Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning
ilustraciones, diagramas
- Autores:
-
García Millán, Diana Rocío
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86187
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Ozono troposférico
Machine learning
Calidad del aire
Predicción
Precursores
Tropospheric ozone
Machine Learning
Convolutional
Air quality
Contaminación atmosférica
aprendizaje automático
Modelo de simulación
Air pollution
machine learning
Simulation models
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_049f01dbb708c04d16c95e65df6181e4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86187 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning |
dc.title.translated.eng.fl_str_mv |
Tropospheric ozone prediction in Bogotá: a machine learning approach |
title |
Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning |
spellingShingle |
Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Ozono troposférico Machine learning Calidad del aire Predicción Precursores Tropospheric ozone Machine Learning Convolutional Air quality Contaminación atmosférica aprendizaje automático Modelo de simulación Air pollution machine learning Simulation models |
title_short |
Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning |
title_full |
Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning |
title_fullStr |
Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning |
title_full_unstemmed |
Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning |
title_sort |
Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning |
dc.creator.fl_str_mv |
García Millán, Diana Rocío |
dc.contributor.advisor.spa.fl_str_mv |
Rojas Roa, Néstor Yesid Casallas Garcia, Alejandro |
dc.contributor.author.spa.fl_str_mv |
García Millán, Diana Rocío |
dc.contributor.researchgroup.spa.fl_str_mv |
Calidad del Aire |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Ozono troposférico Machine learning Calidad del aire Predicción Precursores Tropospheric ozone Machine Learning Convolutional Air quality Contaminación atmosférica aprendizaje automático Modelo de simulación Air pollution machine learning Simulation models |
dc.subject.proposal.spa.fl_str_mv |
Ozono troposférico Machine learning Calidad del aire Predicción Precursores |
dc.subject.proposal.eng.fl_str_mv |
Tropospheric ozone Machine Learning Convolutional Air quality |
dc.subject.unesco.spa.fl_str_mv |
Contaminación atmosférica aprendizaje automático Modelo de simulación |
dc.subject.unesco.eng.fl_str_mv |
Air pollution machine learning Simulation models |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T18:40:40Z |
dc.date.available.none.fl_str_mv |
2024-05-30T18:40:40Z |
dc.date.issued.none.fl_str_mv |
2024-05 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86187 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86187 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Jeffrey Dean, D.; Devin, M.; Ghemawat, S.; et al. (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv. Doi: https://doi.org/10.48550/arXiv.1603.04467 Abdul-Wahab S, Al-Alawi S. (2002) Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ Model Softw 17:219–228. https://doi.org/10.1016/S1364-8152(01)00077-9 Acevedo F. (2020) Influencia de la calidad del aire en la mortalidad y la morbilidad por enfermedades respiratorias en Colombia. http://hdl.handle.net/11634/33256 Adame, J., Gutiérrez-Álvarez, I., Cristofanelli, P., Notario, A., Bogeat, J., López, A., . . . Yela, M. (2022). Surface ozone trends over a 21-year period at El Arenosillo observatory (Southwestern Europe). Atmospheric Research, Vol. 269. doi: https://doi.org/10.1016/j.atmosres.2022.106048 Agatonovic-Kustrin, S. & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis. doi: https://doi.org/10.1016/S0731-7085(99)00272-1 Agencia Europea de Medio Ambiente. (2020). Contaminación atmosférica. Obtenido de https://www.eea.europa.eu/es/themes/air/intro Albawi, S., A. Mohammed, T. & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET). doi: 10.1109/ICEngTechnol.2017.8308186 Alcaldía Mayor de Bogotá D. C. (2021). Plan de Ordenamiento Territorial Bogotá Reverdece 2022-2035. Proyecto de Acuerdo. https://bogota.gov.co/mi-ciudad/pot-bogota-reverdece-2022-2035/articulado-del-pot-bogota-reverdece-2022-2035 Ali, J., Khan, R., Ahmad, N. & Maqsood, I. (2012). Random Forests and Decision Trees. IJCSI International Journal of Computer Science Issues. ISSN (Online): 1694-0814 AlOmar, M., Hameed, M. & AlSaadi, M. (2020). Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2020.06.024. Alpaydin, E. (2016). Machine Learning: The New AI. Cambridge, MA, USA. Obtenido de https://search-ebscohost-com.ezproxy.unal.edu.co/login.aspx?direct=true&db=nlebk&AN=1369420&lang=es&site=eds-live Baena-Salazar, D., Jimenez, J., Zapata, C., & Ramirez-Cardona, A. (2019). Red neuronal artificial aplicado para el pronóstico de eventos críticos de PM2.5 en el Valle de Aburrá. Dyna rev.fac.nac.minas, ISSN 0012-7353. doi: https://doi.org/10.15446/dyna.v86n209.63228 Ballesteros-González, K., Sullivan, A., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.139755 Banja, M., Papanastasiou, D., Poupkou, A., & Melas, D. (2012). Development of a short-term ozone prediction tool in Tirana area based on meteorological variables. doi:10.5094/APR.2012.002 Baquero, J. (2023). Análisis de la variabilidad estacional, interanual y tendencia del ozono (O₃) y sus precursores, así como la dinámica oxidativa de la atmósfera en Bogotá entre 2010 y 2020. Universidad Nacional de Colombia. Repositorio: https://repositorio.unal.edu.co/handle/unal/84018 Barten, j., Ganzeveld, L., Visser, A., Jiménez, R., & Krol, C. (2020). Evaluation of nitrogen oxides (NOEvaluation of nitrogen oxides (NOx) sources and sinks and ozone production in Colombia and surrounding areas. Atmos. Chem. Phys. doi: https://doi.org/10.5194/acp-20-9441-2020 Bhattacharya, S., & Shahnawaz, S. (2021). Using Machine Learning to Predict Air Quality Index in New Delhi. doi:arXiv:2112.05753 Bigi, A. & Ghermandi, G. (2016). Trends and variability of atmospheric PM2.5 and PM₁₀ –2.5 concentration in the Po Valley, Italy. Atmos. Chem. Phys. doi: 10.5194/acp-16-15777-2016 Bolaño-Diaz, S., Camargo-Caicedo, Y., Tovar-Bernal, F. & Bolaño-Ortiz, T.R. (2022). The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia. Fire. doi:. https://doi.org/10.3390/fire5060191 Brockwell, P.J. & Davis, R.A. (2002). State-Space Models. In: (eds) Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer. doi: https://doi.org/10.1007/0-387-21657-X_8 Butković, V., Cvitaš, T., & Klasinc, L. (1990). Photochemical ozone in the mediterranean. Science of The Total Environment, Vol. 99. doi.org/10.1016/0048-9697(90)90219-K Butt, E. W., Turnock, S. T., Rigby, R., Reddington, C. L., Yoshioka, M., Johnson, J. S., et al. (2017). Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environmental Research Letters, 12(10), 104017. https://doi.org/10.1088/1748-9326/aa87be Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., et al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 115(38), 9592–9597. https://doi.org/10.1073/pnas.1803222115 Burnett, R. T., Pope, C. A., III, Ezzati, M., Olives, C., Lim, S. S., Mehta, S., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397–403. https://doi.org/10.1289/ehp.1307049 Camacho N (2021) Efectos de la temperatura y los contaminantes atmosféricos sobre la salud pública en Bogotá, Colombia. https://www.researchgate.net/profile/Natalia-Camacho-Castaneda/publication/354611482_Efectos_de_la_temperatura_y_los_contaminantes_atmosfericos_sobre_la_salud_publica_en_Bogota_Colombia/links/61424ce328667828a8981607/Efectos-de-la-temperatura-y-los-contaminantes-atmosfericos-sobre-la-salud-publica-en-Bogota-Colombia.pdf Cañada Torrecilla, M. R. (2021). El riesgo de contaminación por ozono en dos ciudades españolas (Madrid y Sevilla): Un estudio realizado con técnicas de modelado espacial y SIG. Geographicalia, 73, 195-212. Casallas, A., Cabrera, A., Guevara-Luna, M-A., Tompkins, A., González, Y., Aranda, J., Belalcazar, L., Mogollon-Sotelo, C., Celis, N., Lopez-Barrera, E., Peña-Rincon, C., Ferro, C. (2024). Air pollution analysis in Northwestern South America: A new Lagrangian framework. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2023.167350 Casallas, A., Castillo-Camacho, M., Sanchez, E., González, Y., Celis, N., Mendez-Espinosa, J., Belalcazar, L. & Ferro, C. (2023). Surface, Satellite Ozone Changes in Northern South America During Low Anthropogenic Emission Conditions: A Machine Learning Approach. SSRN. doi: http://dx.doi.org/10.2139/ssrn.4016140 Casallas, A., Córdoba, T., Sánchez-Cárdenas, L., Guevara-Luna, M., & Belalcázar, L. (2022a). Understanding the atmospheric characteristics of high polluted. EIA. Esc. Ing. Antioq. doi: https://doi.org/10.13140/RG.2.2.22694.65606 Casallas, A., Ferro, C., Celis, N., Guevara-Luna, M., Mogollón-Sotelo, C., Guevara-Luna, F., & Merchán, M. (2021). Long short-term memory artificial neural network approach to forecast meteorology and PM2.5 local variables in Bogotá, Colombia. Model. Earth Syst. Environ. doi: https://doi.org/10.1007/s40808-021-01274-6 Casallas, A., Ferro, C., Celis, N., Mogollon-Sotelo, C., & Belalcazar, L. (2022b). Design of a 3D convolutional neural network model to forecast PM2.5 and O₃ concentrations in Colombia. IEEE Xplore. doi:10.1109/CASAP54985.2021.9703414 Casallas, S., Celis, N., Ferro, C., López, E., Peña, C., Corredor, J., & Ballen, M. (2020). Validation of PM₁₀ & PM2.5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM. Environmental Science and Pollution Research. doi:10.1007/s11356-019-06997-9 Casas, N. (2017). Deep Deterministic Policy Gradient for Urban Traffic Light Control. Cornell University. arXiv:1703.09035. https://doi.org/10.48550/arXiv.1703.09035 Castillo-Camacho, M.P., Tunarrosa-Grisales, I.C., Chacon-Rivera, L.M., Guevara-Luna, M. A. & Belalcazar-Cerón, L.C. (2020). Personal Exposure to PM2.5 in the Massive Transport System of Bogotá and Medellín, Colombia. Asian J. Atmos. Environ. https://doi.org/10.5572/ajae.2020.14.3.210 Castro, M., & Pires, J. (2019). Decision support tool to improve the spatial distribution of air quality monitoring sites. Atmospheric Pollution Research, Vol. 10. doi: https://doi.org/10.1016/j.apr.2018.12.011 Celis, N., Casallas, A., López, E., Martínez, H., Peña, C., Arenas, R., & Ferro, C. (2022). Design of an early alert system for PM2.5 through a stochastic method and machine learning models. Environmental Science & Policy, vol. 127. doi: https://doi.org/10.1016/j.envsci.2021.10.030 Chaparro, L., Bustos, J., Barrera, E., & Casallas, A. (2022). Evaluation of Recurring Neuronal Network For Prediction of Risk For Sulfur Oxides (SOx) in The City Of Bogotá. IEEE Xplore. doi:10.1109/CASAP54985.2021.9703418 Chai, T., Kim, H., Lee, P., Tong, D., Pan, L., Tang, Y., Huang, J., McQueen, J., Tsidulko, M. & Stajner, I. (2013). Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO₂ measurements. Geoscientific Model Development. doi:10.5194/gmd-6-1831-2013 Chen, Y., Chen, X., Xu, A., Sun, Q. & Peng, X. (2022). A hybrid CNN-Transformer model for ozone concentration prediction. Air Qual Atmos Health. doi: https://doi-org.ezproxy.unal.edu.co/10.1007/s11869-022-01197-w Cheng, M., Fang, F., Navon, I., Zheng, J., Zhu, J. & Pain, C.(2023). Assessing uncertainty and heterogeneity in machine learning-based spatiotemporal ozone prediction in Beijing-Tianjin- Hebei region in China. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2023.163146. Chiarvetto, L., Rey, F., & Brignole, N. (2008). Aplicación de Redes neuronales artificiales para la predicción de la calidad de aire. Mecánica Computaciona, vol. XXVII, pp. 3607-3625. Obtenido de https://cimec.org.ar/ojs/index.php/mc/article/viewFile/1654/1618 Cleveland, R. B., Cleveland, W. S., McRae, J., and Terpenning, I. (1990). STL: a seasonal-trend decomposition procedure based on Loess. J. Off. Stat. https://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf Chowdhury, P. H., He, Q., Carmieli, R., Li, C., Rudich, Y., & Pardo, M. (2019). Connecting the oxidative potential of secondary organic aerosols with reactive oxygen species in exposed lung cells. Environmental Science & Technology, 53(23), 13949–13958. https://doi.org/10.1021/acs.est.9b04449 Chowdhury, S., Pozzer, A., Dey, S., Klingmueller, K., & Lelieveld, J. (2020). Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015. Environmental Research Letters, 15(7), 074010. https://doi.org/10.1088/1748-9326/ab8334 Clifton, J. & Laber, E. (2020). Q-Learning: Theory and Applications. Annual Review of Statistics and Its Application. https://doi.org/10.1146/annurev-statistics-031219-041220 Cooper, O., Parrish, D., Stohl, A., Trainer, M., Nédélec, P., Thouret, V., . . . Avery, M. (2009). Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature. doi:doi.org/10.1038/nature08708 Chollet, F. (2015). Keras. Disponible online: https://keras.io Curto, J. D., & Pinto, J. C. (2011). The corrected VIF (CVIF). Journal of Applied Statistics. http://explore.bl.uk/primo_library/libweb/action/display.do? Deroubaix, A., Brasseur, G., Gaubert, B., Labuhn, I., Menut, L., Siour, G. & Tuccella, P. (2021). Response of surface ozone concentration to emission reduction and meteorology during the COVID-19 lockdown in Europe. Royal Meteorological Society. https://doi.org/10.1002/met.1990 Dunner, A., Iglesias Álamos, V., & Ruiz Rudolph, P. (2018). El ozono troposférico como modificador del efecto de material particulado 2,5 sobre muertes diarias cardiovasculares en adultos mayores. Santiago, 2009-2013. https://www.researchgate.net/publication/327060086_El_ozono_troposferico_como_modificador_del_efecto_de_material_particulado_25_sobre_muertes_diarias_cardiovasculares_en_adultos_mayores_Santiago_2009-2013 EPA. (2007). Un resumen de la Ley de Aire Limpio. Publicación N.° EPA-456/K-07-001. EPA. (2021). EPA Partners with Tribes to Deploy Air Sensors in Communities. Obtenido de https://www.epa.gov/sciencematters/epa-partners-tribes-deploy-air-sensors-communities European Environment Agency. (2008). Medio Ambiente Europeo - La Evaluación Dobris. European Environment Agency. (2016). Air quality in Europe 2016 report. Obtenido de http://www.eea.europa.eu/publications/air-quality-in-europe-2016 Fernández, S., Sánchez, J. & Córdoba, A. (2002). Estadística descriptiva. ESIC Editorial. ISBN: 84-7356-306-9 Fiore, A., Naik, V. & Leibensperger, E. (2015). Air Quality and Climate Connections. Journal of the Air & Waste Management Association. doi: 10.1080/10962247.2015.104052 Franceschi, F., Cobo, M., & Figueredo, M. (2018). Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2018.02.006 Fu, TM., Zheng, Y., Paulot, F., Mau, J. & Yantosca, R. (2015). Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nature Clim Change. doi: https://doi-org.ezproxy.unal.edu.co/10.1038/nclimate2567 Ghahremanloo, M., Lops, Y., Choi, Y., & Yeganeh, B. (2021). Deep Learning Estimation of Daily Ground-Level NO₂ Concentrations From Remote Sensing Data. J. Geophys. Res Atmos. doi: https://doi-org.ezproxy.unal.edu.co/10.1029/2021JD034925 Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biol. Cybern. doi: https://doi.org/10.1007/BF00342633 Ghahremanloo M, Lops Y, Choi Y, Jung J, Mousevinezhad S & Hammond D (2022) A comprehensive study of the COVID-19 impact on PM2.5 levels over the contiguous United States: a deep learning approach. Atmos Environ 118944. https://doi.org/10.1016/j.atmosenv.2022.118944 Gonzalez, C.M., Ynoue, R.Y., Vara-Vela, A., Rojas, N.Y. & Aristizabal, B.H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2018.03.003 Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. https://www.deeplearningbook.org/ Guzmán, D., Ruíz, J.F. & Cadena, M. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través análisis de componentes principales (ACP). IDEAM. Bogotá, Colombia. http://www.ideam.gov.co/documents/21021/21141/Regionalizacion+de+la+Precipitacion+Media+Mensual/1239c8b3-299d-4099-bf52-55a414557119 Hahad, O., Frenis, K., Kuntic, M., Daiber, A., & Münzel, T. (2021). Accelerated aging and age-related diseases (CVD and neurological) due to air pollution and traffic noise exposure. International Journal of Molecular Sciences, 22(5), 2419. https://doi.org/10.3390/ijms22052419 Henao, J., Rendón, A., Hernández, K., Giraldo-Ramirez, P., Robledo, V., Posada, J., . . . Mejia, J. (2021). Differential Effects of the COVID-19 Lockdown and Regional Fire on the Air Quality of Medellín, Colombia. Atmosphere. doi: https://doi.org/10.3390/atmos12091137 Hernandez-Deckers D (2021) Features of atmospheric deep convection in northwestern South America obtained from infrared satellite data. Quart J Royal Meteor Soc. https://doi.org/10.1002/qj.4208 Herrera, S. (2017). Valor económico de la calidad del aire en la localidad de Kennedy medido desde la salud de los habitantes. Universidad de los Andes. https://repositorio.uniandes.edu.co/entities/publication/de137266-925e-4b81-a76c-af190ae9369b Huang, C.