molecular ecological network in activated sludge system. Environmental Pollution. 255. 113225. https://doi.org/10.1016/j.envpol.2019.113225 0269-7491.
172. Wang, M., Ahrné, M., Antonsson, M., Molin, G. 2004. T-RFLP combined with principal component analysis and 16S rRNA gene sequencing: an effective strategy for comparison of fecal microbiota in infants of different ages. Journal of microbiological methods, 59, 1, 53 – 69. https://doi.org/10.1016/j.mimet.2004.06.002.
173. Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied Environment Microbiology. 73. 5261. doi: 10.1128/AEM.00062-07.
174. Wang, T., Sun, H., Jiang, C., Mao, H., Zhang, Y. 2014. Immobilization of Cd in soil and changes of soil microbial community by bioaugmentation of UV-mutated Bacillus subtilis 38 assisted by biostimulation. European Journal of Soil Biology, 65, 62 – 69. http://dx.doi.org/10.1016/j.ejsobi.2014.10.001.
175. Wang, Q., Li, Q., Lin, Y., Hou, Y., Deng, Z., Liu, W., Wang, H., Xia, Z. 2020. Biochemical and genetic basis of cadmium biosorption by Enterobacter ludwigii LY6, isolated from industrial contaminated soil. Environmental pollution 264, 114637, https://doi.org/10.1016/j.envpol.2020.114637.
176. Wang, Y., Shi, J., Wang, H., Lin, Q., Chen, X., Chen, Y. 2007. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Enviromental Safety, 67, 1, 75-81. doi: https://doi.org/10.1016/j.ecoenv.2006.03.007.
177. Wang, J., Yao, J., Zening, Y., Guan, J., Chenyu, L., Lixin, L., 2017. Analysis of Bacterial Community Structure and Diversity in Different Restoration Methods in Qixing River Wetland. Adv. J. Toxicol. Curr. Res. 201. 1. 2, 049-055.
178. Welch, R., 2006. The genus Escherichia. Procariotes 6: 60-71 Chapter 3.3.3. DOI: 10.1007/0-387-30746-x_3.
179. Worden, C.R., Kovac, W.K., Dorn, L.A. and Sandrin, T.R. 2009. Environmental pH affects transcriptional responses to cadmium toxicity in Escherichia coli K-12 (MG1655). FEMS Microbiol Letters, 293, 1, 58–64. https://doi.org/10.1111/j.1574-6968.2009.01508.x.
180. Woldetsadik, D., Drechsel, P., Keraita, B, et al. 2016. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (lactuca sativa) in two contrasting soils. SpringerPlus. 5, 397, https://doi.org/10.1186/s40064-016-2019-6.
181. Wong, C and Cobbett, C., 2009. HMA P-type ATPases are the major mechanism for root to shoot Cd translocation in Arabidopsis thaliana. New Phytologist 181, 71-78, https://doi.org/10.1111/j.1469-8137.2008.02638.x.
182. World Health Organization, 2010. Exposure to cadmium: a major public health concern. Preventing Disease Through Healthy Environments.
183. Wu, W.C., Dong, C.X., Wu, J.H., Liu, X.W., Wu, Y.X., Chen, X.B., et al., 2017. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region. Sci. Total Environ. 601, 57–65.
184. Xiaoqi, L., Delong, M., Juan L., Huaqun Y., Hongwei, L., Xueduan, L., Cheng, C., Yunhua, X., Zhenghua, L., Mingli, Y. 2017. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination, Environmental Pollution, Volume 231, Part 1, Pages 908-917, https://doi.org/10.1016/j.envpol.2017.08.057.
185. Xiaoxi Zeng, Hong Xu, Jijie Lu, Qimin Chen, Wen Li, Ling Wu, Jianxin Tang & Liang Ma. The immobilization of soil Cadmium by the combined amendment of bacteria and Hydroxyapatite. Scientific reports (2020) 10:2189 https://doi.org/10.1038/s41598-020-58259-1.
186. Xie, Y., Li, H., Wang, X., Son, Ng., Lu, Y., Jing, K. 2014. Kinetic simulating of Cr (VI) removal by the waste Chlorella vulgaris biomass. Journal of the Taiwan institute of chemical engineers. 45, 4, 1773 – 1782, https://doi.org/10.1016/j.jtice.2014.02.016.
187. Xu, C., He, S., Liu, Y., Zhang, W., Lu, D. 2017. Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU, Chemosphere, Volume 173, Pages 622-629, https://doi.org/10.1016/j.chemosphere.2017.01.005.
188. Xue, W., Peng, Z., Huang, D., Zeng, G., Wan, J., Xu, R., Cheng, M., Zhang, C., Jiang, D., Hu, Z. 2018. Nanoremediation of cadmium contaminated river sediments: Microbial response and organic carbón changes. Journal of hazardous materials, 290 – 299. doi: https://doi.org/10.1016/j.jhazmat.2018.07.062.
189. Yadav, S. K., 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76 (2), 167–179, doi:10.1016/j.sajb.2009.10.007.
190. Yang, Z., Zijan, W., Liao, Y., Liao, Q., Yang, W., Chai, L. 2017. Combination of microbial oxidation and biogenic schwertmannite immobilization: a potential remediation for highly arsenic-contaminated soil. Chemosphere. 181, 1–8. doi: https://doi.org/10.1016/j.chemosphere.2017.04.041.
191. Yang, Y., Chen, W., Wang, M., Peng, C., 2016. Regional accumulation characteristics of cadmium in vegetables: influencing factors, transfer model and indication of soil threshold content. Environ. Pollut. 219, 1036e1043. doi: http://dx.doi.org/ 10.1016/j.envpol.2016.09.003.
192. Yim, O., & Ramdeen, K. (2015). Hierarchical Cluster Analysis: Comparison of Three Linkage Measures and Application to Psychological Data. The Quantitative Methods for Psychology. 11, 1, 8–21. https://doi.org/10.20982/tqmp.11.1.p008.
193. Yin, P., Liu, X., Liao, J and Hu, X. 2019. Effects od cadmium stress on Microbial diversity in soil potted with Sasa Argenteastriatus. IOP Conference Series Earth and Environmental Science. 300: 052051. doi:10.1088/1755-1315/300/5/052051.
194. Yin, K., Wang, Q., Lv, M., Chen, L. 2019. Review. Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal. 360, 1553-1563. https://doi.org/10.1016/j.cej.2018.10.226.
195. Yun, B., Malik, A., Kim, S. 2020. Genome based characterization of Kitasatospora sp. MMS16-BH015, a multiple heavy metal resistant soil actinobacterium with high antimicrobial potential. Gene. 733. 144379. https://doi.org/10.1016/j.gene.2020.144379.
196. Zao, M., Zhang, C., Zeng, G., Huang, D., Xu, P., Cheng, M. 2015. Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation. Chemosphere 138, 560 – 567, https://doi.org/10.1016/j.chemosphere.2015.07.019.
197. Zhang, Y., Cong, J., Lu, H., Li, G., Qu, Y., Su, X., Zhou, J., Li, D. 2014. Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences. 26. 1717 – 1724. http://dx.doi.org/10.1016/j.jes.2014.06.012 1001-0742.
198. Zhang, J., Li, Q., Zeng, Y., Zhang, J., Lu, G., Dang, Z., Guo, Ch. 2019. Bioaccumulation and distribution of cadmium by Burkholderia cepacia GYP1 under oligotrophic condition and mechanism analysis at proteome level. Ecotoxicology and environmental safety 176, 162-169. https://doi.org/10.1016/j.ecoenv.2019.03.091.
199. Zhou, J., Li, P., Meng, D., Gu, Y., Zheng, Z., Yin, H., Zhou, Q., Li, J. 2020. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under contamined environment. Environmental pollution, 260, 113990. https://doi.org/10.1016/j.envpol.2020.113990.
200. Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, E., Tzannetaki, L., Kyriakides, M., 2007. Comparative study of Cd (II) and Cr (VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in a single and binary mixtures. Bioresource Tecnhnology 98, 2859 – 2865. https://doi.org/10.1016/j.biortech.2006.09.043.
201. Zoropogui, A., Gambarelli, S., Covès, J., 2008. CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein. Biochem. Biophys. Res. Commun. 365(4), 735–739. https://doi.org/10.1016/j.bbrc.2007.11.030.
