Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning

ilustraciones, diagramas

Autores:
García Millán, Diana Rocío
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86187
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86187
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Ozono troposférico
Machine learning
Calidad del aire
Predicción
Precursores
Tropospheric ozone
Machine Learning
Convolutional
Air quality
Contaminación atmosférica
aprendizaje automático
Modelo de simulación
Air pollution
machine learning
Simulation models
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_049f01dbb708c04d16c95e65df6181e4
oai_identifier_str oai:repositorio.unal.edu.co:unal/86187
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning
dc.title.translated.eng.fl_str_mv Tropospheric ozone prediction in Bogotá: a machine learning approach
title Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning
spellingShingle Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Ozono troposférico
Machine learning
Calidad del aire
Predicción
Precursores
Tropospheric ozone
Machine Learning
Convolutional
Air quality
Contaminación atmosférica
aprendizaje automático
Modelo de simulación
Air pollution
machine learning
Simulation models
title_short Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning
title_full Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning
title_fullStr Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning
title_full_unstemmed Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning
title_sort Predicción de ozono troposférico en Bogotá: un enfoque de Machine Learning
dc.creator.fl_str_mv García Millán, Diana Rocío
dc.contributor.advisor.spa.fl_str_mv Rojas Roa, Néstor Yesid
Casallas Garcia, Alejandro
dc.contributor.author.spa.fl_str_mv García Millán, Diana Rocío
dc.contributor.researchgroup.spa.fl_str_mv Calidad del Aire
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Ozono troposférico
Machine learning
Calidad del aire
Predicción
Precursores
Tropospheric ozone
Machine Learning
Convolutional
Air quality
Contaminación atmosférica
aprendizaje automático
Modelo de simulación
Air pollution
machine learning
Simulation models
dc.subject.proposal.spa.fl_str_mv Ozono troposférico
Machine learning
Calidad del aire
Predicción
Precursores
dc.subject.proposal.eng.fl_str_mv Tropospheric ozone
Machine Learning
Convolutional
Air quality
dc.subject.unesco.spa.fl_str_mv Contaminación atmosférica
aprendizaje automático
Modelo de simulación
dc.subject.unesco.eng.fl_str_mv Air pollution
machine learning
Simulation models
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-30T18:40:40Z
dc.date.available.none.fl_str_mv 2024-05-30T18:40:40Z
dc.date.issued.none.fl_str_mv 2024-05
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86187
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86187
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Jeffrey Dean, D.; Devin, M.; Ghemawat, S.; et al. (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv. Doi: https://doi.org/10.48550/arXiv.1603.04467
Abdul-Wahab S, Al-Alawi S. (2002) Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ Model Softw 17:219–228. https://doi.org/10.1016/S1364-8152(01)00077-9
Acevedo F. (2020) Influencia de la calidad del aire en la mortalidad y la morbilidad por enfermedades respiratorias en Colombia. http://hdl.handle.net/11634/33256
Adame, J., Gutiérrez-Álvarez, I., Cristofanelli, P., Notario, A., Bogeat, J., López, A., . . . Yela, M. (2022). Surface ozone trends over a 21-year period at El Arenosillo observatory (Southwestern Europe). Atmospheric Research, Vol. 269. doi: https://doi.org/10.1016/j.atmosres.2022.106048
Agatonovic-Kustrin, S. & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis. doi: https://doi.org/10.1016/S0731-7085(99)00272-1
Agencia Europea de Medio Ambiente. (2020). Contaminación atmosférica. Obtenido de https://www.eea.europa.eu/es/themes/air/intro
Albawi, S., A. Mohammed, T. & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET). doi: 10.1109/ICEngTechnol.2017.8308186
Alcaldía Mayor de Bogotá D. C. (2021). Plan de Ordenamiento Territorial Bogotá Reverdece 2022-2035. Proyecto de Acuerdo. https://bogota.gov.co/mi-ciudad/pot-bogota-reverdece-2022-2035/articulado-del-pot-bogota-reverdece-2022-2035
Ali, J., Khan, R., Ahmad, N. & Maqsood, I. (2012). Random Forests and Decision Trees. IJCSI International Journal of Computer Science Issues. ISSN (Online): 1694-0814
AlOmar, M., Hameed, M. & AlSaadi, M. (2020). Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2020.06.024.
Alpaydin, E. (2016). Machine Learning: The New AI. Cambridge, MA, USA. Obtenido de https://search-ebscohost-com.ezproxy.unal.edu.co/login.aspx?direct=true&db=nlebk&AN=1369420&lang=es&site=eds-live
Baena-Salazar, D., Jimenez, J., Zapata, C., & Ramirez-Cardona, A. (2019). Red neuronal artificial aplicado para el pronóstico de eventos críticos de PM2.5 en el Valle de Aburrá. Dyna rev.fac.nac.minas, ISSN 0012-7353. doi: https://doi.org/10.15446/dyna.v86n209.63228
Ballesteros-González, K., Sullivan, A., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.139755
Banja, M., Papanastasiou, D., Poupkou, A., & Melas, D. (2012). Development of a short-term ozone prediction tool in Tirana area based on meteorological variables. doi:10.5094/APR.2012.002
Baquero, J. (2023). Análisis de la variabilidad estacional, interanual y tendencia del ozono (O₃) y sus precursores, así como la dinámica oxidativa de la atmósfera en Bogotá entre 2010 y 2020. Universidad Nacional de Colombia. Repositorio: https://repositorio.unal.edu.co/handle/unal/84018
Barten, j., Ganzeveld, L., Visser, A., Jiménez, R., & Krol, C. (2020). Evaluation of nitrogen oxides (NOEvaluation of nitrogen oxides (NOx) sources and sinks and ozone production in Colombia and surrounding areas. Atmos. Chem. Phys. doi: https://doi.org/10.5194/acp-20-9441-2020
Bhattacharya, S., & Shahnawaz, S. (2021). Using Machine Learning to Predict Air Quality Index in New Delhi. doi:arXiv:2112.05753
Bigi, A. & Ghermandi, G. (2016). Trends and variability of atmospheric PM2.5 and PM₁₀ –2.5 concentration in the Po Valley, Italy. Atmos. Chem. Phys. doi: 10.5194/acp-16-15777-2016
Bolaño-Diaz, S., Camargo-Caicedo, Y., Tovar-Bernal, F. & Bolaño-Ortiz, T.R. (2022). The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia. Fire. doi:. https://doi.org/10.3390/fire5060191
Brockwell, P.J. & Davis, R.A. (2002). State-Space Models. In: (eds) Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer. doi: https://doi.org/10.1007/0-387-21657-X_8
Butković, V., Cvitaš, T., & Klasinc, L. (1990). Photochemical ozone in the mediterranean. Science of The Total Environment, Vol. 99. doi.org/10.1016/0048-9697(90)90219-K
Butt, E. W., Turnock, S. T., Rigby, R., Reddington, C. L., Yoshioka, M., Johnson, J. S., et al. (2017). Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environmental Research Letters, 12(10), 104017. https://doi.org/10.1088/1748-9326/aa87be
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., et al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 115(38), 9592–9597. https://doi.org/10.1073/pnas.1803222115
Burnett, R. T., Pope, C. A., III, Ezzati, M., Olives, C., Lim, S. S., Mehta, S., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397–403. https://doi.org/10.1289/ehp.1307049
Camacho N (2021) Efectos de la temperatura y los contaminantes atmosféricos sobre la salud pública en Bogotá, Colombia. https://www.researchgate.net/profile/Natalia-Camacho-Castaneda/publication/354611482_Efectos_de_la_temperatura_y_los_contaminantes_atmosfericos_sobre_la_salud_publica_en_Bogota_Colombia/links/61424ce328667828a8981607/Efectos-de-la-temperatura-y-los-contaminantes-atmosfericos-sobre-la-salud-publica-en-Bogota-Colombia.pdf
Cañada Torrecilla, M. R. (2021). El riesgo de contaminación por ozono en dos ciudades españolas (Madrid y Sevilla): Un estudio realizado con técnicas de modelado espacial y SIG. Geographicalia, 73, 195-212.