-J., & Kou, P.-H. (2018). A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors . doi: https://doi.org/10.3390/s18072220 Inter Agency for Research on Cance. Outdoor air pollution. IARC. (2016). Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. Vol. 109). Lyon. Ismail, M., Suroto, A., Ibrahim, T., & Abdullah, A. (2011). Tropospheric ozone trend in the Muda Irrigation Area, Kedah. Journal of Physical. Science. doi:web.usm.my/jps/22-2-11/22.2.7.pdf Jiménez, P. (2019). Estudio de la contaminación. Elearning, S.L., Jin, Z., Yan, D., Zhang, Z., Li, M., Wang, T., Huang, X., Xie, M., Li, S., Zhuang, B. (2023). Effects of Elevated Ozone Exposure on Regional Meteorology and Air Quality in China Through Ozone-Vegetation Coupling. JGR Atmosfpheres. doi: https://doi-org.ezproxy.unal.edu.co/10.1029/2022JD038119 Kapadia, D. & Jariwala, N. (2022). Prediction of tropospheric ozone using artificial neural network (ANN) and feature selection techniques. Model. Earth Syst. Environ. doi: https://doi-org.ezproxy.unal.edu.co/10.1007/s40808-021-01220-6 Ke, Li., Jacob, D., Liao, H., Shen, L., Zhang, Q. & Bates, K. (2018). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. PNAS. https://doi.org/10.1073/pnas.1812168116 Khalil, A., Barhoom, A., Abu-Nasser, B., Musleh, M. & Abu-Naser, S. (2019). Energy Efficiency Prediction using Artificial Neural Network. International Journal of Academic Pedagogical Research. https://philpapers.org/rec/KHAEEP Kingman, D.P. & Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv arXiv:1412.6980. doi: https://doi.org/10.48550/arXiv.1412.6980 Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M. & Inmanf, D.(2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing. https://doi.org/10.1016/j.ymssp.2020.107398 Kodinariya, T. & Makwana, P. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal of Advance Research in Computer Science and Management Studies. ISSN: 2321-7782 Kumar, J., Goomer, R. & Singh, A. (2018). Long Short Term Memory Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model For Cloud Datacenters. Procedia Computer Science. https://doi.org/10.1016/j.procs.2017.12.087 Kumar, A., Jiménez, R., Belalcázar, L. C., & Rojas, N. Y. (2016). Application of WRF-Chem Model to Simulate PM₁₀ Concentration over Bogota. Aerosol and Air Quality Research. doi:10.4209/aaqr.2015.05.0318 Lee, H. & Park, R. (2022). Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions. Environmental Pollution. doi: https://doi.org/10.1016/j.envpol.2022.119645 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371. https://doi.org/10.1038/nature15371 Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovascular Research, 116(11), 1910–1917. https://doi.org/10.1093/cvr/cvaa025 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., ... García, S. O. (2019). Contaminación del aire ambiente por partículas y mortalidad diaria en 652 ciudades. DOI: 10.1056/NEJMoa1817364 Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., & Wagner, T. (2016). NOX lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics, 16(8), 5283–5298. https://doi.org/10.5194/acp-16-5283-2016 Liu, Y., Wang, T., Stavrakou, T., Elguindi, N., Doumbia, T., Granier, C., Bouarar, I., Gaubert, B. & Brasseur, G. (2021). Diverse response of surface ozone to COVID-19 lockdown in China. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2021.147739. MADS. (2010). Protocolo para el monitoreo y seguimiento de la calidad del aire. Mendez-Espinosa, J. F., Belalcazar, L. C., & Betancourt, R. M. (2019). Regional Air Quality Impact of Northern South America Biomass Burning Emissions. Atmospheric Environment. doi:10.1016/j.atmosenv.2019.01.042 Mendez-Espinosa, J. F., Rojas, N., Vargas, J., Patchón, J., Belalcazar, L. & Ramírez, O. (2020). Air quality variations in Northern South America during the COVID-19 lockdown. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.141621 Mogollón-Sotelo, C., Casallas, A., Vidal, S., Celis, N., Ferro, C., & Belalcazar, L. (2021). A support vector machine model to forecast ground-level PM2.5 in a highly populated city with a complex terrain. Air Qual Atmos Health, vol. 14, pp. 399-409. doi:https://doi.org/10.1007/s11869-020-00945-0 Moghani, M. & Archer, C. (2020). The impact of emissions and climate change on future ozone concentrations in the USA. Air Quality, Atmosphere and Health. doi: https://doi.org/10.1007/s11869-020-00900-z Monks, P., Archibald, A., Colette, A., Cooper, O., Coyle, M., Derwent, R., . . . Williams, M. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys.(15, 8889–8973). doi:10.5194/acp-15-8889-2015 Morales O (2023) Evaluación de la calidad de aire en Bogotá y su relación con la incidencia en el número de hospitalizaciones por enfermedades respiratorias. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://repositorio.unbosque.edu.co/bitstream/handle/20.500.12495/11447/Trabajo%20de%20grado.pdf?sequence=1&isAllowed=y Murray, C. J. L., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., et al. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2 Ndiaye, E., Le, T., Fercoq, O., Salmon, J., & Takeuchi, I. (2019). Safe Grid Search with Optimal Complexity. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Proceedings of the 36th International Conference on Machine Learning. https://proceedings.mlr.press/v97/ndiaye19a.html Noble, W. (2006). What is a support vector machine?. Nat Biotechnol. doi: https://doi.org/10.1038/nbt1206-1565 O’Shea, K. & Nash, R. (2015). An Introduction to Convolutional Neural Networks. Cornell University. https://doi.org/10.48550/arXiv.1511.08458 arXiv:1511.08458 Parrish, D., Millet, D., & Goldstein, A. (2009). Increasing ozone in marine boundary layer inflow at the west coasts. Atmospheric Chemistry and Physics. doi: doi.org/10.5194/acp-9-1303-2009 Peters, R., Ee, N., Peters, J., Booth, A., Mudway, I., & Anstey, K. J. (2019). Air pollution and dementia: A systematic review. Journal of Alzheimer's Disease, 70(s1), 145–163. https://doi.org/10.3233/JAD-180631 Pires, J., & Martins, F. (2011). Correction methods for statistical models in tropospheric ozone forecasting. Atmospheric Pollution Research. doi:10.1016/j.atmosenv.2011.02.011 Prechelt , L. (1998). Early Stopping - But When? Lecture Notes in Computer Science. doi: https://doi.org/10.1007/3-540-49430-8_3 Pope, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine, 360(4), 376–386. https://doi.org/10.1056/NEJMsa0805646 Pozzer, A., Anenberg, S. C., Dey, S., Haines, A., Lelieveld, J., & Chowdhury, S. (2022). Mortalidad atribuible a la contaminación del aire ambiente: una revisión de las estimaciones mundiales. https://doi.org/10.1029/2022GH000711 Prabhakaran, D., Mandal, S., Krishna, B., Magsumbol, M., Singh, K., Tandon, N., et al. (2020). Exposure to particulate matter is associated with elevated blood pressure and incident hypertension in urban India. Hypertension. https://www.ahajournals.org/doi/full/10.1161 Prechelt, L. (2002). Early Stopping - But When? LNCS, V 1524. doi: 10.1007/3-540-49430-8_3 Ramírez, O., Sánchez de la Campa, A., Amato, F., Moreno, T., Silva, L. & de la Rosa, J. (2019). Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2018.10.214 Río, A (2020). Cambio climático, la penalidad del ozono y la mortalidad asociada en la Ciudad de México. http://hdl.handle.net/11651/4342 Roderick, M., MacGlashan, J. & Tellex, S. (2017). Implementing the Deep Q-Network. Cornell University. arXiv:1711.07478. doi: https://doi.org/10.48550/arXiv.1711.07478 Rojas, N. (2007). Aire y problemas ambientales de Bogotá. Recuperado de: Microsoft Word - Aire y problemas ambientales de Bogotá.doc (bogota.gov.co) Rojas, N., 2004. Revisión de las emisiones de material particulado por la combustion de Diesel y Biodiesel. Revista de Ingeniería. Disponible: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-49932004000200007&lng=en&tlng=es Russo, F., Biancardo , S., Formisano , A., & Dell'Acqua, G. (2018). Predicting percent air voids content in compacted bituminous hot mixture specimens by varying the energy laboratory compaction and the bulk density assessment method. Construction and Building Materials. doi: https://doi.org/10.1016/j.conbuildmat.2017.12.174 Sayeed, A., Choi, Y., Eslami, E., Jung, J., Lops, Y., Khan, A., . . . Choi, M.-H. (2021). A novel CMAQ-CNN hybrid model to forecast hourly surface-ozone concentrations 14 days in advance. Scientific Reports, vol. 806. doi: https://doi.org/10.1016/j.scitotenv.2021.150149 Sayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A., & Jung, J. (2020). Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Networks. doi: doi.org/10.1016/j.neunet.2019.09.033 Sayeed A, Lops Y, Choi Y, Jung J, Salman AK (2021a) Bias correcting and extending the PM forecast by CMAQ up to 7 days using deep convolutional neural networks. Atmos Environ 253:118376. https://doi.org/10.1016/j.atmosenv.2021.118376 Secretaría Distrital de Ambiente. (2023). Informe anual de calidad del aire de Bogotá año 2022. Red de Monitoreo de Calidad del Aire de Bogotá D.C RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe%20anual%202022.pdf Secretaría Distrital de Ambiente, Dirección de Control Ambiental Subdirección de Calidad del Aire, Auditiva y Visual-SCAAV Red de Monitoreo de Calidad del Aire de Bogotá - RMCAB, (2021). Informe anual de calidad del aire en Bogotá 2020. Recuperado de: 120721Informe-Anual-de-Calidad-del-Aire-Ano-2020-v2 (1).pdf Seinfeld, J., & Pandis, S. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (3rd Edition ed., Vol. Chapter 6). Wiley. Obtenido de http://www.ideam.gov.co/web/tiempo-y-clima/ozono-troposferico Shewalkar, A., Nyavanandi, D & Ludwig, S. (2019). Performance Evaluation of Deep Neural Networks Applied to Speech Recognition: RNN, LSTM and GRU. Journal of Artificial Intelligence and Soft Computing Research. https://doi.org/10.2478/jaiscr-2019-0006 Singh, V., Singh, S. & Biswal, A. (2021). Exceedances and trends of particulate matter (PM2.5) in five Indian megacities. Sci. Total Environ. doi: https://doi.org/10.1016/j.scitotenv.2020.141461 Sokhi, R., Singh, V., Querol, X., Finardi, S., Targino, A., Andrade, M., . . . Zavala, M. (2021). A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions,. Environment International. doi: doi.org/10.1016/j.envint.2021.106818 Sundermeyer, M., Schlüter, R. & Ney, H. (2012). LSTM Neural Networks for Language Modeling. In Thirteenth annual conference of the international speech communication association Suthaharan, S. (2015). Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning. Springer Telikani, A., Tahmassebi, A., Banzhaf, W., & Gandomi, A. (2021). Evolutionary Machine Learning: A Survey. ACM Computing Surveys, vol. 54(no. 8). doi: https://doi.org/10.1145/3467477 Turner, M. C., Andersen, Z. J., Baccarelli, A., Diver, W. R., Gapstur, S. M., Pope, C. A., et al. (2020). Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: A Cancer Journal for Clinicians, 70(6), 460–479. https://doi.org/10.3322/caac.21632 Ultsch, A. (1993). Self-Organizing Neural Networks for Visualisation and Classification. In: Opitz, O., Lausen, B., Klar, R. (eds) Information and Classification. Studies in Classification, Data Analysis and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50974-2_31 University Colles London, Universidad de los Andes. (2013). Caracterización de la contaminación atmosférica en Colombia. Reino Unido - Colombia. Obtenido de https://prosperityfund.uniandes.edu.co/site/wp-content/uploads/Caracterizaci%C3%B3n-de-la-contaminaci%C3%B3n-atmosf%C3%A9rica-en-Colombia.pdf Valencia, R., Sanchez, G., & Díaz I. (2016). A general regression neural network for modeling the behavior of PM10 concentration level in Santa Marta, Colombia. ARPN J Eng Appl Sci, ISSN 1819-6608 Von Schneidemesser, E., Monks, P., Allan, J., Bruhwiler, L., Forster, P., Fowler, D., . . . Sutton, M. (2015). Chemistry and the linkages between air quality and climate change. Chem. Rev. doi: https://doi.org/10.1021/acs.chemrev.5b00089 Wang, J., Wang, D., Ge, B., Lin, W., Ji, D., Pan, X., . . . Wang, Z. (2022). Increase in daytime ozone exposure due to nighttime accumulation in a typical city in eastern China during 2014–2020. Atmospheric Pollution Research, Vol. 13. doi: doi.org/10.1016/j.apr.2022.101387 Wang, SC. (2003). Artificial Neural Network. In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science. https://doi.org/10.1007/978-1-4615-0377-4_5 World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://iris.who.int/handle/10665/345329 World Health Organization. (2018). Burden of disease from ambient air pollution for 2016. World Health Organization. Obtenido de https://www.who.int/airpollution/data/AAP_BoD_results_May2018_final.pdf?ua=1 Wong, C. M., Tsang, H., Lai, H. K., Thomas, G. N., Lam, K. B., Chan, K. P., et al. (2016). Cancer mortality risks from long-term exposure to ambient fine particle. Cancer Epidemiology, Biomarkers & Prevention, 25(5), 839–845. https://doi.org/10.1158/1055-9965.EPI-15-0626 Wu, Y., & Feng, J. (2017). Development and Application of Artificial Neural. Network. Wireless Personal Communications. doi:10.1007/s11277-017-5224-x Wu, K., Yang, X., Chen, D., Gu, S., Lu, Y., Jiang, Q., Wang, F., Ou, Y., Qian, Y., Shao, P. & Lu, S. (2020). Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmospheric Research. doi:10.1016/j.atmosres.2019.104656 Yafouz, A., Ahmed, A., Zaini, N., & El-Shafie, A. (2021). Ozone Concentration Forecasting Based on Artificial Intelligence Techniques: A Systematic Review. Water, Air, & Soil Pollution. doi:10.1007/s11270-021-04989-5 Yafouz, A., AlDahoul, N., Birima, A., Ahmed, A., Sherif, M., Sefelnasr, A., . . . Elshafie, A. (2022). Comprehensive comparison of various machine learning algorithms for short-term ozone concentration prediction. Alexandria Engineering Journal, Vol. 61. doi: https://doi.org/10.1016/j.aej.2021.10.021 Yilmaz, A. (2021). Ozone level prediction with Machine Learning Algorithms. Journal of Aeronautics and Space Technologies, vol. 14(no. 2), pp. 177 – 183. Obtenido de https://orcid.org/0000-0003-0038-7519 Zambrano-Monserrate, M., Ruano, M., & Sanchez-Alcalde, L. (2020). Indirect effects of COVID-19 on the environment. Science of the Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.138813 Zheng, S., Schlink, U., Ho, K. F., Singh, R. P., & Pozzer, A. (2021). Distribución espacial de la mortalidad prematura relacionada con PM 2,5 en China. https://doi.org/10.1029/2021GH000532 Zhang, J., Sun, L., Rainham, D., Dummer, T., Wheeler, A., Anastasopolos, A., . . . Johnson, M. (2021). Predicting intraurban airborne PM1.0-trace elements in a port city: Land use regression by ordinary least squares and a machine learning algorithm. Science of the Total Environment, vol. 806. doi: https://doi.org/10.1016/j.scitotenv.2021.150149 Zhang, Z., He, H.-D., Yang, J.-M., Wang, H.-W., Xue, Y., & Peng, Z.-R. (2022). Spatiotemporal evolution of NO₂ diffusion in Beijing in response to COVID-19 lockdown using complex network. Chemosphere. doi: https://doi.org/10.1016/j.chemosphere.2022.133631 Zihao, Z., Zhan, L., & Wang, Y. (2019). Outlier removal based on Chauvenet's criterion and dense disparity refinement using least square support vector machine. Journal of Electronic Imaging. doi:10.1117/1.JEI.28.2.023028 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
viii, 101 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.spa.fl_str_mv |
Bogotá |
dc.coverage.country.spa.fl_str_mv |
Colombia |
dc.coverage.region.spa.fl_str_mv |
Cundinamarca |
dc.coverage.tgn.none.fl_str_mv |
http://vocab.getty.edu/page/tgn/1000838 |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86187/2/Thesis_Msc_Diana_G.pdf https://repositorio.unal.edu.co/bitstream/unal/86187/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86187/4/Thesis_Msc_Diana_G.pdf.jpg |
bitstream.checksum.fl_str_mv |