202. Zug, M., Yupanqui, H., Meyberg, F., Cierjacks, J., Cierjacks, A. 2019. Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water Air Soil Pollut, 230: 72 https://doi.org/10.1007/s11270-019-4109-x.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv viii, 176 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Doctorado en Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80355/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80355/4/74184396.2021VF.pdf
https://repositorio.unal.edu.co/bitstream/unal/80355/5/74184396.2021VF.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
dc3463d35ac9f8c22b5451a426571983
fe66c50602a4a599fde3a34de255b940
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886584738381824
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Herrera, Claudia Ximena9e9b1162df5ae71da22de0e7cd708bd6Penagos Vélez, Lucas409419bb0f38da06cf590643365e9a89Feria Cáceres, Pedro Felipe106612bedc4e81f817e2eea7fc3eee8eMicrobiodiversidad y Bioprospección2021-10-02T16:10:54Z2021-10-02T16:10:54Z2021-10-01https://repositorio.unal.edu.co/handle/unal/80355Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapas, diagramasLa contaminación de suelos cultivables por metales pesados es un problema global, su acumulación puede causar efectos tóxicos que afectan la calidad y la seguridad de los productos cosechados, la composición y el funcionamiento de las comunidades bacterianas del suelo. El Cadmio (Cd) es un metal pesado, el cual se encuentra tanto en la corteza terrestre como en las aguas oceánicas, es emitido al ambiente como resultado conjunto de actividades naturales (origen volcánico) como antropogénicas (múltiples actividades industriales). El Cd presente en el suelo puede entrar a la cadena alimentaria a través de las raíces y tejido foliar de las plantas, cuya tasa de translocación y bioacumulación depende de múltiples variables como el tipo de planta y de las características fisicoquímicas de los suelos. El chocolate y sus derivados provienen de la fruta del árbol Theobroma cacao L. (familia Sterculiaceae) nativo de la selva tropical, cuya siembra se extiende desde la cuenca Amazónica hasta el sur de México; distintos reportes señalan que el cacao bioacumula el Cd en sus raíces, el cual transloca hacia la parte aérea y se deposita en la mazorca y las almendras, imponiendo serias limitaciones en cuanto a la calidad y seguridad alimentaria. El cacao colombiano, el cual en los últimos años ha tenido gran auge, en especial, por el incremento en las exportaciones de grano y derivados, puede verse afectado por la presencia de Cd en el grano de cacao proveniente de algunas regiones del país. Por su parte, se conoce que las comunidades bacterianas presentes en los suelos juegan un papel importante en aspectos de las plantas como la nutrición, el estado fitosanitario y el desarrollo de biomasa vegetal. En general, se sabe poco de las comunidades microbianas del cacao y de la microbiota presente en suelos, por lo tanto, como objetivo de esta tesis se planteó el estudiar, en muestras de suelo recopiladas en fincas del municipio de San Vicente de Chucurí (Departamento de Santander) cultivadas con plantaciones comerciales de cacao en presencia de distintas concentraciones de Cd, la filogenia molecular y su microbiota bacteriana con tolerancia asociada a Cd, identificando sus mecanismos de acción y para algunas de estas, determinar el factor de translocación del metal a la planta; esta tesis se encuentra enmarcada dentro de la estrategia de investigación de la Compañía Nacional de Chocolates, la cual busca mediante ciencia básica, ahondar en el conocimiento de nuevas técnicas que permitan el mejoramiento de recursos colombianos como lo es el caso del cacao y sus prácticas agrícolas. En las siguientes páginas, se describe la composición bacteriana de suelos de plantaciones de cacao en un amplio rango de concentraciones de Cd (0.2 a 18 mg/Kg), que se encuentran naturalmente en esta región. Los filos de mayor abundancia relativa en todas las muestras fueron Proteobacteria, Acidobacteriota, Actinobacteriota, Verrucomicrobiota, Myxococcota, Chloroflexi, Plactomycetota, Bacteroidota, Gemmatimonadota, Nitrospirota, Firmicutes y NB1_J y los géneros bacterianos géneros bacterianos con mayor abundancia relativa (>0.5%), se identificó a a Nitrospira, candidatus Udaeobacter, Haliangium, Cupriavidus, MND1, Bacillus, Kitasatospora, Niveibacterium, Acidothermus, Burkholderia, Acidibacter, Terrimonas, Gaiella, ADurb.Bin063-1, candidatus Solibacter, Kitasatospora, Sphingomonas, Streptomyces, han sido relacionados con procesos de tolerancia a Cd. Para las muestras de estudio se identificó los géneros bacterianos que conforman la comunidad central, los cuales están presentes en todas las muestras como Nitrospira sp., Cupriavidus sp., Burkholderia sp., ADurb.Bin063-1, Haliangium sp., candidatus Udaeobacter, MND1, Kitasatospora, Acidothermus, Acidibacter, Streptomyces, Gaiella, candidatus Solibacter y Terramonas, géneros que pueden jugar un papel fundamental en el funcionamiento del ecosistema, siendo indicativos de fenómenos que ocurren en el ambiente. Por otro lado, en esta investigación se estudió, para doce cepas nativas, su tolerancia e inmovilización de Cd en medio de cultivo líquido (caldo nutritivo) en presencia de dos concentraciones (10 y 15 mg/L Cd). La mayoría de los aislados mostró una curva de crecimiento retardada en presencia de Cd, de acuerdo con los valores µ y K calculados para cada cepa; la capacidad de captura del metal en el medio de cultivo fue caracterizada por microscopía electrónica de transmisión (TEM), reportando dos mecanismos como extracelular (biosorpción a nivel de pared celular) e intracelular (precipitación de Cd en citoplasma), dependiendo del tiempo y condiciones de incubación. Los cambios en los grupos funcionales en la superficie celular se analizaron por espectroscopia infrarroja transformada de Fourier (FT-IR), se identificó diferentes picos a 3275, 1634 y 1531 cm-1 (grupo amida I y II), la adsorpción indicó que el átomo de nitrógeno puede ser el sitio principal de interacción de Cd por las cepas; otro cambio notado en los picos 914, 1057 y 1636 cm-1, refiere la ampliación y estiramiento de la banda la presencia de grupos C=O; otro cambio interesante en los picos 2958, 2923, 2873, 2852, 1467, 1455 y 860 cm-1, esta región corresponde tanto a estiramientos de grupos C–H y O–H, donde la posibilidad en que los átomos de oxígeno en los grupos hidroxilo de la biomasa celular están envueltos en los procesos de absorpción. Los picos en la región 966, 1230 y 1060 cm-1 indican la intervención de enlaces fosfato en la biosorpción de Cd con la posible producción de fosfato de Cd sobre la superficie celular de la biomasa. En este trabajo se realizó un bioensayo bajo condiciones controladas de vivero comercial, aplicando algunas cepas nativas en tratamientos combinados con diferentes concentraciones de Cd utilizando semillas de cacao del genotipo CCN51. Los resultados mostraron que, independiente del género bacteriano, la biomasa en la planta de cacao aumenta y la concentración de Cd se distribuyó y bioacumuló en las partes de las plantas. Sin embargo, cierto grado de inmovilización de Cd pudo ocurrir en el suelo, lo que impidió una mayor concentración de Cd en raíz, evitando su translocación a la planta, especialmente cuando el suelo se bioaugmentó con Klebsiella sp. (18-4B). En conclusión, la combinación de diferentes enfoques permitió analizar la microbiota cultivable y no cultivable con características de biosorpción y bioprecipitación de Cd, las cuales están presentes en los suelos cacaoteros bajo distintas concentraciones de Cd en el departamento de Santander. Lo anterior proporciona una línea base sobre dicha composición bacteriana, para que en estudios futuros se logre complementar, los microorganismos asociados, sus interacciones y la dinámica para contrarrestar Cd en suelo y aquellos con actividad biotecnológica, que puedan ser alternativas de innovación, desarrollo y fuente de creación de bionegocios, considerarlos como opción de solución de muchos de los problemas causados por el hombre. (Texto tomado de la fuente)Soils used for food production could have a relatively high naturally occurring concentration of heavy metals, which could affect plant growth, compromise quality and safety of the derived products, and could also impact the soil bacterial community composition and functioning. Theobroma cacao L. crops in several neotropical regions produce food and nutrient sources consumed worldwide. A region at the northeastern Colombian Andes (Santander) has extensive T. cacao crops to produce cacao for national consumption and for exports. Cadmium (Cd) is a naturally occurring heavy metal toxic at higher concentrations. Cacao crops are able to bioaccumulated Cd in roots and translocate it to the beans, imposing a serious limitation regarding quality and safety. Soils could have very different natural concentrations of Cd. We present here the bacterial composition of soils cocoa plantations with a wide range of Cd concentrations 0.2 to 18 mg/Kg, found naturally in this region. Microbial community was described by means of 16S rRNA amplicon sequencing analyses, together with culture-dependent methods isolating Cd tolerant strains and soils physicochemical properties were recorded. Results showed that bacterial composition diversity was dominated by Proteobacteria, Acidobacteriota, Actinobacteriota, Verrucomicrobiota, Myxococcota, Chloroflexi, Plactomycetota, Bacteroidota, Gemmatimonadota, Nitrospirota, Firmicutes y NB1_J and did not have significant changes across sample soils with different Cd concentrations. We observed statistically significant differences in beta-diversity correlated with soil properties; moreover, we report the presence of a core community among the samples, dominated by Nitrospira sp., Cupriavidus sp., Burkholderia sp., ADurb.Bin063-1, Haliangium sp., candidatus Udaeobacter, MND1, Kitasatospora, Acidothermus, Acidibacter, Streptomyces, Gaiella, candidatus Solibacter and Terramonas; genera typically reported in soils with healthy plant cultures and playing fundamental roles in soil geochemical cycles. Culture-dependent techniques allowed the isolation of bacterial strains tolerating high Cd concentrations up to 120 mg/L for potencial Cd biosorption or intracellular sequestration. Bacteria have been applied for the bioremediation of cadmium-contaminated environments by biosorption or bioaccumulation interactions; this process is considered as a potential eco-friendly alternative. In the present work, twelve cadmium native bacteria tolerant to 2,500 µM CdCl2 (120 mg/L) isolated in soils of cocoa farms in presence of differents levels of Cd selected, to evaluate their Cd tolerance and immobilization using liquid culture medium (Nutritive broth) in the presence of two Cd concentration (10 and 15 mg/L), most of the isolates shows delayed growth curve in Cd levels. In the study, the ability to Cd capture by native strains in the liquid broth was characterized by Transmission Electron Microscopy (TEM) and changes in the functional groups in cell surface were analyzed by Fourier Transform infrared spectroscopy (FT-IR). All the genera have been reported in literatura with Cd capability properties in differents ways; these bacteria revealed, under methodology development, have been two different forms to Cd capture, such extracellular capability (biosorption) and extracellular mechanism (Cd cytoplasm precipitation) in differents concentrations, that depended time and incubation conditions. Furthermore, in the greenhouse experiments were carried out applied some strains in combined treatments using CCN51 cacao genotype seeds, grown in soil with different concentrations of Cd. The results showed that cell morphology and functional groups on cell surfaces changed after Cd interaction; regardless of bacteria genera biomass increases in cacao plant and the Cd concentration is distributed, that promoted bioaccumulation in parts of the plants, but certain Cd immobilization degree can occur in soil, preventing the Cd root concentration, which can prevent the translocation to plant, especially when the soil bioaugmentation with Klebsiella sp. (18-4B). In conclusión, these results allow us to elucidate the cultivable and non-cultivable bacterial microbiota present in soil cultivated with cocoa under different concentration of Cd in Santander Region; This will provide a baseline with information for future studies to clarify and complement the associated microorganisms, their interactions to counteract Cd in soil and those bacterial with biotechnological activity, they can be alternatives to influence for lower Cd accumulation in cacao crops.DoctoradoDoctor en BiotecnologíaAuxilio educativo para el pago de las matrículas.Biorremediaciónviii, 176 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín500 - Ciencias naturales y matemáticasContaminación de suelosSoils - bacteriologyBacteriología de suelosSoil pollutionCacaoCadmio (Cd)SuelosGen ARNr16SBacteriasCadmium (Cd)SoilsRNAr 16S geneEstudio de la diversidad microbiana asociadas a suelos cacaoteros con presencia de cadmio (Cd) y evaluación de su potencial biorremediador.Study of microbial diversity associated with cocoa soils with presence of cadmium (Cd) and bioremediation potencial evaluation.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombia1. Afzal, A., Rasool, M., Wassen, M. 2017. Assesment of heavy metal tolerance and biosorptive potencial of Klebsiella variicola isolated from industrial effluents. AMB Express, 7, 184. https://doi-org.ezproxy.unal.edu.co/10.1186/s13568-017-0482-2.2. Aiking, H., Kok, H., Heerikhuizen, H., Riet, J. 1982. Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture procedes mainly via formation of Cadmium sulfide. Appl.Environ. Microbiol. 44,938–944.3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Oxford University Press, 25(17), 3389–3402.4. An, M., Chang, D., Hong, D., Fan, H., Wang, K. 2021. Metabolic regulation in soil microbial succession and niche differentiation by the polymer amendment under cadmium stress. Journal of Hazardous Materials. 416. 126094. https://doi.org/10.1016/j.jhazmat.2021.126094.5. Apprill, A., Mcnally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology, 75(2), 129–137. https://doi.org/10.3354/ame01753.6. Arévalo-Gardini, E., Arévalo-Hernández, C., Baligar, V., He, Z. 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment. 605-606. 792 – 800. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.06.122 0048-9697.7. Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., Montalvo, D., 2019. Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: a nationwide survey in Ecuador. Sci. Total Environ. 649, 120–127. https://doi.org/10.1016/j.scitotenv.2018.08.292.8. Atlas, M., Bartha, R. 2002. Ecología microbiana y microbiología ambiental. Cuarta edición. Addison Wesley. New York, USA. 217 – 262.9. Becerra-Castro C, Kidd PS, Prieto-Fernandez A, Weyens N, Acea MJ, Vangronsveld J. 2011. Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterization. Plant and Soil. 340:413-433. https://doi.org/10.1007/s11104-010-0613-x.10. Bhattacharya, A., Naik, S., Khare, S., 2018. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management. 215. 143-152. https://doi.org/10.1016/j.jenvman.2018.03.05511. Bissett, A., Brown, M. V., Siciliano, S. D., Thrall, P. H., 2013. Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecology Letters. 16,128. doi: https://doi.org/10.1111/ele.12109.12. Bolívar, H., Contreras, M., Teherán, L. 2016. Burkholderia tropica una bacteria con gran potencial para su uso en agricultura. Revista Especializada en Ciencias Químico-Biológicas, 19(2):102-108, 2016. https://doi.org/10.1016/j.recqb.2016.06.003.13. Böhmer, M.; Ozdín, D.; Račko, M.; Lichvár, M.; Budiš, J.; Szemes, T. 2020. Identification of Bacterial and Fungal Communities in the Roots of Orchids and Surrounding Soil in Heavy Metal Contaminated Area of Mining Heaps. Applied Science. 10. 7367. https://doi.org/10.3390/app1020736714. Bravo, D., Pardo-Díaz, S., Benavides-Erazo, J., Rengifo-Estrada, G., Brassiant, O., Leon-Moreno, C. 2018. Cadmium and Cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. J Appl Microbiol. 2018 May; 124(5):1175-1194. doi: https: //10.1111/jam.13698. Epub 2018 Feb 26.15. Bravo, D., Leon-Moreno, C., Martinez, C., Varon-Ramirez, V., Araujo-Carrillo, G., Vargas, R., Quiroga-Mateus, R., Zamora, A., Gutierrez, E. 2021. The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Agronomy. 11. 761. doi: https://doi.org/10.3390/agronomy1104076116. Burges, A., Epelde, L., Garbisu, C. 2015. Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere. 120,8–15.doi: https://doi.org/10.1016/j.chemosphere.2014.05.037.17. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference fromIllumina amplicon data. Nat. Methods 13. 7. 581–583.18. Cao, X., Luo, J., Wang, X, Chen, Z., Liu, G., Khan, M., Kang, K., Feng, Y., He, Z., Yang, X. 2020. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Science of The Total Environment. 723, 138-152. doi: https://doi.org/10.1016/j.scitotenv.2020.138152.19. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G. a, Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C. a, Mcdonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W. a, Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat. Publ. Gr. 7, 335–336. doi: https://doi.org/10.1038/nmeth0510-335.20. Carlon, C., 2007. Derivation Methods of Soil Screening Values in Europe: A Review and Evaluation of National Procedures Towards Harmonization. European Commission, Joint Research Centre, Ispra (EUR 22805-EN).21. Carter, J., Rice, E., Buchberger, S., Lee, Y. 2000. Relationships between levels of heterotrophic bacteria and water quality parameters in a drinking water distribution system, Water Research, Volume 34, Issue 5, Pages 1495-1502, https://doi.org/10.1016/S0043-1354(99)00310-3.22. Castañeda, V., Junca, H., García, E., Montoya, O., Moreno, C., 2019. Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus), Aquaculture, 512, 734325. https://doi.org/10.1016/j.aquaculture.2019.734325.23. Ceribasi, I, et al., 2001. Biosorption of Ni (II) and Pb (II) by Phanaerochaete chysosporium from a binary metal system- kinetics. Water SA. 27 (1), 15-19, DOI: 10.4314/wsa.v27i1.500424. Chavez, E., He, Z., Stofella, P., Mylavarapu, R., Li, Y., Moyano, B., Baligar, V., 2015. Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment 533. 205–214. doi: https://doi.org/10.1016/j.scitotenv.2015.06.106.25. Chavez, E., He, Z., Stoffella, P., Mylavarapu, R., Li, Y., Baligar, V. 2016. Chemical speciation of cadmium: An approach to evaluate plantavailable cadmium in Ecuadorian soils under cacao production. Chemosphere. 150. 57–62. doi: http://dx.doi.org/10.1016/j.chemosphere.2016.02.013.26. Chakravarty, R and Banerjee, P., 2012. Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresource Technology 108, 176–183. doi: https://doi.org/10.1016/j.biortech.2011.12.100.27. Chavez, C., et al., 2014. Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage. Comprehensive Reviews in food science and foos safety. 13. doi: https://doi.org/10.1111/1541-4337.12098.28. Chen, Y., Chen, F., Xie, M., Jiang, Q., Ao, T. 2020. The impact of stabilizing amendments on the microbial community and metabolism in cadmium-contaminated paddy soils. Chemical Engineering Journal. 395, 125132. doi: https://doi.org/10.1016/j.cej.2020.125132.29. Chen, Y., Zhu, Q., Dong, X., Huang, W., Du, Ch., Lu, D. 2019. How Serratia marcescens HB-4 absorbs Cadmium and its implication on phytoremediation. Ecology and Environmental Safety, 185, 109723, https://doi.org/10.1016/j.ecoenv.2019.109723.30. Chi, M.-C., & Li, C.-S. 2007. Fluorochrome in Monitoring Atmospheric Bioaerosols and Correlations with Meteorological Factors and Air Pollutants. Aerosol Science and Technology, 41(7), 672–678. http://doi.org/10.1080/02786820701383181.31. Chi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P., Zhang, D. 2020. Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsortion and resistence to cadmium. Science of the total environment 741, 140422, https://doi.org/10.1016/j.scitotenv.2020.140422.32. Chodak, M., Go, I., Ebiewski, M., Morawska-Ploskonka, J., Kuduk, K., Niklínska, M., 2013. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl soil Ecol. 64, 7-14. doi: https://doi.org/10.1016/j.apsoil.2012.11.004.33. Chojnacka, K. 2010. Biosorption and bioaccumation – The prospects for practical applications. Review article. Environment International. 36. 299 – 307. doi:10.1016/j.envint.2009.12.001.34. Chun, S., Kim, Y., Cui, Y., Nam, K. 2021. Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea. Environmental Pollution. 289. 117851. doi: https://doi.org/10.1016/j.envpol.2021.117851.35. Chun-yu, J., Xia-fang, S., Meng, Q., Qing-ya, W. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, Volume 72, Issue 2, Pages 157-164 https://doi.org/10.1016/j.chemosphere.2008.02.006.36. Cole, J., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R., Tiedje, J. (2009). The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, 141–145. https://doi.org/10.1093/nar/gkn879.37. Daims H. 2014. The Family Nitrospiraceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-38954-2_126.38. Davidova, I., Wawrik, B., Callaghan, A., Duncan, K., Marks, C., Suflita, J. 2016. Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family Desulfarculaceae. International Journal od Systematic and Evolutionary Microbiology. 66: 1242-1248. doi: https://doi.org/10.1099/ijsem.0.000864.39. Ding, C., Ma, Y., Li, X., Zhang, T., Wang, X. 2018. Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assesment. Science of the Total Environment. 619-620. 700 – 706. doi: https://doi.org/10.1016/j.scitotenv.2017.11.137.40. Duan, C., Liu, Y., Zhang, H., Chen, G., Song, J. 2020. Cadmium Pollution Impact on the Bacterial Community of Haplic Cambisols in Northeast China and Inference of Resistant Genera. Journal of Soil Science and Plant Nutrition. 20. 1156–1170. https://doi.org/10.1007/s42729-020-00201-5.41. Edgar, R., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. doi: https://doi.org/10.1093/bioinformatics/btq461.42. Ehsan M., K. Santamaría-Delgado, A. Vázquez-Alarcón, et al. 2009. Phytostabilization of cadmium contaminated soils by “Lupinus uncinatus” Schdl. Journal of Agricultural Research 7(2): 390-397.43. EU, 2014. COMMISSION REGULATION (EU) No 488/2014 amending regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off. J. Eur. Union 138, 75.44. Evanko, C., Dzombak, D., 1997. Remediation of metals-contaminated soils and groundwater. Technology Evaluation Report (TE-97-01). Ground-Water Remediation Technologies Analysis Center (GWRTAC - E Series). October 1997.45. Ezekoye CC, Chikere CB, Okpokwasili GC (2018). Field Metagenomics of Bacterial Community Involved in Bioremediation of Crude Oil Polluted Soil. J Bioremediat Biodegrad 9. 5: 449. doi:10.4172/2155-6199.1000449.47. FEDECACAO. Departamento de Estadística y Recaudos; Reporte de Febrero 2020; Version en línea: Nelsy Yanira Alvarado; Federación Nacional de Cacaoteros: Bogotá, Colombia, 2020; disponible en web: https://www.fedecacao.com.co/portal/index.php/es/2015-2 002-2012-2017-2020-2059/nacionales (acceso 30 Abril de 2020).48. Feng, G., Xie, T., Wang, X., Bai, J., Tang, L., Zhao, H., Wei, W., Wang, M., Zhao, Y. 2018. Metagenomic analyst of microbial community and fuction involved in Cd Contaminated soil. BMC Microbiology. 18. 11. https://doi.org/10.1186/s12866-018-1152-5.49. Ferreira, Paulo Ademar Avelar, Bomfeti, Cleide Aparecida, Soares, Cláudio Roberto Fonsêca de Souza, Soares, Bruno Lima, & Moreira, Fatima Maria de Souza. 2018. Cupriavidus necator strains: zinc and cadmium tolerance and bioaccumulation. Scientia Agricola, 75(6), 452-460. https://doi.org/10.1590/1678-992x-2017-0071.50. Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., Owens, S., Gilbert, J. A., Wall, D. H., Caporaso, J. G., 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America. 109, 52, 21390-21395. doi: https://doi.org/10.1073/pnas.1215210110.51. Fierer, N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology. 15. 579–590. doi: https://doi.org/10.1038/nrmicro.2017.87.52. Gadd, G. 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46, 834–840. https://doi-org.ezproxy.unal.edu.co/10.1007/BF0193553453. Gómez, A., Yannarell, A., Sims, G., Cadavid, R., Moreno, C. 2011. Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biology & Biochemistry 43, 1275-1284. doi: https://doi.org/10.1016/j.soilbio.2011.02.018.54. Gómez-Sagasti, M. T., Alkorta, I., Becerril, J. M., Epelde, L., Anza, M., Garbisu, C.,2012. Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Poll. 223:3249–3262. doi: https://doi.org/10.1007/s11270-012-1106-8.55. Gosai, H., Sachaniya, B., Panseriya, H., Dave, B. 2018. Functional and phylogenetic diversity assessment of microbial communities at Gulf of Kachchh, India: An ecological footprint. Ecological Indicators. 93. 65-75. https://doi.org/10.1016/j.ecolind.2018.04.072.56. Gramlich, A., Tandy, S., Andres, C., Chincheros, J., Armengot, L., Scheneider, M., Schulin, R. 2016. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment. 580, 677 – 686. https://doi.org/10.1016/j.scitotenv.2016.12.014.57. Gramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzalez, V., Schulin, R. 2018. Soil cadmium uptake by cocoa in Honduras. Science of the Total Environment. 612. 370 – 378. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.08.145.58. Griffin, D. et al., 2007. Airborne desert dust and aero-microbiology over the Turkish Mediterranean coastline. Atmospheric Environment, 41(19), 4050–4062. http://doi.org/10.1016/j.atmosenv.2007.01.023.59. Grimont, P., Grimont F., 2005. Genus: Klebsiella, In: Volume Two: Нe Proteobacteria, Part B: Нe Gammaproteobacteria. In: Brenner DJ, Krieg NR, Staley JT (Edn.) Bergey’s Manual of Systematic Bacteriology, (2nd edn), Springer, New York, pp. 685-693.60. Gundacker, C., Gencik, M., Hengstschläger, M., 2010. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutation Research. 705. 130–140.61. Guo, H., Nasir, M., Lv, J., Dai, Y., Gao, J., 2017. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicoogy Environment Safety. 144. 300–306.62. Hashimoto, T., Whang, K., Nagaoka, K., 2006. A quantitative evaluation and phylogenetic characterization of oligotrophic denitrifying bacteria harbored in subsurface upland soil using improved culturability. Biology Fertility Soils. 42.3.179-185.63. He, S., He, Z., Yang, X., Stoffella, P. J., Baligar, V. C., 2015. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils. Advances in Agronomy 134, pp. 135–225. https://doi.org/10.1016/bs.agron.2015.06.005.64. Holmes, D., Nevin, K., Lovley, D., 2004. Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 54, 1591-1599. doi: https://doi.org/10.1099/ijs.0.02958-0.65. Holmes, J., Richardson D., Saed, S., Evans-Gowing, R., Russell, A., Sodeau, J. 1997. Cadmium-specific formation of metal sulfide ‘Q-particles’ by Klebsiella pneumoniae. Microbiology 143, 2521– 2530. https://doi.org/10.1099/00221287-143-8-2521.66. Holmgren, G., Meyer, M., Chaney, R., Daniels, R. 1993. Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. Journal Environment Quality 22, 335-348. doi: https://doi.org/10.2134/jeq1993.00472425002200020015x67. Huang, F., Dang, Z., Guo, Ch., Lu, X., Zhang, X., 2013. Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids and Surfaces B: Biointerfaces, Volume 107, 11-18. https://doi.org/10.1016/j.colsurfb.2013.01.062.68. Huang, F., Guo, Ch., Lu, G., Yi, X., 2014. Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere, Volume 109, 134-142. https://doi.org/10.1016/j.chemosphere.2014.01.066.69. Hseu, Z.Y., Chen, Z.S., Tsai, C.C., Tsui, C.C., Cheng, S.F., Liu, C.L., Lin, H.T., 2002. Digestion methods for total heavy metals in sediments and soils. Water Air Soil Pollut. 141, 189–205. doi: 10.1023/A:1021302405128.70. Jan, R., Khan, M., Asaf, S., Lubna, Lee, I., Kim, K. 2019. Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza Sativa, via regulating its antioxidant machinery and endogenous hormones. Plants. 8. 363. doi:10.3390/plants8100363.71. Jensen M., Webster J. and Straus N. (1993). Method for rapid identification of bacteria based on Polymerase Chain-Reaction amplified ribosomal DNA spacer poly-morphisms. Appl. Environ. Microb. 59 (4), 945-952.72. Jezequel, K., Lebeau, T., 2008. Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresource Technology, Volume 99, Issue 4, 690-698. https://doi.org/10.1016/j.biortech.2007.02.002.73. Jiang, C., Sheng, X., Qian, M., Wang, Q. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere. 72, 157 – 164. doi:10.1016/j.chemosphere.2008.02.006.74. Jiménez, C., 2015. Estado legal mundial del cadmio en cacao (Theobroma cacao): fantasía o realidad. Artículo de Revisión / Review Article / Artigo de Revisão. Producción + Limpia. 10, 1, 89–104. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S19094552015000100009&lng=en&nrm=iso.75. Joseph, S. J., Hugenholz, P., Sangwan, P., Osborne, C. A. y Janssen, P. H. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Applied Environment Microbiology. 69, 7210-7215. doi: 10.1128/AEM.69.12.7210-7215.2003.76. Kief, T., Soroker, E., Firestone, M., 1987. Microbial biomass response to a rapid increase in water potencial when dry soil is wetted. Soil Biol. Biochem. 19: 119 – 126 https://doi.org/10.1016/0038-0717(87)90070-8.77. Kim, S., Jin, M., Chung, C., Yun, Y., Jahng, K., Yu, K. 2015. Biosortion of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain. Journal of bioscience and bioengineering 119, 4, 433-439. http://dx.doi.org/10.1016/j.jbiosc.2014.09.022.78. Kimura M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.79. Kirkham, M. (2006). Cadmium in plants on polluted soils: effect of soil factors, hyperaccumulation and amendments. Geoderma 137, 19e32.80. Kongor, J., Hinneh, M., Van de Walle, D., Afoakwa, E., Boeckx, P., Dewettinck, K. 2016. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review Food Research International 82, 44 – 52. http://dx.doi.org/10.1016/j.foodres.2016.01.012 0963-9969.81. Kumari, D., Pan, X., Lee, D., Achal, V., 2014. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. Short communication. International Biodeterioration & Biodegradation, Volume 94, 98-102. https://doi.org/10.1016/j.ibiod.2014.07.007.82. Lata, S., Kaur, H. P., & Mishra, T. (2019). Cadmium Bioremediation: a Review. International Journal of Pharmaceutical Sciences and Research, 10(9), 4120–4128. https://doi.org/10.13040/IJPSR.0975-8232.10(9).4120-28.83. Lauber, C., Hamady, M., Knight, R., Fierer, N. (2009). Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Applied and environmental microbiology, Aug. 2009, p. 5111–5120 Vol. 75, No. 15. doi: 10.1128/AEM.00335-09.84. Lazzaro, A., Hartmann, M., Blaser, P., Widmer, F., Schulin, R., Frey., B., 2006. Bacterial community structure and activity in diferent Cd-treated forest soils. FEMS Microbiol Ecol 58 (2006) 278–292. https://doi.org/10.1111/j.1574-6941.2006.00163.x.85. Lee, K., Liu, C., Anzai, Y., Kim, H., Aono, T., Oyaizu, H. 2005. The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. International Journal of Systematic and Evolutionary Microbiology. 55, 1907-1919. doi: https://doi.org/10.1099/ijs.0.63663-0.86. Lemos, L. N., Fulthorpe, R. R., Triplett, E. W., & Roesch, L. F. W. (2011). Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of Microbiological Methods, 86(1), 42–51. https://doi.org/10.1016/j.mimet.2011.03.014.87. Lewin, G., Carlos, C., Chevrette, M., Horn, H., Mcdonald, B., Stankey, R., Stankey, R., Fox., B., Currie, C. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol. 2016; 70: 235–254. doi:10.1146/annurev-micro-102215-095748.88. Li, J., Liu, Y., Zhang, L., He, J. 2019. Sorption mechanism and distribution of cadmium by different microbial species. Journal of Environmental Management. 237. 552 – 559. https://doi.org/10.1016/j.jenvman.2019.02.057.89. Liang Xia., He Chi-Quan, Ni Gang Tang, Gui-E., Chen Xue-Ping, Lei Yan-Ru. 2014. Growth and Cd Accumulation or Orychophragmus violaceus as Affected by Inoculation of Cd-Tolerant Bacteria Strains. Pedosphere 24(3): 322-329. https://doi.org/10.1016/S1002-0160(14)60018-7.90. Li, Y., Yu, X., Cui, Y., Tu, W., Shen, T., Yan, M., Wei, Y., Chen, X., Wang, Q., Chen, Q., Gu, Y., Zhao, K., Xiang, Q., Zou, L., Ma, M. 2018. The potential of cadmium ion-immobilized Rhizobium pusense KG2 to prevent soybean root from absorbing cadmium in cadmium-contaminated soil. Journal of Applied Microbiology. 126. 919 – 930. doi:10.1111/jam.14165.91. Liu H, Xie Y, Li J, Zeng G, Li H, Xu F, Feng S, Xu H (2020) Efect of Serratia sp. K3 combined with organic materials on cadmium migration in soil-Vetiveria zizanioides L. system and bacterial community in contaminated soil. Chemosphere 242:125164. https://doi.org/10.1016/j.chemosphere.2019.125164.92. Ludlow, C., Cromie, G., Garmendia-Torres, C., Sirr, A., Hays, M., Field, C., Jeffery, E., Fay, J., Dudley, A. 2016. Independent Origins of Yeast Associated with Coffee and Cacao Fermentation. Current biology 26, 965 – 971. http://dx.doi.org/10.1016/j.cub.2016.02.012.93. Luo, L., Xie, I., Jin, D., Mi, B., Wang, D., Dai, X., Zou, X., Zhang, Z., 2019. Bacterial community response to cadmium contamination of agricultural paddy soil. Applied Soil Ecology, 139, 100-106. doi: https://doi.org/10.1016/j.apsoil.2019.03.022.94. Ma, Y.; Wang, Y.; Chen, Q.; Li, Y.; Guo, D.; Nie, X.; Peng, X. Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils. Ecol. Indic. 2020, 117, 10662695. Madigan, M.T., J.M. Martinko, D.A. Stahl, D.P. Clark. 2012. Brock Biology of Microorganisms, 13ª ed. Benjamin Cummings.96. McGrath, S., Zhao, F., Dunham, S., Crosland, A., Coleman, K. 2000. Long term changes in the extractability and bioavailability of Zinc and Cadmium after sludge application. Journal of environment quality. 29, 3, 875-883. doi: https://doi.org/10.2134/jeq2000.00472425002900030025x.97. Mann, C., Lynch, D., Fillmore, S., Mills, A. 2019. Relationships between field management, soil health, and microbial community composition. Applied Soil Ecology 144, 12-21. doi: https://doi.org/10.1016/j.apsoil.2019.06.012.98. McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217.99. Mantilla, L., Bissig, T., Valencia, V., Hart, C. 2013. The magmatic history of the Vetas-California mining district, Santander Massif, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 45. 235-249. doi: https://doi.org/10.1016/j.jsames.2013.03.006.100. Mathew, B.B., Biju, V.G. & Nideghatta Beeregowda, K. Accumulation of lead (Pb II) metal ions by Bacillus toyonensis SCE1 species, innate to industrial-area ground water and nanoparticle synthesis. Appl Nanosci 9, 49–66 (2019). https://doi.org/10.1007/s13204-018-0892-8.101. Margensin, R. P., Laza, G. A., Kasenbacher, S. 2011. Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere. 82, 1583–1588. doi: https://doi.org/10.1016/j.chemosphere.2010.11.056.102. Ministerio de Agricultura 2019. Agronet: Reporte: Área, Producción, Rendimiento y Participación Municipal en el Departamento por Cultivo. https://www.agronet.gov.co.103. Meter, A., Atkinson, R. J., & Laliberte, B. (2019). Cadmium in Cacao From Latin America and The Caribbean. A Review of Research and Potential Mitigation Solutions. Caracas: CAF. Retrieved from http://scioteca.caf.com/handle/123456789/1506104. Mite, F., Carrillo, M., Durango, W., 2010. Avances del monitoreo de presencia de Cadmio en almendras de Cacao, suelos y aguas en Ecuador. XII congreso ecuatoriano de la ciencia del Suelo. Santo Domingo, 17-19 de noviembre del 2010.105. Mitra, S., Pramanik, K., Kumar, P., Soren, T., Sarkar, A., Sundar, R., Pandey, S., Kanti, T. 2018. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress, Microbiological Research. 210. 12-25, https://doi.org/10.1016/j.micres.2018.03.003.106. Mohapatra, B., Gould, W., Dinardo, O., Koren, D., 2011. Tracking the prokaryotic diversity in acid mine drainage-contaminated environments: a review of molecular methods. Minerals Engineer. 24, 709–718.107. Montaño, P.C.; Nova, G.; Bayona, G.; Mahecha, H.; Ayala, C.; Jaramillo, C.; De La Parra, F. 2016. Análisis de secuencias y procedencia en sucesiones sedimentarias de grano fino: Un ejemplo de la formación Umir y base de la formación Lisama, en el sector de Simacota (Santander, Colombia). Boletín Geología, 38, 51–72.108. Moreno C., Romero J. and Espejo R. (2002). Polymor¬phism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology 148 (4), 1233-1239. DOI: 10.1099/00221287-148-4-1233.109. Motamayor, J. C., Risterucci, A. M., López, P. A., Ortiz, C. F., Moreno, A., & Lanaud, C. 2002. Cacao domestication I: The origin of the cacao cultivated by the Mayas. Heredity, 89(5), 380–386. https://doi.org/10.1038/sj.hdy.6800156110. Engbersen, N., Gramlich, A., Lopez, M., Schwarz, G., Hattendorf, B., Gutierrez, O., Schulin, R. 2019. Cadmium accumulation and allocation in different cacao cultivars. Science of the Total Environment. 678. 660–670 https://doi.org/10.1016/j.scitotenv.2019.05.001.111. Naomi L., Challacombe, J., Janssen, P., Henrissat, B., Coutinho, P., Wu, M., Xie, G., Haft, D., Sait, M., Badger, J., Barabote, R., Bradley, B., Brettin, T., Brinkac, L., Bruce, D., Creasy, T., Daugherty, S., Davidsen, T., DeBoy, R., Detter, C., Dodson, R., Durkin, S., Ganapathy, A., Gwinn-Giglio, M., Han, C., Khouri, H., Kiss, H., Kothari, S., Madupu, R., Nelson, K., Nelson, W., Paulsen, I., Penn, K., Ren, Q., Rosovitz, M., Selengut, J., Shrivastava, S., Sullivan, S., Tapia, R., Thompson, S., Watkins, S., Yang, Q., Yu, C., Zafar, N., Zhou, L., Kuske C. 2009. Three genomes from the Phyla Acidobacter provide insight into the lifestyles ot these microorganism in soils. Applied and environmental microbiology, p. 2046–2056. doi:10.1128/AEM.02294-08.112. Navarrete, A., Soares, T., Rossetto, R., Van Veen, J., Tsai, S., Kuramae, E. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie van Leeuwenhoek (2015) 108:741–752. doi: 10.1007/s10482-015-0530-3.113. Nies, D. 1999. Microbial heavy-metal resistance. Applied Microbiology Biotechnology. 51. 730–750. https://doi-org.ezproxy.unal.edu.co/10.1007/s002530051457.114. Nies, D. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 2-3, 313 – 339, https://doi.org/10.1016/S0168-6445(03)00048-2.115. NTC 4113-6. 2017. Gestión Ambiental. Calidad de suelo. Muestreo. Guía para la recolección, manejo y almacenamiento de suelo para la evaluación de procesos microbianos aeróbicos en el laboratorio. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC) 2016. https://www.icontec.org.116. Oladipo, O., Ezeokoli, O., Maboeta, M., Bezuidenhout, J., Tiedjt, L., Jordaan, A., Bezuidenhout, C. 2018. Tolerance and growth kinetics of bacteria isolated from gold and gemstone mining sites in response to heavy metal concentrations, Journal of Environmental Management, 212, 357-366, https://doi.org/10.1016/j.jenvman.2018.01.038.117. Oren A., Xu XW. (2014) The Family Hyphomicrobiaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-30197-1_257.118. Osorio, W., Ruiz, O. 2013. Guía para el muestreo. Laboratorio de suelos. Universidad Nacional de Colombia, sede Medellín, Colombia. https://ciencias.medellin.unal.edu.co/laboratorios/suelos/.119. Ozdemir, S., Kilinc, E., Poli, A., Nicolaus, B., Güven, K. 2009. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sP. Decanicus and Geobacillus thermoleovorans sub.sP. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J., 152 (1) (2009), pp. 195-206, 10.1016/j.cej.2009.04.041.120. Pabon, M., Sepúlveda, W., Herrera, L., 2014. Caracterización de la producción de cacao en Santander y analisis de la presencia de Cadmio en los suelos y cultivos. Proyecto de investigación financiado por Colciencias Convocatoria 586 de 2012, Contrato 822 de 2012. http://repositorio.colciencias.gov.co:80/handle/11146/2441.121. Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023122. Park, Y., Ko, J., Yun, S., Lee, E., Kim, S., Kang, S, Lee, B., Kim, S. 2008. Enhancement of bioremediation by Ralstonia sp. HM-1 in sediment polluted by Cd and Zn. Bioresource Technology 99, 7458-7463. https://doi.org/10.1016/j.biortech.2008.02.024.123. Pathom, W., Nogi, Y., Ward, A., Horikoshi, K., Bull, A., Goodfellow, M. (2006). Dermacoccus barathi sp. nov., novel actinomycetes isolated from Deep-sea mud of the Mariana Trench. International Journal of Systematic and Evolutionary Microbiology. 56, 2303-2307. https://doi.org/10.1099/ijs.0.64250-0.124. Pereira De Araújo, R., De Almeida, A., Pereira, L., Mangabeira, P., Souza, J., Pirovania, C., Ahnerta, D., Baligarc, V. 2017. Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicology and Environmental Safety. 144, 148 – 157. http://dx.doi.org/10.1016/j.ecoenv.2017.06.006.125. Pereira, L., Vicentini, R., Ottobini, L. 2015. Short Communicarion. Characterization of the core microbiota of the drainage and surrounding soil of Brazilian copper mine. Genet. Mol. Biol. 38, 4, 484-489. doi: http://dx.doi.org/10.1590/S1415-475738420150025.126. Pérez-Jaramillo, J.E., Carrión, V.J., Bosse, M., Ferrão, L.F.V., De Hollander, M., Garcia, A.A.F., Ramírez, C.A., Mendes, R., Raaijmakers, J.M., 2017. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244–2257. https://doi.org/10.1038/ismej.2017.85.127. Porras, L., Torres, J., Gil, M., Martinez, O. 2019. Effect of the solar drying process on the sensory and chemical quality of cocoa (Theobroma cacao L.) cultivated in Antioquia, Colombia. Food Research International 115, 259-267. doi: https://doi.org/10.1016/j.foodres.2018.08.084.128. Prabha K. Padmavathiamma & Loretta Y. Li Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water Air Soil Pollut (2007) 184:105–126. DOI 10.1007/s11270-007-9401-5.129. Pramanik, K., Mitra, S., Sarkar, A., Kanti, T.2018. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092, Journal of Hazardous Materials, Volume 351, Pages 317-329, https://doi.org/10.1016/j.jhazmat.2018.03.009.130. Prosser J.I., Head I.M., Stein L.Y. (2014) The Family Nitrosomonadaceae. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-642-30197-1_372.131. Pugazhendhi, A., Boovaragamoorthy, G., Ranganathan, K., Naushad, M., Kaliannan, T. 2018. New insight into effective biosorption of lead from aqueos solution using Ralstonia solanacearum: Characterization and mechanism studies. Journal of cleaner production, 174, 1234-1239. https://doi.org/10.1016/j.jclepro.2017.11.061.132. Qi, F., Lamb, D., Naidu, R., Bolan, N., Yan, Y., Ok, Y., Rahman, M., Choppala, G. 2018. Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Sci Total Environ 610:1457–1466. https://doi.org/10.1016/j.scitotenv.2017.08.228.133. Rajendran, P., Muthukrishnan, J., Gunasekaran, P. 2003. Microbes in heavy metal remediation. Indian Journal of Experimental Biology. 41, 935-944.134. Ryan T. Jones, et al., 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses, ISME J. 3. 4. 442–453.135. Rodríguez Albarrcín, H.S.; Darghan Contreras, A.E.; Henao, M.C. Spatial regression modeling of soils with high cadmium content in a cocoa producing area of central Colombia. Geoderma Reg. 2019, 16, 1–13. doi: https://doi.org/10.1016/j.geodrs.2019.e00214.136. Nelino, R., Hildauro, J., Paucar, G., Salinas, S., Mamani, F., García, T. 2019. Efecto del compost y NPK sobre los niveles de microorganismos y cadmio en suelo y almendra de cacao. Revista de Investigaciones Altoandinas. 21, 4. http://dx.doi.org/10.18271/ria.2019.503.137. Sabir, A., Naveed, M., Bashir, M., Hussain, A., Mustafa, A., Zahir, Z., Kamran, M., Ditta, A., Núñez-Delgado, A., Saeed, Q., Qadeer, A. 2020. Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. Journal of Environmental Management. 265. 110522. https://doi.org/10.1016/j.jenvman.2020.110522.138. Saitou N. and Nei M. (1987). The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (4), 406-425. doi: 10.1093/oxfordjournals.molbev.a040454.139. Sangkhobol, V., Skerman, B. 1981. Chitinophaga, a new genus of Chitinolytic myxobacteria. International Journal of Systematic Bacteriology, 31, 3, pág.: 285 – 293. https://doi.org/10.1099/00207713-31-3-285.140. Sauvé, S, Norvell, W.A, McBride, M. Hendershot, W. Speciation and complexation of cadmium in extracted soil solutions. Environmental Science and TechnologyVolume 34, Issue 2, 15 January 2000, Pages 291-296. DOI: 10.1021/es990202z.141. Sea, B., Wendell, A., Murray, M., Hendershot, W. 2000. Speciation and Complexation of Cadmium in Extracted Soil Solutions. Environ. Sci. Technol. 2000, 34, 291-296. doi: 10.1021/es990202.142. Shahid, M., Dumat, C., Khalid, S., Niazi, N., Antunes, P. 2016. Cadmium bioavailability, uptake, toxicity and detoxifcation in soilplant system. Rev Environ Contam Toxicol 241:73–137 DOI: 10.1007/398_2016_8.143. Shamin, S. and Rehman, A. 2012. Cadmium resistance and acumulation potencial of Klebsiella pneumoniae strain CBL-1 isolated from industrial wastewater. Pakistan J. Zool., 44, 1, 203-208.144. She, J., Wang, J., Wei, X., Zhang, Q., Xie, Z., Beiyuan, J., Xiao, E., Yang, X., Liu, J., Zhou, Y., Xiao, T., Wang, Y., Chen, N., Tsang, D. 2021. Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination. Science of The Total Environment. 774. 145143. https://doi.org/10.1016/j.scitotenv.2021.145143.145. Sheng, Y., Wang, Y., Yang, X., Zhang, B., He, X., Xu, W., Huang, K. 2016. Cadmium tolerant characteristic of a newly isolated Lactococcus lactis subsp. lactis. Environmental toxicology and pharmacology. 48, 183-190. https://doi.org/10.1016/j.etap.2016.10.007.146. Shi, Z., Zhang, Z., Yuan, M., Wang, S., Yang, M., Yao, O., Ba, W., Zhao, J., Xie, B. 2020. Characterization of a high cadmium accumulating soil bacterium, Cupriavidus sp. WS2, Chemosphere, Volume 247, 125834, https://doi.org/10.1016/j.chemosphere.2020.125834.147. Siripornadulsil, S. and Siripornadulsil, W. 2013. Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: Potential for microbial bioremediation, Ecotoxicology and Environmental Safety, Volume 94, Pages 94-103, https://doi.org/10.1016/j.ecoenv.2013.05.002.148. Song L, Pan Z, Dai Y, Chen L, Zhang L, Liao Q, Yu X, Guo H, Zhou G. 2020. Characterization and comparison of the bacterial communities of rhizosphere and bulk soils from cadmium-polluted wheat fields. PeerJ 8:e10302 http://doi.org/10.7717/peerj.10302.149. Soliman, T., Yang, S., Yamazaki, T., Kodama, H. 2017. Profiling soil microbial communities with next-generation sequencing: the influence of DNA kit selection and technician technical expertise. PeerJ 5:e4178. doi: https://doi.org/10.7717/peerj.4178.150. Spain, A., Krumholz, L., Elshahed, M. 2009. Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal (2009) 3, 992–1000; doi:10.1038/ismej.2009.43.151. Sriram, M. I., Gayathiri, S., Gnanaselvi, U., Jenifer, P. S., Mohan Raj, S., & Gurunathan, S. (2011). Novel lipopeptide biosurfactant produced by hydrocarbon degrading and heavy metal tolerant bacterium Escherichia fergusonii KLU01 as a potential tool for bioremediation. Bioresource Technology, 102, 9291-9295 doi:10.1016/j.biortech.2011.06.094.152. Stefanowicz, A. M., Niklinska, M., Kapusta, P., Szarek-Łukaszewska, G.,2010. Pine forest and grassland differently influence the response of soil microbial communities to metal contamination. Sci Total Environ. 408,6134–6141.doi: https://doi.org/10.1016/j.scitotenv.2010.08.056.153. Stuart, E., Jones, J., Lennon, T. 2010. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. Unit. States Am. 107. 13. 5881–5886.154. Sun, R., Wang, L., Huang, R., Huang, F., Gan, D., Wang, J., Guan, R., Han, W., Qu, J., Yan, L., Zhang, Y. 2020. Cadmium resistance mechanisms of a functional strain Enterobacter sp. DNB-S2, isolated from black soil in Northeast China, Environmental Pollution, Volume 263, Part B, 114612, https://doi.org/10.1016/j.envpol.2020.114612.155. Sun, L. N., Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M., Sheng, X. F.,2010. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology. 101,501–509. doi: https://doi.org/10.1016/j.biortech.2009.08.011.156. Sun, R., Wang, L., Huang, R., Huang, F., Gan, D., Wang, J., Guan, R., Han, W., Qu, J., Yan, L., Zhang, Y. 2020. Cadmium resistance mechanisms of a functional strain Enterobacter sp. DNB-S2, isolated from black soil in Northeast China. Environmenttal Pollution. 263, 114612. doi: https://doi.org/10.1016/j.envpol.2020.114612.157. Sylvia, D., Fuhrmann, J., Hartel, P., Zuberer, D. 2005. Principles and aplications of soil microbiology. Prentice Hall. New Jersey, USA. 53. 218 – 256.158. Tchakounté, G., Berger, B., Patz, S., Fankem, H., Ruppel, S. 2018. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiological Research. 214. 47-59. https://doi.org/10.1016/j.micres.2018.05.008.159. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673.160. Tossapol, L., Sooksawat, N., Sumarnrote, A., Awutpet, T., Kruatrache, M., Pokethitiyook, P., Auesukaree, C. 2015. Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicology and Environmental Safety, 122, 322 – 330, https://doi.org/10.1016/j.ecoenv.2015.08.013.161. Uribe, A., Méndez H. y Mantilla J. (2009). Efecto de niveles de nitrógeno, fósforo y potasio sobre la producción de cacao en suelo del Departamento de Santander. Revista Suelos Ecuatoriales, Nro. 28:31-36.162. US Department of Health and Human Services. 2008. Draft Toxicological Profile for Cadmium. Atlanta, Georgia. Agency for Toxic Substances and Disease Registry Division of Toxicology and Human Health Sciences (proposed) Environmental Toxicology Branch (proposed).163. USEPA soil screening Levels. 2013. Versión 1. http://www.gahp.net/new/wp-content/uploads/2013/12/GUIDANCE-ON-SCREENING-LEVELS-Version-1-Dec-2013.pdf.164. Vanderschueren, R., Argüello, D., Blommaert, H., Montalvo, D., Barraza, F., Maurice, L., Schreck, E., Schulin, R., Lewis, C., Vazquez, J., Umaharan, P., Chavez, E., Sarret, G., Smolders, E. 2021. Mitigating the level of cadmium in cacao products: Reviewing the transfer of cadmium from soil to chocolate bar. Science of The Total Environment. 781, 146779. https://doi.org/10.1016/j.scitotenv.2021.146779.165. Valls, M., Gonzalez-Duarte, R., Atrian, S., De Lorenzo, V., 1998. Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs. Biochimie 80, 855–861. https://doi.org/10.1016/S0300-9084(00)88880-X.166. Veglio, F. and Beolchini, F., 1997. Removal of metals by biosorption: a review. Hydrometallurgy. 44, 3, 301 – 316, https://doi.org/10.1016/S0304-386X(96)00059-X.167. Venkatachalam, S., Vatharamattathil, M., Vadakke, S., Dinesh, L., Mahesh, M., Kottekkatu, K. Bacterial diversity and community structure along the glacier foreland of Midtre Lovénbreen, Svalbard, Arctic. 2021. Ecological Indicators. 126. 107704. https://doi.org/10.1016/j.ecolind.2021.107704.168. Verbruggen, N., Hermans, C., Schat, H., 2009. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 12, 364–372. DOI: 10.1016/j.pbi.2009.05.001.169. Vijayaraghavan, K., and Yun, Y.S., 2008. Bacterial biosorbents and biosorption, Biotechnology Advances, 26, 3, 266–291, https://doi.org/10.1016/j.biotechadv.2008.02.002.170. Wang, G., Yang, D., Wang, W., Ji, J., Jin, C., Guan, C. 2021. Endophytic bacteria associated with the enhanced cadmium resistance in NHX1- overexpressing tobacco plants. Environmental and Experimental Botany. 188. 104524. https://doi.org/10.1016/j.envexpbot.2021.104524.171. Wang, X., Ya, T., Zhang, M., Liu, L., Hou, P., Hou, P., Lu, S. 2019. Cadmium (II) alters the microbial community structure and molecular ecological network in activated sludge system. Environmental Pollution. 255. 113225. https://doi.org/10.1016/j.envpol.2019.113225 0269-7491.172. Wang, M., Ahrné, M., Antonsson, M., Molin, G. 2004. T-RFLP combined with principal component analysis and 16S rRNA gene sequencing: an effective strategy for comparison of fecal microbiota in infants of different ages. Journal of microbiological methods, 59, 1, 53 – 69. https://doi.org/10.1016/j.mimet.2004.06.002.173. Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied Environment Microbiology. 73. 5261. doi: 10.1128/AEM.00062-07.174. Wang, T., Sun, H., Jiang, C., Mao, H., Zhang, Y. 2014. Immobilization of Cd in soil and changes of soil microbial community by bioaugmentation of UV-mutated Bacillus subtilis 38 assisted by biostimulation. European Journal of Soil Biology, 65, 62 – 69. http://dx.doi.org/10.1016/j.ejsobi.2014.10.001.175. Wang, Q., Li, Q., Lin, Y., Hou, Y., Deng, Z., Liu, W., Wang, H., Xia, Z. 2020. Biochemical and genetic basis of cadmium biosorption by Enterobacter ludwigii LY6, isolated from industrial contaminated soil. Environmental pollution 264, 114637, https://doi.org/10.1016/j.envpol.2020.114637.176. Wang, Y., Shi, J., Wang, H., Lin, Q., Chen, X., Chen, Y. 2007. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology and Enviromental Safety, 67, 1, 75-81. doi: https://doi.org/10.1016/j.ecoenv.2006.03.007.177. Wang, J., Yao, J., Zening, Y., Guan, J., Chenyu, L., Lixin, L., 2017. Analysis of Bacterial Community Structure and Diversity in Different Restoration Methods in Qixing River Wetland. Adv. J. Toxicol. Curr. Res. 201. 1. 2, 049-055.178. Welch, R., 2006. The genus Escherichia. Procariotes 6: 60-71 Chapter 3.3.3. DOI: 10.1007/0-387-30746-x_3.179. Worden, C.R., Kovac, W.K., Dorn, L.A. and Sandrin, T.R. 2009. Environmental pH affects transcriptional responses to cadmium toxicity in Escherichia coli K-12 (MG1655). FEMS Microbiol Letters, 293, 1, 58–64. https://doi.org/10.1111/j.1574-6968.2009.01508.x.180. Woldetsadik, D., Drechsel, P., Keraita, B, et al. 2016. Effects of biochar and alkaline amendments on cadmium immobilization, selected nutrient and cadmium concentrations of lettuce (lactuca sativa) in two contrasting soils. SpringerPlus. 5, 397, https://doi.org/10.1186/s40064-016-2019-6.181. Wong, C and Cobbett, C., 2009. HMA P-type ATPases are the major mechanism for root to shoot Cd translocation in Arabidopsis thaliana. New Phytologist 181, 71-78, https://doi.org/10.1111/j.1469-8137.2008.02638.x.182. World Health Organization, 2010. Exposure to cadmium: a major public health concern. Preventing Disease Through Healthy Environments.183. Wu, W.C., Dong, C.X., Wu, J.H., Liu, X.W., Wu, Y.X., Chen, X.B., et al., 2017. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region. Sci. Total Environ. 601, 57–65.184. Xiaoqi, L., Delong, M., Juan L., Huaqun Y., Hongwei, L., Xueduan, L., Cheng, C., Yunhua, X., Zhenghua, L., Mingli, Y. 2017. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination, Environmental Pollution, Volume 231, Part 1, Pages 908-917, https://doi.org/10.1016/j.envpol.2017.08.057.185. Xiaoxi Zeng, Hong Xu, Jijie Lu, Qimin Chen, Wen Li, Ling Wu, Jianxin Tang & Liang Ma. The immobilization of soil Cadmium by the combined amendment of bacteria and Hydroxyapatite. Scientific reports (2020) 10:2189 https://doi.org/10.1038/s41598-020-58259-1.186. Xie, Y., Li, H., Wang, X., Son, Ng., Lu, Y., Jing, K. 2014. Kinetic simulating of Cr (VI) removal by the waste Chlorella vulgaris biomass. Journal of the Taiwan institute of chemical engineers. 45, 4, 1773 – 1782, https://doi.org/10.1016/j.jtice.2014.02.016.187. Xu, C., He, S., Liu, Y., Zhang, W., Lu, D. 2017. Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU, Chemosphere, Volume 173, Pages 622-629, https://doi.org/10.1016/j.chemosphere.2017.01.005.188. Xue, W., Peng, Z., Huang, D., Zeng, G., Wan, J., Xu, R., Cheng, M., Zhang, C., Jiang, D., Hu, Z. 2018. Nanoremediation of cadmium contaminated river sediments: Microbial response and organic carbón changes. Journal of hazardous materials, 290 – 299. doi: https://doi.org/10.1016/j.jhazmat.2018.07.062.189. Yadav, S. K., 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76 (2), 167–179, doi:10.1016/j.sajb.2009.10.007.190. Yang, Z., Zijan, W., Liao, Y., Liao, Q., Yang, W., Chai, L. 2017. Combination of microbial oxidation and biogenic schwertmannite immobilization: a potential remediation for highly arsenic-contaminated soil. Chemosphere. 181, 1–8. doi: https://doi.org/10.1016/j.chemosphere.2017.04.041.191. Yang, Y., Chen, W., Wang, M., Peng, C., 2016. Regional accumulation characteristics of cadmium in vegetables: influencing factors, transfer model and indication of soil threshold content. Environ. Pollut. 219, 1036e1043. doi: http://dx.doi.org/ 10.1016/j.envpol.2016.09.003.192. Yim, O., & Ramdeen, K. (2015). Hierarchical Cluster Analysis: Comparison of Three Linkage Measures and Application to Psychological Data. The Quantitative Methods for Psychology. 11, 1, 8–21. https://doi.org/10.20982/tqmp.11.1.p008.193. Yin, P., Liu, X., Liao, J and Hu, X. 2019. Effects od cadmium stress on Microbial diversity in soil potted with Sasa Argenteastriatus. IOP Conference Series Earth and Environmental Science. 300: 052051. doi:10.1088/1755-1315/300/5/052051.194. Yin, K., Wang, Q., Lv, M., Chen, L. 2019. Review. Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal. 360, 1553-1563. https://doi.org/10.1016/j.cej.2018.10.226.195. Yun, B., Malik, A., Kim, S. 2020. Genome based characterization of Kitasatospora sp. MMS16-BH015, a multiple heavy metal resistant soil actinobacterium with high antimicrobial potential. Gene. 733. 144379. https://doi.org/10.1016/j.gene.2020.144379.196. Zao, M., Zhang, C., Zeng, G., Huang, D., Xu, P., Cheng, M. 2015. Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation. Chemosphere 138, 560 – 567, https://doi.org/10.1016/j.chemosphere.2015.07.019.197. Zhang, Y., Cong, J., Lu, H., Li, G., Qu, Y., Su, X., Zhou, J., Li, D. 2014. Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences. 26. 1717 – 1724. http://dx.doi.org/10.1016/j.jes.2014.06.012 1001-0742.198. Zhang, J., Li, Q., Zeng, Y., Zhang, J., Lu, G., Dang, Z., Guo, Ch. 2019. Bioaccumulation and distribution of cadmium by Burkholderia cepacia GYP1 under oligotrophic condition and mechanism analysis at proteome level. Ecotoxicology and environmental safety 176, 162-169. https://doi.org/10.1016/j.ecoenv.2019.03.091.199. Zhou, J., Li, P., Meng, D., Gu, Y., Zheng, Z., Yin, H., Zhou, Q., Li, J. 2020. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under contamined environment. Environmental pollution, 260, 113990. https://doi.org/10.1016/j.envpol.2020.113990.200. Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, E., Tzannetaki, L., Kyriakides, M., 2007. Comparative study of Cd (II) and Cr (VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in a single and binary mixtures. Bioresource Tecnhnology 98, 2859 – 2865. https://doi.org/10.1016/j.biortech.2006.09.043.201. Zoropogui, A., Gambarelli, S., Covès, J., 2008. CzcE from Cupriavidus metallidurans CH34 is a copper-binding protein. Biochem. Biophys. Res. Commun. 365(4), 735–739. https://doi.org/10.1016/j.bbrc.2007.11.030.202. Zug, M., Yupanqui, H., Meyberg, F., Cierjacks, J., Cierjacks, A. 2019. Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation. Water Air Soil Pollut, 230: 72 https://doi.org/10.1007/s11270-019-4109-x.Compañía Nacional De ChocolatesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80355/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINAL74184396.2021VF.pdf74184396.2021VF.pdfTesis de Doctorado en Biotecnologíaapplication/pdf14286396https://repositorio.unal.edu.co/bitstream/unal/80355/4/74184396.2021VF.pdfdc3463d35ac9f8c22b5451a426571983MD54THUMBNAIL74184396.2021VF.pdf.jpg74184396.2021VF.pdf.jpgGenerated Thumbnailimage/jpeg4238https://repositorio.unal.edu.co/bitstream/unal/80355/5/74184396.2021VF.pdf.jpgfe66c50602a4a599fde3a34de255b940MD55unal/80355oai:repositorio.unal.edu.co:unal/803552024-07-30 23:11:11.88Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==