Casallas, A., Cabrera, A., Guevara-Luna, M-A., Tompkins, A., González, Y., Aranda, J., Belalcazar, L., Mogollon-Sotelo, C., Celis, N., Lopez-Barrera, E., Peña-Rincon, C., Ferro, C. (2024). Air pollution analysis in Northwestern South America: A new Lagrangian framework. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2023.167350
Casallas, A., Castillo-Camacho, M., Sanchez, E., González, Y., Celis, N., Mendez-Espinosa, J., Belalcazar, L. & Ferro, C. (2023). Surface, Satellite Ozone Changes in Northern South America During Low Anthropogenic Emission Conditions: A Machine Learning Approach. SSRN. doi: http://dx.doi.org/10.2139/ssrn.4016140
Casallas, A., Córdoba, T., Sánchez-Cárdenas, L., Guevara-Luna, M., & Belalcázar, L. (2022a). Understanding the atmospheric characteristics of high polluted. EIA. Esc. Ing. Antioq. doi: https://doi.org/10.13140/RG.2.2.22694.65606
Casallas, A., Ferro, C., Celis, N., Guevara-Luna, M., Mogollón-Sotelo, C., Guevara-Luna, F., & Merchán, M. (2021). Long short-term memory artificial neural network approach to forecast meteorology and PM2.5 local variables in Bogotá, Colombia. Model. Earth Syst. Environ. doi: https://doi.org/10.1007/s40808-021-01274-6
Casallas, A., Ferro, C., Celis, N., Mogollon-Sotelo, C., & Belalcazar, L. (2022b). Design of a 3D convolutional neural network model to forecast PM2.5 and O₃ concentrations in Colombia. IEEE Xplore. doi:10.1109/CASAP54985.2021.9703414
Casallas, S., Celis, N., Ferro, C., López, E., Peña, C., Corredor, J., & Ballen, M. (2020). Validation of PM₁₀ & PM2.5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM. Environmental Science and Pollution Research. doi:10.1007/s11356-019-06997-9
Casas, N. (2017). Deep Deterministic Policy Gradient for Urban Traffic Light Control. Cornell University. arXiv:1703.09035. https://doi.org/10.48550/arXiv.1703.09035
Castillo-Camacho, M.P., Tunarrosa-Grisales, I.C., Chacon-Rivera, L.M., Guevara-Luna, M. A. & Belalcazar-Cerón, L.C. (2020). Personal Exposure to PM2.5 in the Massive Transport System of Bogotá and Medellín, Colombia. Asian J. Atmos. Environ. https://doi.org/10.5572/ajae.2020.14.3.210
Castro, M., & Pires, J. (2019). Decision support tool to improve the spatial distribution of air quality monitoring sites. Atmospheric Pollution Research, Vol. 10. doi: https://doi.org/10.1016/j.apr.2018.12.011
Celis, N., Casallas, A., López, E., Martínez, H., Peña, C., Arenas, R., & Ferro, C. (2022). Design of an early alert system for PM2.5 through a stochastic method and machine learning models. Environmental Science & Policy, vol. 127. doi: https://doi.org/10.1016/j.envsci.2021.10.030
Chaparro, L., Bustos, J., Barrera, E., & Casallas, A. (2022). Evaluation of Recurring Neuronal Network For Prediction of Risk For Sulfur Oxides (SOx) in The City Of Bogotá. IEEE Xplore. doi:10.1109/CASAP54985.2021.9703418
Chai, T., Kim, H., Lee, P., Tong, D., Pan, L., Tang, Y., Huang, J., McQueen, J., Tsidulko, M. & Stajner, I. (2013). Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO₂ measurements. Geoscientific Model Development. doi:10.5194/gmd-6-1831-2013
Chen, Y., Chen, X., Xu, A., Sun, Q. & Peng, X. (2022). A hybrid CNN-Transformer model for ozone concentration prediction. Air Qual Atmos Health. doi: https://doi-org.ezproxy.unal.edu.co/10.1007/s11869-022-01197-w
Cheng, M., Fang, F., Navon, I., Zheng, J., Zhu, J. & Pain, C.(2023). Assessing uncertainty and heterogeneity in machine learning-based spatiotemporal ozone prediction in Beijing-Tianjin- Hebei region in China. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2023.163146.
Chiarvetto, L., Rey, F., & Brignole, N. (2008). Aplicación de Redes neuronales artificiales para la predicción de la calidad de aire. Mecánica Computaciona, vol. XXVII, pp. 3607-3625. Obtenido de https://cimec.org.ar/ojs/index.php/mc/article/viewFile/1654/1618
Cleveland, R. B., Cleveland, W. S., McRae, J., and Terpenning, I. (1990). STL: a seasonal-trend decomposition procedure based on Loess. J. Off. Stat. https://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf
Chowdhury, P. H., He, Q., Carmieli, R., Li, C., Rudich, Y., & Pardo, M. (2019). Connecting the oxidative potential of secondary organic aerosols with reactive oxygen species in exposed lung cells. Environmental Science & Technology, 53(23), 13949–13958. https://doi.org/10.1021/acs.est.9b04449
Chowdhury, S., Pozzer, A., Dey, S., Klingmueller, K., & Lelieveld, J. (2020). Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015. Environmental Research Letters, 15(7), 074010. https://doi.org/10.1088/1748-9326/ab8334
Clifton, J. & Laber, E. (2020). Q-Learning: Theory and Applications. Annual Review of Statistics and Its Application. https://doi.org/10.1146/annurev-statistics-031219-041220
Cooper, O., Parrish, D., Stohl, A., Trainer, M., Nédélec, P., Thouret, V., . . . Avery, M. (2009). Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature. doi:doi.org/10.1038/nature08708
Chollet, F. (2015). Keras. Disponible online: https://keras.io
Curto, J. D., & Pinto, J. C. (2011). The corrected VIF (CVIF). Journal of Applied Statistics. http://explore.bl.uk/primo_library/libweb/action/display.do?
Deroubaix, A., Brasseur, G., Gaubert, B., Labuhn, I., Menut, L., Siour, G. & Tuccella, P. (2021). Response of surface ozone concentration to emission reduction and meteorology during the COVID-19 lockdown in Europe. Royal Meteorological Society. https://doi.org/10.1002/met.1990
Dunner, A., Iglesias Álamos, V., & Ruiz Rudolph, P. (2018). El ozono troposférico como modificador del efecto de material particulado 2,5 sobre muertes diarias cardiovasculares en adultos mayores. Santiago, 2009-2013. https://www.researchgate.net/publication/327060086_El_ozono_troposferico_como_modificador_del_efecto_de_material_particulado_25_sobre_muertes_diarias_cardiovasculares_en_adultos_mayores_Santiago_2009-2013
EPA. (2007). Un resumen de la Ley de Aire Limpio. Publicación N.° EPA-456/K-07-001.
EPA. (2021). EPA Partners with Tribes to Deploy Air Sensors in Communities. Obtenido de https://www.epa.gov/sciencematters/epa-partners-tribes-deploy-air-sensors-communities
European Environment Agency. (2008). Medio Ambiente Europeo - La Evaluación Dobris.
European Environment Agency. (2016). Air quality in Europe 2016 report. Obtenido de http://www.eea.europa.eu/publications/air-quality-in-europe-2016
Fernández, S., Sánchez, J. & Córdoba, A. (2002). Estadística descriptiva. ESIC Editorial. ISBN: 84-7356-306-9
Fiore, A., Naik, V. & Leibensperger, E. (2015). Air Quality and Climate Connections. Journal of the Air & Waste Management Association. doi: 10.1080/10962247.2015.104052
Franceschi, F., Cobo, M., & Figueredo, M. (2018). Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2018.02.006
Fu, TM., Zheng, Y., Paulot, F., Mau, J. & Yantosca, R. (2015). Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nature Clim Change. doi: https://doi-org.ezproxy.unal.edu.co/10.1038/nclimate2567
Ghahremanloo, M., Lops, Y., Choi, Y., & Yeganeh, B. (2021). Deep Learning Estimation of Daily Ground-Level NO₂ Concentrations From Remote Sensing Data. J. Geophys. Res Atmos. doi: https://doi-org.ezproxy.unal.edu.co/10.1029/2021JD034925
Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biol. Cybern. doi: https://doi.org/10.1007/BF00342633
Ghahremanloo M, Lops Y, Choi Y, Jung J, Mousevinezhad S & Hammond D (2022) A comprehensive study of the COVID-19 impact on PM2.5 levels over the contiguous United States: a deep learning approach. Atmos Environ 118944. https://doi.org/10.1016/j.atmosenv.2022.118944
Gonzalez, C.M., Ynoue, R.Y., Vara-Vela, A., Rojas, N.Y. & Aristizabal, B.H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2018.03.003
Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. https://www.deeplearningbook.org/
Guzmán, D., Ruíz, J.F. & Cadena, M. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través análisis de componentes principales (ACP). IDEAM. Bogotá, Colombia. http://www.ideam.gov.co/documents/21021/21141/Regionalizacion+de+la+Precipitacion+Media+Mensual/1239c8b3-299d-4099-bf52-55a414557119
Hahad, O., Frenis, K., Kuntic, M., Daiber, A., & Münzel, T. (2021). Accelerated aging and age-related diseases (CVD and neurological) due to air pollution and traffic noise exposure. International Journal of Molecular Sciences, 22(5), 2419. https://doi.org/10.3390/ijms22052419
Henao, J., Rendón, A., Hernández, K., Giraldo-Ramirez, P., Robledo, V., Posada, J., . . . Mejia, J. (2021). Differential Effects of the COVID-19 Lockdown and Regional Fire on the Air Quality of Medellín, Colombia. Atmosphere. doi: https://doi.org/10.3390/atmos12091137
Hernandez-Deckers D (2021) Features of atmospheric deep convection in northwestern South America obtained from infrared satellite data. Quart J Royal Meteor Soc. https://doi.org/10.1002/qj.4208
Herrera, S. (2017). Valor económico de la calidad del aire en la localidad de Kennedy medido desde la salud de los habitantes. Universidad de los Andes. https://repositorio.uniandes.edu.co/entities/publication/de137266-925e-4b81-a76c-af190ae9369b
Huang, C.-J., & Kou, P.-H. (2018). A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors . doi: https://doi.org/10.3390/s18072220
Inter Agency for Research on Cance. Outdoor air pollution. IARC. (2016). Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. Vol. 109). Lyon.
Ismail, M., Suroto, A., Ibrahim, T., & Abdullah, A. (2011). Tropospheric ozone trend in the Muda Irrigation Area, Kedah. Journal of Physical. Science. doi:web.usm.my/jps/22-2-11/22.2.7.pdf
Jiménez, P. (2019). Estudio de la contaminación. Elearning, S.L., Jin, Z., Yan, D., Zhang, Z., Li, M., Wang, T., Huang, X., Xie, M., Li, S., Zhuang, B. (2023). Effects of Elevated Ozone Exposure on Regional Meteorology and Air Quality in China Through Ozone-Vegetation Coupling. JGR Atmosfpheres. doi: https://doi-org.ezproxy.unal.edu.co/10.1029/2022JD038119
Kapadia, D. & Jariwala, N. (2022). Prediction of tropospheric ozone using artificial neural network (ANN) and feature selection techniques. Model. Earth Syst. Environ. doi: https://doi-org.ezproxy.unal.edu.co/10.1007/s40808-021-01220-6
Ke, Li., Jacob, D., Liao, H., Shen, L., Zhang, Q. & Bates, K. (2018). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. PNAS. https://doi.org/10.1073/pnas.1812168116
Khalil, A., Barhoom, A., Abu-Nasser, B., Musleh, M. & Abu-Naser, S. (2019). Energy Efficiency Prediction using Artificial Neural Network. International Journal of Academic Pedagogical Research. https://philpapers.org/rec/KHAEEP
Kingman, D.P. & Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv arXiv:1412.6980. doi: https://doi.org/10.48550/arXiv.1412.6980
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M. & Inmanf, D.(2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing. https://doi.org/10.1016/j.ymssp.2020.107398
Kodinariya, T. & Makwana, P. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal of Advance Research in Computer Science and Management Studies. ISSN: 2321-7782
Kumar, J., Goomer, R. & Singh, A. (2018). Long Short Term Memory Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model For Cloud Datacenters. Procedia Computer Science. https://doi.org/10.1016/j.procs.2017.12.087
Kumar, A., Jiménez, R., Belalcázar, L. C., & Rojas, N. Y. (2016). Application of WRF-Chem Model to Simulate PM₁₀ Concentration over Bogota. Aerosol and Air Quality Research. doi:10.4209/aaqr.2015.05.0318
Lee, H. & Park, R. (2022). Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions. Environmental Pollution. doi: https://doi.org/10.1016/j.envpol.2022.119645
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371. https://doi.org/10.1038/nature15371
Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovascular Research, 116(11), 1910–1917. https://doi.org/10.1093/cvr/cvaa025
Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., ... García, S. O. (2019). Contaminación del aire ambiente por partículas y mortalidad diaria en 652 ciudades. DOI: 10.1056/NEJMoa1817364
Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., & Wagner, T. (2016). NOX lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics, 16(8), 5283–5298. https://doi.org/10.5194/acp-16-5283-2016
Liu, Y., Wang, T., Stavrakou, T., Elguindi, N., Doumbia, T., Granier, C., Bouarar, I., Gaubert, B. & Brasseur, G. (2021). Diverse response of surface ozone to COVID-19 lockdown in China. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2021.147739.
MADS. (2010). Protocolo para el monitoreo y seguimiento de la calidad del aire.
Mendez-Espinosa, J. F., Belalcazar, L. C., & Betancourt, R. M. (2019). Regional Air Quality Impact of Northern South America Biomass Burning Emissions. Atmospheric Environment. doi:10.1016/j.atmosenv.2019.01.042
Mendez-Espinosa, J. F., Rojas, N., Vargas, J., Patchón, J., Belalcazar, L. & Ramírez, O. (2020). Air quality variations in Northern South America during the COVID-19 lockdown. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.141621
Mogollón-Sotelo, C., Casallas, A., Vidal, S., Celis, N., Ferro, C., & Belalcazar, L. (2021). A support vector machine model to forecast ground-level PM2.5 in a highly populated city with a complex terrain. Air Qual Atmos Health, vol. 14, pp. 399-409. doi:https://doi.org/10.1007/s11869-020-00945-0
Moghani, M. & Archer, C. (2020). The impact of emissions and climate change on future ozone concentrations in the USA. Air Quality, Atmosphere and Health. doi: https://doi.org/10.1007/s11869-020-00900-z
Monks, P., Archibald, A., Colette, A., Cooper, O., Coyle, M., Derwent, R., . . . Williams, M. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys.(15, 8889–8973). doi:10.5194/acp-15-8889-2015
Morales O (2023) Evaluación de la calidad de aire en Bogotá y su relación con la incidencia en el número de hospitalizaciones por enfermedades respiratorias. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://repositorio.unbosque.edu.co/bitstream/handle/20.500.12495/11447/Trabajo%20de%20grado.pdf?sequence=1&isAllowed=y
Murray, C. J. L., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., et al. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2
Ndiaye, E., Le, T., Fercoq, O., Salmon, J., & Takeuchi, I. (2019). Safe Grid Search with Optimal Complexity. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Proceedings of the 36th International Conference on Machine Learning. https://proceedings.mlr.press/v97/ndiaye19a.html
Noble, W. (2006). What is a support vector machine?. Nat Biotechnol. doi: https://doi.org/10.1038/nbt1206-1565
O’Shea, K. & Nash, R. (2015). An Introduction to Convolutional Neural Networks. Cornell University. https://doi.org/10.48550/arXiv.1511.08458 arXiv:1511.08458
Parrish, D., Millet, D., & Goldstein, A. (2009). Increasing ozone in marine boundary layer inflow at the west coasts. Atmospheric Chemistry and Physics. doi: doi.org/10.5194/acp-9-1303-2009
Peters, R., Ee, N., Peters, J., Booth, A., Mudway, I., & Anstey, K. J. (2019). Air pollution and dementia: A systematic review. Journal of Alzheimer's Disease, 70(s1), 145–163. https://doi.org/10.3233/JAD-180631
Pires, J., & Martins, F. (2011). Correction methods for statistical models in tropospheric ozone forecasting. Atmospheric Pollution Research. doi:10.1016/j.atmosenv.2011.02.011
Prechelt , L. (1998). Early Stopping - But When? Lecture Notes in Computer Science. doi: https://doi.org/10.1007/3-540-49430-8_3
Pope, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine, 360(4), 376–386. https://doi.org/10.1056/NEJMsa0805646
Pozzer, A., Anenberg, S. C., Dey, S., Haines, A., Lelieveld, J., & Chowdhury, S. (2022). Mortalidad atribuible a la contaminación del aire ambiente: una revisión de las estimaciones mundiales. https://doi.org/10.1029/2022GH000711
Prabhakaran, D., Mandal, S., Krishna, B., Magsumbol, M., Singh, K., Tandon, N., et al. (2020). Exposure to particulate matter is associated with elevated blood pressure and incident hypertension in urban India. Hypertension. https://www.ahajournals.org/doi/full/10.1161
Prechelt, L. (2002). Early Stopping - But When? LNCS, V 1524. doi: 10.1007/3-540-49430-8_3
Ramírez, O., Sánchez de la Campa, A., Amato, F., Moreno, T., Silva, L. & de la Rosa, J. (2019). Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2018.10.214
Río, A (2020). Cambio climático, la penalidad del ozono y la mortalidad asociada en la Ciudad de México. http://hdl.handle.net/11651/4342
Roderick, M., MacGlashan, J. & Tellex, S. (2017). Implementing the Deep Q-Network. Cornell University. arXiv:1711.07478. doi: https://doi.org/10.48550/arXiv.1711.07478
Rojas, N. (2007). Aire y problemas ambientales de Bogotá. Recuperado de: Microsoft Word - Aire y problemas ambientales de Bogotá.doc (bogota.gov.co)
Rojas, N., 2004. Revisión de las emisiones de material particulado por la combustion de Diesel y Biodiesel. Revista de Ingeniería. Disponible: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-49932004000200007&lng=en&tlng=es
Russo, F., Biancardo , S., Formisano , A., & Dell'Acqua, G. (2018). Predicting percent air voids content in compacted bituminous hot mixture specimens by varying the energy laboratory compaction and the bulk density assessment method. Construction and Building Materials. doi: https://doi.org/10.1016/j.conbuildmat.2017.12.174
Sayeed, A., Choi, Y., Eslami, E., Jung, J., Lops, Y., Khan, A., . . . Choi, M.-H. (2021). A novel CMAQ-CNN hybrid model to forecast hourly surface-ozone concentrations 14 days in advance. Scientific Reports, vol. 806. doi: https://doi.org/10.1016/j.scitotenv.2021.150149
Sayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A., & Jung, J. (2020). Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Networks. doi: doi.org/10.1016/j.neunet.2019.09.033
Sayeed A, Lops Y, Choi Y, Jung J, Salman AK (2021a) Bias correcting and extending the PM forecast by CMAQ up to 7 days using deep convolutional neural networks. Atmos Environ 253:118376. https://doi.org/10.1016/j.atmosenv.2021.118376
Secretaría Distrital de Ambiente. (2023). Informe anual de calidad del aire de Bogotá año 2022. Red de Monitoreo de Calidad del Aire de Bogotá D.C RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe%20anual%202022.pdf
Secretaría Distrital de Ambiente, Dirección de Control Ambiental Subdirección de Calidad del Aire, Auditiva y Visual-SCAAV Red de Monitoreo de Calidad del Aire de Bogotá - RMCAB, (2021). Informe anual de calidad del aire en Bogotá 2020. Recuperado de: 120721Informe-Anual-de-Calidad-del-Aire-Ano-2020-v2 (1).pdf
Seinfeld, J., & Pandis, S. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (3rd Edition ed., Vol. Chapter 6). Wiley. Obtenido de http://www.ideam.gov.co/web/tiempo-y-clima/ozono-troposferico
Shewalkar, A., Nyavanandi, D & Ludwig, S. (2019). Performance Evaluation of Deep Neural Networks Applied to Speech Recognition: RNN, LSTM and GRU. Journal of Artificial Intelligence and Soft Computing Research. https://doi.org/10.2478/jaiscr-2019-0006
Singh, V., Singh, S. & Biswal, A. (2021). Exceedances and trends of particulate matter (PM2.5) in five Indian megacities. Sci. Total Environ. doi: https://doi.org/10.1016/j.scitotenv.2020.141461
Sokhi, R., Singh, V., Querol, X., Finardi, S., Targino, A., Andrade, M., . . . Zavala, M. (2021). A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions,. Environment International. doi: doi.org/10.1016/j.envint.2021.106818
Sundermeyer, M., Schlüter, R. & Ney, H. (2012). LSTM Neural Networks for Language Modeling. In Thirteenth annual conference of the international speech communication association
Suthaharan, S. (2015). Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning. Springer
Telikani, A., Tahmassebi, A., Banzhaf, W., & Gandomi, A. (2021). Evolutionary Machine Learning: A Survey. ACM Computing Surveys, vol. 54(no. 8). doi: https://doi.org/10.1145/3467477
Turner, M. C., Andersen, Z. J., Baccarelli, A., Diver, W. R., Gapstur, S. M., Pope, C. A., et al. (2020). Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: A Cancer Journal for Clinicians, 70(6), 460–479. https://doi.org/10.3322/caac.21632
Ultsch, A. (1993). Self-Organizing Neural Networks for Visualisation and Classification. In: Opitz, O., Lausen, B., Klar, R. (eds) Information and Classification. Studies in Classification, Data Analysis and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50974-2_31
University Colles London, Universidad de los Andes. (2013). Caracterización de la contaminación atmosférica en Colombia. Reino Unido - Colombia. Obtenido de https://prosperityfund.uniandes.edu.co/site/wp-content/uploads/Caracterizaci%C3%B3n-de-la-contaminaci%C3%B3n-atmosf%C3%A9rica-en-Colombia.pdf
Valencia, R., Sanchez, G., & Díaz I. (2016). A general regression neural network for modeling the behavior of PM10 concentration level in Santa Marta, Colombia. ARPN J Eng Appl Sci, ISSN 1819-6608
Von Schneidemesser, E., Monks, P., Allan, J., Bruhwiler, L., Forster, P., Fowler, D., . . . Sutton, M. (2015). Chemistry and the linkages between air quality and climate change. Chem. Rev. doi: https://doi.org/10.1021/acs.chemrev.5b00089
Wang, J., Wang, D., Ge, B., Lin, W., Ji, D., Pan, X., . . . Wang, Z. (2022). Increase in daytime ozone exposure due to nighttime accumulation in a typical city in eastern China during 2014–2020. Atmospheric Pollution Research, Vol. 13. doi: doi.org/10.1016/j.apr.2022.101387
Wang, SC. (2003). Artificial Neural Network. In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science. https://doi.org/10.1007/978-1-4615-0377-4_5
World Health Organization. (‎2021)‎. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://iris.who.int/handle/10665/345329
World Health Organization. (2018). Burden of disease from ambient air pollution for 2016. World Health Organization. Obtenido de https://www.who.int/airpollution/data/AAP_BoD_results_May2018_final.pdf?ua=1
Wong, C. M., Tsang, H., Lai, H. K., Thomas, G. N., Lam, K. B., Chan, K. P., et al. (2016). Cancer mortality risks from long-term exposure to ambient fine particle. Cancer Epidemiology, Biomarkers & Prevention, 25(5), 839–845. https://doi.org/10.1158/1055-9965.EPI-15-0626
Wu, Y., & Feng, J. (2017). Development and Application of Artificial Neural. Network. Wireless Personal Communications. doi:10.1007/s11277-017-5224-x
Wu, K., Yang, X., Chen, D., Gu, S., Lu, Y., Jiang, Q., Wang, F., Ou, Y., Qian, Y., Shao, P. & Lu, S. (2020). Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmospheric Research. doi:10.1016/j.atmosres.2019.104656
Yafouz, A., Ahmed, A., Zaini, N., & El-Shafie, A. (2021). Ozone Concentration Forecasting Based on Artificial Intelligence Techniques: A Systematic Review. Water, Air, & Soil Pollution. doi:10.1007/s11270-021-04989-5
Yafouz, A., AlDahoul, N., Birima, A., Ahmed, A., Sherif, M., Sefelnasr, A., . . . Elshafie, A. (2022). Comprehensive comparison of various machine learning algorithms for short-term ozone concentration prediction. Alexandria Engineering Journal, Vol. 61. doi: https://doi.org/10.1016/j.aej.2021.10.021
Yilmaz, A. (2021). Ozone level prediction with Machine Learning Algorithms. Journal of Aeronautics and Space Technologies, vol. 14(no. 2), pp. 177 – 183. Obtenido de https://orcid.org/0000-0003-0038-7519
Zambrano-Monserrate, M., Ruano, M., & Sanchez-Alcalde, L. (2020). Indirect effects of COVID-19 on the environment. Science of the Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.138813
Zheng, S., Schlink, U., Ho, K. F., Singh, R. P., & Pozzer, A. (2021). Distribución espacial de la mortalidad prematura relacionada con PM 2,5 en China. https://doi.org/10.1029/2021GH000532
Zhang, J., Sun, L., Rainham, D., Dummer, T., Wheeler, A., Anastasopolos, A., . . . Johnson, M. (2021). Predicting intraurban airborne PM1.0-trace elements in a port city: Land use regression by ordinary least squares and a machine learning algorithm. Science of the Total Environment, vol. 806. doi: https://doi.org/10.1016/j.scitotenv.2021.150149
Zhang, Z., He, H.-D., Yang, J.-M., Wang, H.-W., Xue, Y., & Peng, Z.-R. (2022). Spatiotemporal evolution of NO₂ diffusion in Beijing in response to COVID-19 lockdown using complex network. Chemosphere. doi: https://doi.org/10.1016/j.chemosphere.2022.133631
Zihao, Z., Zhan, L., & Wang, Y. (2019). Outlier removal based on Chauvenet's criterion and dense disparity refinement using least square support vector machine. Journal of Electronic Imaging. doi:10.1117/1.JEI.28.2.023028
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv viii, 101 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.spa.fl_str_mv Bogotá
dc.coverage.country.spa.fl_str_mv Colombia
dc.coverage.region.spa.fl_str_mv Cundinamarca
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1000838
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86187/2/Thesis_Msc_Diana_G.pdf
https://repositorio.unal.edu.co/bitstream/unal/86187/3/license.txt
bitstream.checksum.fl_str_mv faaf48db5e6facdd61c5239f03c47a23
eb34b1cf90b7e1103fc9dfd26be24b4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886079975915520
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rojas Roa, Néstor Yesid827f8ba58948271b39915a46415778ed600Casallas Garcia, Alejandro5b1a2d22be723e19c84a3c27911d9661García Millán, Diana Rocío5a7abb64ac386e5f39f2d8745309b5b0Calidad del Aire2024-05-30T18:40:40Z2024-05-30T18:40:40Z2024-05https://repositorio.unal.edu.co/handle/unal/86187Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl ozono troposférico es una preocupación ambiental que tiene repercusiones tanto en la salud humana como en los ecosistemas, aún más, cuando su producción depende directamente de factores tanto ambientales como antropogénicos. En los últimos años, en Bogotá, el ozono ha tenido una tendencia de aumento en su concentración. Por ello, es imperativo estudiar la razón por la cual este incremento se está presentando, así como realizar avances en modelos que permitan realizar alertas tempranas y reducir el riesgo. La predicción es crucial para concientizar sobre la salud pública y la implementación de estrategias de gestión de la calidad del aire. Se realiza un estudio general del comportamiento y evolución del ozono (O3) en las diferentes zonas de Bogotá. Este proyecto tiene como objetivo diseñar un modelo predictivo de aprendizaje automático (machine learning) de los niveles de O3 en Bogotá utilizando datos de la Red de Monitoreo de Calidad del Aire de Bogotá (RMCAB), incluyendo mediciones de precursores de ozono y variables meteorológicas. Los modelos de aprendizaje automático utilizados fueron redes convolucionales y capas de memoria bireccional a largo plazo (LSTM) de la biblioteca Tensor Flow Keras y el paquete Python Sklearn, para facilitar la categorización de técnicas de inteligencia artificial. Esto da como resultado un modelo que destaca por su capacidad de ofrecer pronósticos altamente precisos al considerar y cuantificar la influencia de los precursores. Los resultados del modelo determinaron una correlación de Spearman mayor a 0.6, la raíz del error cuadrático medio se mantuvo por debajo de 10 µg/m³ en todos los casos y el Índice de Ajuste superó el valor de 0.5 en todos los casos, categorizados como bueno, excelente y bueno respectivamente, lo cual sugiere que el modelo replica con precisión y exactitud el comportamiento y la tendencia del ozono. Se espera que la metodología aplicada sirva como referencia para continuar con la predicción de otros contaminantes atmosféricos de interés y de esta forma dar apoyo a la toma de decisiones que permitan minimizar los impactos ambientales enfocados a la calidad del aire. (Texto tomado de la fuente).Tropospheric ozone is an environmental concern has repercussions on both human health and ecosystems, even more so when its production depends directly on both environmental and anthropogenic factors. In recent years, in Bogotá, ozone has had a trend of increasing concentration. Therefore, it is imperative to study the reason why this increase is occurring, as well as make advances in models that allow early warnings and risk reduction. The prediction is crucial for public health awareness and implementation of air quality management strategies. A general study of the behavior and evolution of ozone (O3) in the different areas of Bogotá is carried out. This project aims to create a predictive machine learning model for ozone levels in Bogotá using data from the air quality monitoring network, including measurements of O3 precursors and meteorological variables. Machine learning models used were Convolutional Networks and Birectional Long Short-Term Memory (LSTM) layers from the Tensor Flow Keras library, and the Python package Sklearn, to facilitate the categorization of artificial intelligence techniques. This results in a model that stands out for its ability to offer highly accurate forecasts by considering and quantifying the influence of precursors. The results of the model determined a Spearman correlation greater than 0.6, the root mean square error remained below 10 µg/m³ in all cases and the Fit Index exceeded the value of 0.5 in all cases, categorized as good , excellent and good respectively, which suggests that the model accurately and precisely replicates the behavior and trend of ozone. It is expected that the applied methodology will serve as a reference to continue with the prediction of other atmospheric pollutants of interest and in this way provide support for decision-making that allows minimizing environmental impacts focused on air quality.MaestríaMagíster en Ingeniería - Ingeniería AmbientalCalidad del aireviii, 101 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaOzono troposféricoMachine learningCalidad del airePredicciónPrecursoresTropospheric ozoneMachine LearningConvolutionalAir qualityContaminación atmosféricaaprendizaje automáticoModelo de simulaciónAir pollutionmachine learningSimulation modelsPredicción de ozono troposférico en Bogotá: un enfoque de Machine LearningTropospheric ozone prediction in Bogotá: a machine learning approachTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotáColombiaCundinamarcahttp://vocab.getty.edu/page/tgn/1000838Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Jeffrey Dean, D.; Devin, M.; Ghemawat, S.; et al. (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv. Doi: https://doi.org/10.48550/arXiv.1603.04467Abdul-Wahab S, Al-Alawi S. (2002) Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ Model Softw 17:219–228. https://doi.org/10.1016/S1364-8152(01)00077-9Acevedo F. (2020) Influencia de la calidad del aire en la mortalidad y la morbilidad por enfermedades respiratorias en Colombia. http://hdl.handle.net/11634/33256Adame, J., Gutiérrez-Álvarez, I., Cristofanelli, P., Notario, A., Bogeat, J., López, A., . . . Yela, M. (2022). Surface ozone trends over a 21-year period at El Arenosillo observatory (Southwestern Europe). Atmospheric Research, Vol. 269. doi: https://doi.org/10.1016/j.atmosres.2022.106048Agatonovic-Kustrin, S. & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis. doi: https://doi.org/10.1016/S0731-7085(99)00272-1Agencia Europea de Medio Ambiente. (2020). Contaminación atmosférica. Obtenido de https://www.eea.europa.eu/es/themes/air/introAlbawi, S., A. Mohammed, T. & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET). doi: 10.1109/ICEngTechnol.2017.8308186Alcaldía Mayor de Bogotá D. C. (2021). Plan de Ordenamiento Territorial Bogotá Reverdece 2022-2035. Proyecto de Acuerdo. https://bogota.gov.co/mi-ciudad/pot-bogota-reverdece-2022-2035/articulado-del-pot-bogota-reverdece-2022-2035Ali, J., Khan, R., Ahmad, N. & Maqsood, I. (2012). Random Forests and Decision Trees. IJCSI International Journal of Computer Science Issues. ISSN (Online): 1694-0814AlOmar, M., Hameed, M. & AlSaadi, M. (2020). Multi hours ahead prediction of surface ozone gas concentration: Robust artificial intelligence approach. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2020.06.024.Alpaydin, E. (2016). Machine Learning: The New AI. Cambridge, MA, USA. Obtenido de https://search-ebscohost-com.ezproxy.unal.edu.co/login.aspx?direct=true&db=nlebk&AN=1369420&lang=es&site=eds-liveBaena-Salazar, D., Jimenez, J., Zapata, C., & Ramirez-Cardona, A. (2019). Red neuronal artificial aplicado para el pronóstico de eventos críticos de PM2.5 en el Valle de Aburrá. Dyna rev.fac.nac.minas, ISSN 0012-7353. doi: https://doi.org/10.15446/dyna.v86n209.63228Ballesteros-González, K., Sullivan, A., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.139755Banja, M., Papanastasiou, D., Poupkou, A., & Melas, D. (2012). Development of a short-term ozone prediction tool in Tirana area based on meteorological variables. doi:10.5094/APR.2012.002Baquero, J. (2023). Análisis de la variabilidad estacional, interanual y tendencia del ozono (O₃) y sus precursores, así como la dinámica oxidativa de la atmósfera en Bogotá entre 2010 y 2020. Universidad Nacional de Colombia. Repositorio: https://repositorio.unal.edu.co/handle/unal/84018Barten, j., Ganzeveld, L., Visser, A., Jiménez, R., & Krol, C. (2020). Evaluation of nitrogen oxides (NOEvaluation of nitrogen oxides (NOx) sources and sinks and ozone production in Colombia and surrounding areas. Atmos. Chem. Phys. doi: https://doi.org/10.5194/acp-20-9441-2020Bhattacharya, S., & Shahnawaz, S. (2021). Using Machine Learning to Predict Air Quality Index in New Delhi. doi:arXiv:2112.05753Bigi, A. & Ghermandi, G. (2016). Trends and variability of atmospheric PM2.5 and PM₁₀ –2.5 concentration in the Po Valley, Italy. Atmos. Chem. Phys. doi: 10.5194/acp-16-15777-2016Bolaño-Diaz, S., Camargo-Caicedo, Y., Tovar-Bernal, F. & Bolaño-Ortiz, T.R. (2022). The Effect of Forest Fire Events on Air Quality: A Case Study of Northern Colombia. Fire. doi:. https://doi.org/10.3390/fire5060191Brockwell, P.J. & Davis, R.A. (2002). State-Space Models. In: (eds) Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer. doi: https://doi.org/10.1007/0-387-21657-X_8Butković, V., Cvitaš, T., & Klasinc, L. (1990). Photochemical ozone in the mediterranean. Science of The Total Environment, Vol. 99. doi.org/10.1016/0048-9697(90)90219-KButt, E. W., Turnock, S. T., Rigby, R., Reddington, C. L., Yoshioka, M., Johnson, J. S., et al. (2017). Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environmental Research Letters, 12(10), 104017. https://doi.org/10.1088/1748-9326/aa87beBurnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope, C. A., et al. (2018). Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 115(38), 9592–9597. https://doi.org/10.1073/pnas.1803222115Burnett, R. T., Pope, C. A., III, Ezzati, M., Olives, C., Lim, S. S., Mehta, S., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397–403. https://doi.org/10.1289/ehp.1307049Camacho N (2021) Efectos de la temperatura y los contaminantes atmosféricos sobre la salud pública en Bogotá, Colombia. https://www.researchgate.net/profile/Natalia-Camacho-Castaneda/publication/354611482_Efectos_de_la_temperatura_y_los_contaminantes_atmosfericos_sobre_la_salud_publica_en_Bogota_Colombia/links/61424ce328667828a8981607/Efectos-de-la-temperatura-y-los-contaminantes-atmosfericos-sobre-la-salud-publica-en-Bogota-Colombia.pdfCañada Torrecilla, M. R. (2021). El riesgo de contaminación por ozono en dos ciudades españolas (Madrid y Sevilla): Un estudio realizado con técnicas de modelado espacial y SIG. Geographicalia, 73, 195-212.Casallas, A., Cabrera, A., Guevara-Luna, M-A., Tompkins, A., González, Y., Aranda, J., Belalcazar, L., Mogollon-Sotelo, C., Celis, N., Lopez-Barrera, E., Peña-Rincon, C., Ferro, C. (2024). Air pollution analysis in Northwestern South America: A new Lagrangian framework. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2023.167350Casallas, A., Castillo-Camacho, M., Sanchez, E., González, Y., Celis, N., Mendez-Espinosa, J., Belalcazar, L. & Ferro, C. (2023). Surface, Satellite Ozone Changes in Northern South America During Low Anthropogenic Emission Conditions: A Machine Learning Approach. SSRN. doi: http://dx.doi.org/10.2139/ssrn.4016140Casallas, A., Córdoba, T., Sánchez-Cárdenas, L., Guevara-Luna, M., & Belalcázar, L. (2022a). Understanding the atmospheric characteristics of high polluted. EIA. Esc. Ing. Antioq. doi: https://doi.org/10.13140/RG.2.2.22694.65606Casallas, A., Ferro, C., Celis, N., Guevara-Luna, M., Mogollón-Sotelo, C., Guevara-Luna, F., & Merchán, M. (2021). Long short-term memory artificial neural network approach to forecast meteorology and PM2.5 local variables in Bogotá, Colombia. Model. Earth Syst. Environ. doi: https://doi.org/10.1007/s40808-021-01274-6Casallas, A., Ferro, C., Celis, N., Mogollon-Sotelo, C., & Belalcazar, L. (2022b). Design of a 3D convolutional neural network model to forecast PM2.5 and O₃ concentrations in Colombia. IEEE Xplore. doi:10.1109/CASAP54985.2021.9703414Casallas, S., Celis, N., Ferro, C., López, E., Peña, C., Corredor, J., & Ballen, M. (2020). Validation of PM₁₀ & PM2.5 early alert in Bogotá, Colombia, through the modeling software WRF-CHEM. Environmental Science and Pollution Research. doi:10.1007/s11356-019-06997-9Casas, N. (2017). Deep Deterministic Policy Gradient for Urban Traffic Light Control. Cornell University. arXiv:1703.09035. https://doi.org/10.48550/arXiv.1703.09035Castillo-Camacho, M.P., Tunarrosa-Grisales, I.C., Chacon-Rivera, L.M., Guevara-Luna, M. A. & Belalcazar-Cerón, L.C. (2020). Personal Exposure to PM2.5 in the Massive Transport System of Bogotá and Medellín, Colombia. Asian J. Atmos. Environ. https://doi.org/10.5572/ajae.2020.14.3.210Castro, M., & Pires, J. (2019). Decision support tool to improve the spatial distribution of air quality monitoring sites. Atmospheric Pollution Research, Vol. 10. doi: https://doi.org/10.1016/j.apr.2018.12.011Celis, N., Casallas, A., López, E., Martínez, H., Peña, C., Arenas, R., & Ferro, C. (2022). Design of an early alert system for PM2.5 through a stochastic method and machine learning models. Environmental Science & Policy, vol. 127. doi: https://doi.org/10.1016/j.envsci.2021.10.030Chaparro, L., Bustos, J., Barrera, E., & Casallas, A. (2022). Evaluation of Recurring Neuronal Network For Prediction of Risk For Sulfur Oxides (SOx) in The City Of Bogotá. IEEE Xplore. doi:10.1109/CASAP54985.2021.9703418Chai, T., Kim, H., Lee, P., Tong, D., Pan, L., Tang, Y., Huang, J., McQueen, J., Tsidulko, M. & Stajner, I. (2013). Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO₂ measurements. Geoscientific Model Development. doi:10.5194/gmd-6-1831-2013Chen, Y., Chen, X., Xu, A., Sun, Q. & Peng, X. (2022). A hybrid CNN-Transformer model for ozone concentration prediction. Air Qual Atmos Health. doi: https://doi-org.ezproxy.unal.edu.co/10.1007/s11869-022-01197-wCheng, M., Fang, F., Navon, I., Zheng, J., Zhu, J. & Pain, C.(2023). Assessing uncertainty and heterogeneity in machine learning-based spatiotemporal ozone prediction in Beijing-Tianjin- Hebei region in China. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2023.163146.Chiarvetto, L., Rey, F., & Brignole, N. (2008). Aplicación de Redes neuronales artificiales para la predicción de la calidad de aire. Mecánica Computaciona, vol. XXVII, pp. 3607-3625. Obtenido de https://cimec.org.ar/ojs/index.php/mc/article/viewFile/1654/1618Cleveland, R. B., Cleveland, W. S., McRae, J., and Terpenning, I. (1990). STL: a seasonal-trend decomposition procedure based on Loess. J. Off. Stat. https://www.nniiem.ru/file/news/2016/stl-statistical-model.pdfChowdhury, P. H., He, Q., Carmieli, R., Li, C., Rudich, Y., & Pardo, M. (2019). Connecting the oxidative potential of secondary organic aerosols with reactive oxygen species in exposed lung cells. Environmental Science & Technology, 53(23), 13949–13958. https://doi.org/10.1021/acs.est.9b04449Chowdhury, S., Pozzer, A., Dey, S., Klingmueller, K., & Lelieveld, J. (2020). Changing risk factors that contribute to premature mortality from ambient air pollution between 2000 and 2015. Environmental Research Letters, 15(7), 074010. https://doi.org/10.1088/1748-9326/ab8334Clifton, J. & Laber, E. (2020). Q-Learning: Theory and Applications. Annual Review of Statistics and Its Application. https://doi.org/10.1146/annurev-statistics-031219-041220Cooper, O., Parrish, D., Stohl, A., Trainer, M., Nédélec, P., Thouret, V., . . . Avery, M. (2009). Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature. doi:doi.org/10.1038/nature08708Chollet, F. (2015). Keras. Disponible online: https://keras.ioCurto, J. D., & Pinto, J. C. (2011). The corrected VIF (CVIF). Journal of Applied Statistics. http://explore.bl.uk/primo_library/libweb/action/display.do?Deroubaix, A., Brasseur, G., Gaubert, B., Labuhn, I., Menut, L., Siour, G. & Tuccella, P. (2021). Response of surface ozone concentration to emission reduction and meteorology during the COVID-19 lockdown in Europe. Royal Meteorological Society. https://doi.org/10.1002/met.1990Dunner, A., Iglesias Álamos, V., & Ruiz Rudolph, P. (2018). El ozono troposférico como modificador del efecto de material particulado 2,5 sobre muertes diarias cardiovasculares en adultos mayores. Santiago, 2009-2013. https://www.researchgate.net/publication/327060086_El_ozono_troposferico_como_modificador_del_efecto_de_material_particulado_25_sobre_muertes_diarias_cardiovasculares_en_adultos_mayores_Santiago_2009-2013EPA. (2007). Un resumen de la Ley de Aire Limpio. Publicación N.° EPA-456/K-07-001.EPA. (2021). EPA Partners with Tribes to Deploy Air Sensors in Communities. Obtenido de https://www.epa.gov/sciencematters/epa-partners-tribes-deploy-air-sensors-communitiesEuropean Environment Agency. (2008). Medio Ambiente Europeo - La Evaluación Dobris.European Environment Agency. (2016). Air quality in Europe 2016 report. Obtenido de http://www.eea.europa.eu/publications/air-quality-in-europe-2016Fernández, S., Sánchez, J. & Córdoba, A. (2002). Estadística descriptiva. ESIC Editorial. ISBN: 84-7356-306-9Fiore, A., Naik, V. & Leibensperger, E. (2015). Air Quality and Climate Connections. Journal of the Air & Waste Management Association. doi: 10.1080/10962247.2015.104052Franceschi, F., Cobo, M., & Figueredo, M. (2018). Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2018.02.006Fu, TM., Zheng, Y., Paulot, F., Mau, J. & Yantosca, R. (2015). Positive but variable sensitivity of August surface ozone to large-scale warming in the southeast United States. Nature Clim Change. doi: https://doi-org.ezproxy.unal.edu.co/10.1038/nclimate2567Ghahremanloo, M., Lops, Y., Choi, Y., & Yeganeh, B. (2021). Deep Learning Estimation of Daily Ground-Level NO₂ Concentrations From Remote Sensing Data. J. Geophys. Res Atmos. doi: https://doi-org.ezproxy.unal.edu.co/10.1029/2021JD034925Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biol. Cybern. doi: https://doi.org/10.1007/BF00342633Ghahremanloo M, Lops Y, Choi Y, Jung J, Mousevinezhad S & Hammond D (2022) A comprehensive study of the COVID-19 impact on PM2.5 levels over the contiguous United States: a deep learning approach. Atmos Environ 118944. https://doi.org/10.1016/j.atmosenv.2022.118944Gonzalez, C.M., Ynoue, R.Y., Vara-Vela, A., Rojas, N.Y. & Aristizabal, B.H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM10 dynamics. Atmospheric Pollution Research. doi: https://doi.org/10.1016/j.apr.2018.03.003Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. https://www.deeplearningbook.org/Guzmán, D., Ruíz, J.F. & Cadena, M. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través análisis de componentes principales (ACP). IDEAM. Bogotá, Colombia. http://www.ideam.gov.co/documents/21021/21141/Regionalizacion+de+la+Precipitacion+Media+Mensual/1239c8b3-299d-4099-bf52-55a414557119Hahad, O., Frenis, K., Kuntic, M., Daiber, A., & Münzel, T. (2021). Accelerated aging and age-related diseases (CVD and neurological) due to air pollution and traffic noise exposure. International Journal of Molecular Sciences, 22(5), 2419. https://doi.org/10.3390/ijms22052419Henao, J., Rendón, A., Hernández, K., Giraldo-Ramirez, P., Robledo, V., Posada, J., . . . Mejia, J. (2021). Differential Effects of the COVID-19 Lockdown and Regional Fire on the Air Quality of Medellín, Colombia. Atmosphere. doi: https://doi.org/10.3390/atmos12091137Hernandez-Deckers D (2021) Features of atmospheric deep convection in northwestern South America obtained from infrared satellite data. Quart J Royal Meteor Soc. https://doi.org/10.1002/qj.4208Herrera, S. (2017). Valor económico de la calidad del aire en la localidad