faaf48db5e6facdd61c5239f03c47a23 eb34b1cf90b7e1103fc9dfd26be24b4a 0cc73f2f9d350d0c93776011c73b1a5f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089396406714368 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rojas Roa, Néstor Yesid827f8ba58948271b39915a46415778ed600Casallas Garcia, Alejandro5b1a2d22be723e19c84a3c27911d9661García Millán, Diana Rocío5a7abb64ac386e5f39f2d8745309b5b0Calidad del Aire2024-05-30T18:40:40Z2024-05-30T18:40:40Z2024-05https://repositorio.unal.edu.co/handle/unal/86187Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl ozono troposférico es una preocupación ambiental que tiene repercusiones tanto en la salud humana como en los ecosistemas, aún más, cuando su producción depende directamente de factores tanto ambientales como antropogénicos. En los últimos años, en Bogotá, el ozono ha tenido una tendencia de aumento en su concentración. Por ello, es imperativo estudiar la razón por la cual este incremento se está presentando, así como realizar avances en modelos que permitan realizar alertas tempranas y reducir el riesgo. La predicción es crucial para concientizar sobre la salud pública y la implementación de estrategias de gestión de la calidad del aire. Se realiza un estudio general del comportamiento y evolución del ozono (O3) en las diferentes zonas de Bogotá. Este proyecto tiene como objetivo diseñar un modelo predictivo de aprendizaje automático (machine learning) de los niveles de O3 en Bogotá utilizando datos de la Red de Monitoreo de Calidad del Aire de Bogotá (RMCAB), incluyendo mediciones de precursores de ozono y variables meteorológicas. Los modelos de aprendizaje automático utilizados fueron redes convolucionales y capas de memoria bireccional a largo plazo (LSTM) de la biblioteca Tensor Flow Keras y el paquete Python Sklearn, para facilitar la categorización de técnicas de inteligencia artificial. Esto da como resultado un modelo que destaca por su capacidad de ofrecer pronósticos altamente precisos al considerar y cuantificar la influencia de los precursores. Los resultados del modelo determinaron una correlación de Spearman mayor a 0.6, la raíz del error cuadrático medio se mantuvo por debajo de 10 µg/m³ en todos los casos y el Índice de Ajuste superó el valor de 0.5 en todos los casos, categorizados como bueno, excelente y bueno respectivamente, lo cual sugiere que el modelo replica con precisión y exactitud el comportamiento y la tendencia del ozono. Se espera que la metodología aplicada sirva como referencia para continuar con la predicción de otros contaminantes atmosféricos de interés y de esta forma dar apoyo a la toma de decisiones que permitan minimizar los impactos ambientales enfocados a la calidad del aire. (Texto tomado de la fuente).Tropospheric ozone is an environmental concern has repercussions on both human health and ecosystems, even more so when its production depends directly on both environmental and anthropogenic factors. In recent years, in Bogotá, ozone has had a trend of increasing concentration. Therefore, it is imperative to study the reason why this increase is occurring, as well as make advances in models that allow early warnings and risk reduction. The prediction is crucial for public health awareness and implementation of air quality management strategies. A general study of the behavior and evolution of ozone (O3) in the different areas of Bogotá is carried out. This project aims to create a predictive machine learning model for ozone levels in Bogotá using data from the air quality monitoring network, including measurements of O3 precursors and meteorological variables. Machine learning models used were Convolutional Networks and Birectional Long Short-Term Memory (LSTM) layers from the Tensor Flow Keras library, and the Python package Sklearn, to facilitate the categorization of artificial intelligence techniques. This results in a model that stands out for its ability to offer highly accurate forecasts by considering and quantifying the influence of precursors. The results of the model determined a Spearman correlation greater than 0.6, the root mean square error remained below 10 µg/m³ in all cases and the Fit Index exceeded the value of 0.5 in all cases, categorized as good , excellent and good respectively, which suggests that the model accurately and precisely replicates the behavior and trend of ozone. It is expected that the applied methodology will serve as a reference to continue with the prediction of other atmospheric pollutants of interest and in this way provide support for decision-making that allows minimizing environmental impacts focused on air quality.MaestríaMagíster en Ingeniería - Ingeniería AmbientalCalidad del aireviii, 101 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaOzono troposféricoMachine learningCalidad del airePredicciónPrecursoresTropospheric ozoneMachine LearningConvolutionalAir qualityContaminación atmosféricaaprendizaje automáticoModelo de simulaciónAir pollutionmachine learningSimulation modelsPredicción de ozono troposférico en Bogotá: un enfoque de Machine LearningTropospheric ozone prediction in Bogotá: a machine learning approachTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotáColombiaCundinamarcahttp://vocab.getty.edu/page/tgn/1000838Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Jeffrey Dean, D.; Devin, M.; Ghemawat, S.; et al. (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv. Doi: https://doi.org/10.48550/arXiv.1603.04467Abdul-Wahab S, Al-Alawi S. (2002) Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ Model Softw 17:219–228. https://doi.org/10.1016/S1364-8152(01)00077-9Acevedo F. (2020) Influencia de la calidad del aire en la mortalidad y la morbilidad por enfermedades respiratorias en Colombia. http://hdl.handle.net/11634/33256Adame, J., Gutiérrez-Álvarez, I., Cristofanelli, P., Notario, A., Bogeat, J., López, A., . . . Yela, M. (2022). Surface ozone trends over a 21-year period at El Arenosillo observatory (Southwestern Europe). Atmospheric Research, Vol. 269. doi: https://doi.org/10.1016/j.atmosres.2022.106048Agatonovic-Kustrin, S. & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis. doi: https://doi.org/10.1016/S0731-7085(99)00272-1Agencia Europea de Medio Ambiente. (2020). Contaminación atmosférica. Obtenido de https://www.eea.europa.eu/es/themes/air/introAlbawi, S., A. Mohammed, T. & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET). doi: 10.1109/ICEngTechnol.2017.8308186Alcaldía Mayor de Bogotá D. C. (2021). Plan de Ordenamiento Territorial Bogotá Reverdece 2022-2035. Proyecto de Acuerdo. https://bogota.gov.co/mi-ciudad/pot-bogota-reverdece-2022-2035/articulado-del-pot-bogota-reverdece-2022-2035Ali, J., Khan, R., Ahmad, N. & Maqsood, I. (2012). Random Forests and Decision Trees. IJCSI International Journal of Computer Science Issues. ISSN (Online): 1694-0814AlOmar, M., Hameed, M. & AlSaadi, M. (2020). Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2020.06.024.Alpaydin, E. (2016). Machine Learning: The New AI. Cambridge, MA, USA. Obtenido de https://search-ebscohost-com.ezproxy.unal.edu.co/login.aspx?direct=true&db=nlebk&AN=1369420&lang=es&site=eds-liveBaena-Salazar, D., Jimenez, J., Zapata, C., & Ramirez-Cardona, A. (2019). Red neuronal artificial aplicado para el pronóstico de eventos críticos de PM2.5 en el Valle de Aburrá. Dyna rev.fac.nac.minas, ISSN 0012-7353. doi: https://doi.org/10.15446/dyna.v86n209.63228Ballesteros-González, K., Sullivan, A., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.139755Banja, M., Papanastasiou, D., Poupkou, A., & Melas, D. (2012). Development of a short-term ozone prediction tool in Tirana area based on meteorological variables. doi:10.5094/APR.2012.002Baquero, J. (2023). Análisis de la variabilidad estacional, interanual y tendencia del ozono (O₃) y sus precursores, así como la dinámica oxidativa de la atmósfera en Bogotá entre 2010 y 2020. Universidad Nacional de Colombia. Repositorio: https://repositorio.unal.edu.co/handle/unal/84018Barten, j., Ganzeveld, L., Visser, A., Jiménez, R., & Krol, C. (2020). Evaluation of nitrogen oxides (NOEvaluation of nitrogen oxides (NOx) sources and sinks and ozone production in Colombia and surrounding areas. Atmos. Chem. Phys. doi: https://doi.org/10.5194/acp-20-9441-2020Bhattacharya, S., & Shahnawaz, S. (2021). Using Machine Learning to Predict Air Quality Index in New Delhi. doi:arXiv:2112.05753Bigi, A. & Ghermandi, G. (2016). Trends and variability of atmospheric PM2.5 and PM₁₀ –2.5 concentration in the Po Valley, Italy. Atmos. Chem. Phys. doi: 10.5194/acp-16-15777-2016Bolaño-Diaz, S., Camargo-Caicedo, Y., Tovar-Bernal, F. & Bolaño-Ortiz, T.R. (2022). The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia. Fire. doi:. https://doi.org/10.3390/fire5060191Brockwell, P.J. & Davis, R.A. (2002). State-Space Models. In: (eds) Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer. doi: https://doi.org/10.1007/0-387-21657-X_8Butković, V., Cvitaš, T., & Klasinc, L. (1990). Photochemical ozone in the mediterranean. Science of The Total Environment, Vol. 99. doi.org/10.1016/0048-9697(90)90219-KButt, E. W., Turnock, S. T., Rigby, R., Reddington, C. L., Yoshioka, M., Johnson, J. S., et al. (2017). Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environmental Research Letters, 12(10), 104017. https://doi.org/10.1088/1748-9326/aa87beBurnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., et al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 115(38), 9592–9597. https://doi.org/10.1073/pnas.1803222115Burnett, R. T., Pope, C. A., III, Ezzati, M., Olives, C., Lim, S. S., Mehta, S., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397–403. https://doi.org/10.1289/ehp.1307049Camacho N (2021) Efectos de la temperatura y los contaminantes atmosféricos sobre la salud pública en Bogotá, Colombia. https://www.researchgate.net/profile/Natalia-Camacho-Castaneda/publication/354611482_Efectos_de_la_temperatura_y_los_contaminantes_atmosfericos_sobre_la_salud_publica_en_Bogota_Colombia/links/61424ce328667828a8981607/Efectos-de-la-temperatura-y-los-contaminantes-atmosfericos-sobre-la-salud-publica-en-Bogota-Colombia.pdfCañada Torrecilla, M. R. (2021). El riesgo de contaminación por ozono en dos ciudades españolas (Madrid y Sevilla): Un estudio realizado con técnicas de modelado espacial y SIG. Geographicalia, 73, 195-212.Casallas, A., Cabrera, A., Guevara-Luna, M-A., Tompkins, A., González, Y., Aranda, J., Belalcazar, L., Mogollon-Sotelo, C., Celis, N., Lopez-Barrera, E., Peña-Rincon, C., Ferro, C. (2024). Air pollution analysis in Northwestern South America: A new Lagrangian framework. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2023.167350Casallas, A., Castillo-Camacho, M., Sanchez, E., González, Y., Celis, N., Mendez-Espinosa, J., Belalcazar, L. & Ferro, C. (2023). Surface, Satellite Ozone Changes in Northern South America During Low Anthropogenic Emission Conditions: A Machine Learning Approach. SSRN. doi: http://dx.doi.org/10.2139/ssrn.4016140Casallas, A., Córdoba, T., Sánchez-Cárdenas, L., Guevara-Luna, M., & Belalcázar, L. (2022a). Understanding the atmospheric characteristics of high polluted. EIA. Esc. Ing. Antioq. doi: https://doi.org/10.13140/RG.2.2.22694.65606Casallas, A., Ferro, C., Celis, N., Guevara-Luna, M., Mogollón-Sotelo, C., Guevara-Luna, F., & Merchán, M. (2021). Long short-term memory artificial neural network approach to forecast meteorology and PM2.5 local variables in Bogotá, Colombia. Model. Earth Syst. Environ. doi: https://doi.org/10.1007/s40808-021-01274-6Casallas, A., Ferro, C., Celis, N., Mogollon-Sotelo, C., & Belalcazar, L. (2022b). Design of a 3D convolutional neural network model to forecast PM2.5 and O₃ concentrations in Colombia. IEEE Xplore. doi:10.1109/CASAP54985.2021.9703414Casallas, S., Celis, N., Ferro, C., López, E., Peña, C., Corredor, J., & Ballen, M. (2020). Validation of PM₁₀ & PM2.5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM. Environmental Science and Pollution Research. doi:10.1007/s11356-019-06997-9Casas, N. (2017). Deep Deterministic Policy Gradient for Urban Traffic Light Control. Cornell University. arXiv:1703.09035. https://doi.org/10.48550/arXiv.1703.09035Castillo-Camacho, M.P., Tunarrosa-Grisales, I.C., Chacon-Rivera, L.M., Guevara-Luna, M. A. & Belalcazar-Cerón, L.C. (2020). Personal Exposure to PM2.5 in the Massive Transport System of Bogotá and Medellín, Colombia. Asian J. Atmos. Environ. https://doi.org/10.5572/ajae.2020.14.3.210Castro, M., & Pires, J. (2019). Decision support tool to improve the spatial distribution of air quality monitoring sites. Atmospheric Pollution Research, Vol. 10. doi: https://doi.org/10.1016/j.apr.2018.12.011Celis, N., Casallas, A., López, E., Martínez, H., Peña, C., Arenas, R., & Ferro, C. (2022). Design of an early alert system for PM2.5 through a stochastic method and machine learning models. Environmental Science & Policy, vol. 127. doi: https://doi.org/10.1016/j.envsci.2021.10.030Chaparro, L., Bustos, J., Barrera, E., & Casallas, A. (2022). Evaluation of Recurring Neuronal Network For Prediction of Risk For Sulfur Oxides (SOx) in The City Of Bogotá. IEEE Xplore. doi:10.1109/CASAP54985.2021.9703418Chai, T., Kim, H., Lee, P., Tong, D., Pan, L., Tang, Y., Huang, J., McQueen, J., Tsidulko, M. & Stajner, I. (2013). Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO₂ measurements. Geoscientific Model Development. doi:10.5194/gmd-6-1831-2013Chen, Y., Chen, X., Xu, A., Sun, Q. & Peng, X. (2022). A hybrid CNN-Transformer model for ozone concentration prediction. Air Qual Atmos Health. doi: https://doi-org.ezproxy.unal.edu.co/10.1007/s11869-022-01197-wCheng, M., Fang, F., Navon, I., Zheng, J., Zhu, J. & Pain, C.(2023). Assessing uncertainty and heterogeneity in machine learning-based spatiotemporal ozone prediction in Beijing-Tianjin- Hebei region in China. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2023.163146.Chiarvetto, L., Rey, F., & Brignole, N. (2008). Aplicación de Redes neuronales artificiales para la predicción de la calidad de aire. Mecánica Computaciona, vol. XXVII, pp. 3607-3625. Obtenido de https://cimec.org.ar/ojs/index.php/mc/article/viewFile/1654/1618Cleveland, R. B., Cleveland, W. S., McRae, J., and Terpenning, I. (1990). STL: a seasonal-trend decomposition procedure based on Loess. J. Off. Stat. https://www.nniiem.ru/file/news/2016/stl-statistical-model.pdfChowdhury, P. H., He, Q., Carmieli, R., Li, C., Rudich, Y., & Pardo, M. (2019). Connecting the oxidative potential of secondary organic aerosols with reactive oxygen species in exposed lung cells. Environmental Science & Technology, 53(23), 13949–13958. https://doi.org/10.1021/acs.est.9b04449Chowdhury, S., Pozzer, A., Dey, S., Klingmueller, K., & Lelieveld, J. (2020). Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015. Environmental Research Letters, 15(7), 074010. https://doi.org/10.1088/1748-9326/ab8334Clifton, J. & Laber, E. (2020). Q-Learning: Theory and Applications. Annual Review of Statistics and Its Application. https://doi.org/10.1146/annurev-statistics-031219-041220Cooper, O., Parrish, D., Stohl, A., Trainer, M., Nédélec, P., Thouret, V., . . . Avery, M. (2009). Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature. doi:doi.org/10.1038/nature08708Chollet, F. (2015). Keras. Disponible online: https://keras.ioCurto, J. D., & Pinto, J. C. (2011). The corrected VIF (CVIF). Journal of Applied Statistics. http://explore.bl.uk/primo_library/libweb/action/display.do?Deroubaix, A., Brasseur, G., Gaubert, B., Labuhn, I., Menut, L., Siour, G. & Tuccella, P. (2021). Response of surface ozone concentration to emission reduction and meteorology during the COVID-19 lockdown in Europe. Royal Meteorological Society. https://doi.org/10.1002/met.1990Dunner, A., Iglesias Álamos, V., & Ruiz Rudolph, P. (2018). El ozono troposférico como modificador del efecto de material particulado 2,5 sobre muertes diarias cardiovasculares en adultos mayores. Santiago, 2009-2013. https://www.researchgate.net/publication/327060086_El_ozono_troposferico_como_modificador_del_efecto_de_material_particulado_25_sobre_muertes_diarias_cardiovasculares_en_adultos_mayores_Santiago_2009-2013EPA. (2007). Un resumen de la Ley de Aire Limpio. Publicación N.° EPA-456/K-07-001.EPA. (2021). EPA Partners with Tribes to Deploy Air Sensors in Communities. Obtenido de https://www.epa.gov/sciencematters/epa-partners-tribes-deploy-air-sensors-communitiesEuropean Environment Agency. (2008). Medio Ambiente Europeo - La Evaluación Dobris.European Environment Agency. (2016). Air quality in Europe 2016 report. Obtenido de http://www.eea.europa.eu/publications/air-quality-in-europe-2016Fernández, S., Sánchez, J. & Córdoba, A. (2002). Estadística descriptiva. ESIC Editorial. ISBN: 84-7356-306-9Fiore, A., Naik, V. & Leibensperger, E. (2015). Air Quality and Climate Connections. Journal of the Air & Waste Management Association. doi: 10.1080/10962247.2015.104052Franceschi, F., Cobo, M., & Figueredo, M. (2018). Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2018.02.006Fu, TM., Zheng, Y., Paulot, F., Mau, J. & Yantosca, R. (2015). Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nature Clim Change. doi: https://doi-org.ezproxy.unal.edu.co/10.1038/nclimate2567Ghahremanloo, M., Lops, Y., Choi, Y., & Yeganeh, B. (2021). Deep Learning Estimation of Daily Ground-Level NO₂ Concentrations From Remote Sensing Data. J. Geophys. Res Atmos. doi: https://doi-org.ezproxy.unal.edu.co/10.1029/2021JD034925Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biol. Cybern. doi: https://doi.org/10.1007/BF00342633Ghahremanloo M, Lops Y, Choi Y, Jung J, Mousevinezhad S & Hammond D (2022) A comprehensive study of the COVID-19 impact on PM2.5 levels over the contiguous United States: a deep learning approach. Atmos Environ 118944. https://doi.org/10.1016/j.atmosenv.2022.118944Gonzalez, C.M., Ynoue, R.Y., Vara-Vela, A., Rojas, N.Y. & Aristizabal, B.H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2018.03.003Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. https://www.deeplearningbook.org/Guzmán, D., Ruíz, J.F. & Cadena, M. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través análisis de componentes principales (ACP). IDEAM. Bogotá, Colombia. http://www.ideam.gov.co/documents/21021/21141/Regionalizacion+de+la+Precipitacion+Media+Mensual/1239c8b3-299d-4099-bf52-55a414557119Hahad, O., Frenis, K., Kuntic, M., Daiber, A., & Münzel, T. (2021). Accelerated aging and age-related diseases (CVD and neurological) due to air pollution and traffic noise exposure. International Journal of Molecular Sciences, 22(5), 2419. https://doi.org/10.3390/ijms22052419Henao, J., Rendón, A., Hernández, K., Giraldo-Ramirez, P., Robledo, V., Posada, J., . . . Mejia, J. (2021). Differential Effects of the COVID-19 Lockdown and Regional Fire on the Air Quality of Medellín, Colombia. Atmosphere. doi: https://doi.org/10.3390/atmos12091137Hernandez-Deckers D (2021) Features of atmospheric deep convection in northwestern South America obtained from infrared satellite data. Quart J Royal Meteor Soc. https://doi.org/10.1002/qj.4208Herrera, S. (2017). Valor económico de la calidad del aire en la localidad de Kennedy medido desde la salud de los habitantes. Universidad de los Andes. https://repositorio.uniandes.edu.co/entities/publication/de137266-925e-4b81-a76c-af190ae9369bHuang, C.-J., & Kou, P.-H. (2018). A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors . doi: https://doi.org/10.3390/s18072220Inter Agency for Research on Cance. Outdoor air pollution. IARC. (2016). Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. Vol. 109). Lyon.Ismail, M., Suroto, A., Ibrahim, T., & Abdullah, A. (2011). Tropospheric ozone trend in the Muda Irrigation Area, Kedah. Journal of Physical. Science. doi:web.usm.my/jps/22-2-11/22.2.7.pdfJiménez, P. (2019). Estudio de la contaminación. Elearning, S.L., Jin, Z., Yan, D., Zhang, Z., Li, M., Wang, T., Huang, X., Xie, M., Li, S., Zhuang, B. (2023). Effects of Elevated Ozone Exposure on Regional Meteorology and Air Quality in China Through Ozone-Vegetation Coupling. JGR Atmosfpheres. doi: https://doi-org.ezproxy.unal.edu.co/10.1029/2022JD038119Kapadia, D. & Jariwala, N. (2022). Prediction of tropospheric ozone using artificial neural network (ANN) and feature selection techniques. Model. Earth Syst. Environ. doi: https://doi-org.ezproxy.unal.edu.co/10.1007/s40808-021-01220-6Ke, Li., Jacob, D., Liao, H., Shen, L., Zhang, Q. & Bates, K. (2018). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. PNAS. https://doi.org/10.1073/pnas.1812168116Khalil, A., Barhoom, A., Abu-Nasser, B., Musleh, M. & Abu-Naser, S. (2019). Energy Efficiency Prediction using Artificial Neural Network. International Journal of Academic Pedagogical Research. https://philpapers.org/rec/KHAEEPKingman, D.P. & Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv arXiv:1412.6980. doi: https://doi.org/10.48550/arXiv.1412.6980Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M. & Inmanf, D.(2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing. https://doi.org/10.1016/j.ymssp.2020.107398Kodinariya, T. & Makwana, P. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal of Advance Research in Computer Science and Management Studies. ISSN: 2321-7782Kumar, J., Goomer, R. & Singh, A. (2018). Long Short Term Memory Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model For Cloud Datacenters. Procedia Computer Science. https://doi.org/10.1016/j.procs.2017.12.087Kumar, A., Jiménez, R., Belalcázar, L. C., & Rojas, N. Y. (2016). Application of WRF-Chem Model to Simulate PM₁₀ Concentration over Bogota. Aerosol and Air Quality Research. doi:10.4209/aaqr.2015.05.0318Lee, H. & Park, R. (2022). Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions. Environmental Pollution. doi: https://doi.org/10.1016/j.envpol.2022.119645Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371. https://doi.org/10.1038/nature15371Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovascular Research, 116(11), 1910–1917. https://doi.org/10.1093/cvr/cvaa025Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., ... García, S. O. (2019). Contaminación del aire ambiente por partículas y mortalidad diaria en 652 ciudades. DOI: 10.1056/NEJMoa1817364Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., & Wagner, T. (2016). NOX lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics, 16(8), 5283–5298. https://doi.org/10.5194/acp-16-5283-2016Liu, Y., Wang, T., Stavrakou, T., Elguindi, N., Doumbia, T., Granier, C., Bouarar, I., Gaubert, B. & Brasseur, G. (2021). Diverse response of surface ozone to COVID-19 lockdown in China. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2021.147739.MADS. (2010). Protocolo para el monitoreo y seguimiento de la calidad del aire.Mendez-Espinosa, J. F., Belalcazar, L. C., & Betancourt, R. M. (2019). Regional Air Quality Impact of Northern South America Biomass Burning Emissions. Atmospheric Environment. doi:10.1016/j.atmosenv.2019.01.042Mendez-Espinosa, J. F., Rojas, N., Vargas, J., Patchón, J., Belalcazar, L. & Ramírez, O. (2020). Air quality variations in Northern South America during the COVID-19 lockdown. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.141621Mogollón-Sotelo, C., Casallas, A., Vidal, S., Celis, N., Ferro, C., & Belalcazar, L. (2021). A support vector machine model to forecast ground-level PM2.5 in a highly populated city with a complex terrain. Air Qual Atmos Health, vol. 14, pp. 399-409. doi:https://doi.org/10.1007/s11869-020-00945-0Moghani, M. & Archer, C. (2020). The impact of emissions and climate change on future ozone concentrations in the USA. Air Quality, Atmosphere and Health. doi: https://doi.org/10.1007/s11869-020-00900-zMonks, P., Archibald, A., Colette, A., Cooper, O., Coyle, M., Derwent, R., . . . Williams, M. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys.(15, 8889–8973). doi:10.5194/acp-15-8889-2015Morales O (2023) Evaluación de la calidad de aire en Bogotá y su relación con la incidencia en el número de hospitalizaciones por enfermedades respiratorias. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://repositorio.unbosque.edu.co/bitstream/handle/20.500.12495/11447/Trabajo%20de%20grado.pdf?sequence=1&isAllowed=yMurray, C. J. L., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., et al. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2Ndiaye, E., Le, T., Fercoq, O., Salmon, J., & Takeuchi, I. (2019). Safe Grid Search with Optimal Complexity. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Proceedings of the 36th International Conference on Machine Learning. https://proceedings.mlr.press/v97/ndiaye19a.htmlNoble, W. (2006). What is a support vector machine?. Nat Biotechnol. doi: https://doi.org/10.1038/nbt1206-1565O’Shea, K. & Nash, R. (2015). An Introduction to Convolutional Neural Networks. Cornell University. https://doi.org/10.48550/arXiv.1511.08458 arXiv:1511.08458Parrish, D., Millet, D., & Goldstein, A. (2009). Increasing ozone in marine boundary layer inflow at the west coasts. Atmospheric Chemistry and Physics. doi: doi.org/10.5194/acp-9-1303-2009Peters, R., Ee, N., Peters, J., Booth, A., Mudway, I., & Anstey, K. J. (2019). Air pollution and dementia: A systematic review. Journal of Alzheimer's Disease, 70(s1), 145–163. https://doi.org/10.3233/JAD-180631Pires, J., & Martins, F. (2011). Correction methods for statistical models in tropospheric ozone forecasting. Atmospheric Pollution Research. doi:10.1016/j.atmosenv.2011.02.011Prechelt , L. (1998). Early Stopping - But When? Lecture Notes in Computer Science. doi: https://doi.org/10.1007/3-540-49430-8_3Pope, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine, 360(4), 376–386. https://doi.org/10.1056/NEJMsa0805646Pozzer, A., Anenberg, S. C., Dey, S., Haines, A., Lelieveld, J., & Chowdhury, S. (2022). Mortalidad atribuible a la contaminación del aire ambiente: una revisión de las estimaciones mundiales. https://doi.org/10.1029/2022GH000711Prabhakaran, D., Mandal, S., Krishna, B., Magsumbol, M., Singh, K., Tandon, N., et al. (2020). Exposure to particulate matter is associated with elevated blood pressure and incident hypertension in urban India. Hypertension. https://www.ahajournals.org/doi/full/10.1161Prechelt, L. (2002). Early Stopping - But When? LNCS, V 1524. doi: 10.1007/3-540-49430-8_3Ramírez, O., Sánchez de la Campa, A., Amato, F., Moreno, T., Silva, L. & de la Rosa, J. (2019). Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2018.10.214Río, A (2020). Cambio climático, la penalidad del ozono y la mortalidad asociada en la Ciudad de México. http://hdl.handle.net/11651/4342Roderick, M., MacGlashan, J. & Tellex, S. (2017). Implementing the Deep Q-Network. Cornell University. arXiv:1711.07478. doi: https://doi.org/10.48550/arXiv.1711.07478Rojas, N. (2007). Aire y problemas ambientales de Bogotá. Recuperado de: Microsoft Word - Aire y problemas ambientales de Bogotá.doc (bogota.gov.co)Rojas, N., 2004. Revisión de las emisiones de material particulado por la combustion de Diesel y Biodiesel. Revista de Ingeniería. Disponible: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-49932004000200007&lng=en&tlng=esRusso, F., Biancardo , S., Formisano , A., & Dell'Acqua, G. (2018). Predicting percent air voids content in compacted bituminous hot mixture specimens by varying the energy laboratory compaction and the bulk density assessment method. Construction and Building Materials. doi: https://doi.org/10.1016/j.conbuildmat.2017.12.174Sayeed, A., Choi, Y., Eslami, E., Jung, J., Lops, Y., Khan, A., . . . Choi, M.-H. (2021). A novel CMAQ-CNN hybrid model to forecast hourly surface-ozone concentrations 14 days in advance. Scientific Reports, vol. 806. doi: https://doi.org/10.1016/j.scitotenv.2021.150149Sayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A., & Jung, J. (2020). Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Networks. doi: doi.org/10.1016/j.neunet.2019.09.033Sayeed A, Lops Y, Choi Y, Jung J, Salman AK (2021a) Bias correcting and extending the PM forecast by CMAQ up to 7 days using deep convolutional neural networks. Atmos Environ 253:118376. https://doi.org/10.1016/j.atmosenv.2021.118376Secretaría Distrital de Ambiente. (2023). Informe anual de calidad del aire de Bogotá año 2022. Red de Monitoreo de Calidad del Aire de Bogotá D.C RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe%20anual%202022.pdfSecretaría Distrital de Ambiente, Dirección de Control Ambiental Subdirección de Calidad del Aire, Auditiva y Visual-SCAAV Red de Monitoreo de Calidad del Aire de Bogotá - RMCAB, (2021). Informe anual de calidad del aire en Bogotá 2020. Recuperado de: 120721Informe-Anual-de-Calidad-del-Aire-Ano-2020-v2 (1).pdfSeinfeld, J., & Pandis, S. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (3rd Edition ed., Vol. Chapter 6). Wiley. Obtenido de http://www.ideam.gov.co/web/tiempo-y-clima/ozono-troposfericoShewalkar, A., Nyavanandi, D & Ludwig, S. (2019). Performance Evaluation of Deep Neural Networks Applied to Speech Recognition: RNN, LSTM and GRU. Journal of Artificial Intelligence and Soft Computing Research. https://doi.org/10.2478/jaiscr-2019-0006Singh, V., Singh, S. & Biswal, A. (2021). Exceedances and trends of particulate matter (PM2.5) in five Indian megacities. Sci. Total Environ. doi: https://doi.org/10.1016/j.scitotenv.2020.141461Sokhi, R., Singh, V., Querol, X., Finardi, S., Targino, A., Andrade, M., . . . Zavala, M. (2021). A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions,. Environment International. doi: doi.org/10.1016/j.envint.2021.106818Sundermeyer, M., Schlüter, R. & Ney, H. (2012). LSTM Neural Networks for Language Modeling. In Thirteenth annual conference of the international speech communication associationSuthaharan, S. (2015). Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning. SpringerTelikani, A., Tahmassebi, A., Banzhaf, W., & Gandomi, A. (2021). Evolutionary Machine Learning: A Survey. ACM Computing Surveys, vol. 54(no. 8). doi: https://doi.org/10.1145/3467477Turner, M. C., Andersen, Z. J., Baccarelli, A., Diver, W. R., Gapstur, S. M., Pope, C. A., et al. (2020). Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: A Cancer Journal for Clinicians, 70(6), 460–479. https://doi.org/10.3322/caac.21632Ultsch, A. (1993). Self-Organizing Neural Networks for Visualisation and Classification. In: Opitz, O., Lausen, B., Klar, R. (eds) Information and Classification. Studies in Classification, Data Analysis and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50974-2_31University Colles London, Universidad de los Andes. (2013). Caracterización de la contaminación atmosférica en Colombia. Reino Unido - Colombia. Obtenido de https://prosperityfund.uniandes.edu.co/site/wp-content/uploads/Caracterizaci%C3%B3n-de-la-contaminaci%C3%B3n-atmosf%C3%A9rica-en-Colombia.pdfValencia, R., Sanchez, G., & Díaz I. (2016). A general regression neural network for modeling the behavior of PM10 concentration level in Santa Marta, Colombia. ARPN J Eng Appl Sci, ISSN 1819-6608Von Schneidemesser, E., Monks, P., Allan, J., Bruhwiler, L., Forster, P., Fowler, D., . . . Sutton, M. (2015). Chemistry and the linkages between air quality and climate change. Chem. Rev. doi: https://doi.org/10.1021/acs.chemrev.5b00089Wang, J., Wang, D., Ge, B., Lin, W., Ji, D., Pan, X., . . . Wang, Z. (2022). Increase in daytime ozone exposure due to nighttime accumulation in a typical city in eastern China during 2014–2020. Atmospheric Pollution Research, Vol. 13. doi: doi.org/10.1016/j.apr.2022.101387Wang, SC. (2003). Artificial Neural Network. In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science. https://doi.org/10.1007/978-1-4615-0377-4_5World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://iris.who.int/handle/10665/345329World Health Organization. (2018). Burden of disease from ambient air pollution for 2016. World Health Organization. Obtenido de https://www.who.int/airpollution/data/AAP_BoD_results_May2018_final.pdf?ua=1Wong, C. M., Tsang, H., Lai, H. K., Thomas, G. N., Lam, K. B., Chan, K. P., et al. (2016). Cancer mortality risks from long-term exposure to ambient fine particle. Cancer Epidemiology, Biomarkers & Prevention, 25(5), 839–845. https://doi.org/10.1158/1055-9965.EPI-15-0626Wu, Y., & Feng, J. (2017). Development and Application of Artificial Neural. Network. Wireless Personal Communications. doi:10.1007/s11277-017-5224-xWu, K., Yang, X., Chen, D., Gu, S., Lu, Y., Jiang, Q., Wang, F., Ou, Y., Qian, Y., Shao, P. & Lu, S. (2020). Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmospheric Research. doi:10.1016/j.atmosres.2019.104656Yafouz, A., Ahmed, A., Zaini, N., & El-Shafie, A. (2021). Ozone Concentration Forecasting Based on Artificial Intelligence Techniques: A Systematic Review. Water, Air, & Soil Pollution. doi:10.1007/s11270-021-04989-5Yafouz, A., AlDahoul, N., Birima, A., Ahmed, A., Sherif, M., Sefelnasr, A., . . . Elshafie, A. (2022). Comprehensive comparison of various machine learning algorithms for short-term ozone concentration prediction. Alexandria Engineering Journal, Vol. 61. doi: https://doi.org/10.1016/j.aej.2021.10.021Yilmaz, A. (2021). Ozone level prediction with Machine Learning Algorithms. Journal of Aeronautics and Space Technologies, vol. 14(no. 2), pp. 177 – 183. Obtenido de https://orcid.org/0000-0003-0038-7519Zambrano-Monserrate, M., Ruano, M., & Sanchez-Alcalde, L. (2020). Indirect effects of COVID-19 on the environment. Science of the Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.138813Zheng, S., Schlink, U., Ho, K. F., Singh, R. P., & Pozzer, A. (2021). Distribución espacial de la mortalidad prematura relacionada con PM 2,5 en China. https://doi.org/10.1029/2021GH000532Zhang, J., Sun, L., Rainham, D., Dummer, T., Wheeler, A., Anastasopolos, A., . . . Johnson, M. (2021). Predicting intraurban airborne PM1.0-trace elements in a port city: Land use regression by ordinary least squares and a machine learning algorithm. Science of the Total Environment, vol. 806. doi: https://doi.org/10.1016/j.scitotenv.2021.150149Zhang, Z., He, H.-D., Yang, J.-M., Wang, H.-W., Xue, Y., & Peng, Z.-R. (2022). Spatiotemporal evolution of NO₂ diffusion in Beijing in response to COVID-19 lockdown using complex network. Chemosphere. doi: https://doi.org/10.1016/j.chemosphere.2022.133631Zihao, Z., Zhan, L., & Wang, Y. (2019). Outlier removal based on Chauvenet's criterion and dense disparity refinement using least square support vector machine. Journal of Electronic Imaging. doi:10.1117/1.JEI.28.2.023028Público generalORIGINALThesis_Msc_Diana_G.pdfThesis_Msc_Diana_G.pdfTesis de Maestría en Ingeniería - Ingeniería Ambientalapplication/pdf3806016https://repositorio.unal.edu.co/bitstream/unal/86187/2/Thesis_Msc_Diana_G.pdffaaf48db5e6facdd61c5239f03c47a23MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86187/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAILThesis_Msc_Diana_G.pdf.jpgThesis_Msc_Diana_G.pdf.jpgGenerated Thumbnailimage/jpeg4465https://repositorio.unal.edu.co/bitstream/unal/86187/4/Thesis_Msc_Diana_G.pdf.jpg0cc73f2f9d350d0c93776011c73b1a5fMD54unal/86187oai:repositorio.unal.edu.co:unal/861872024-08-24 23:14:30.123Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |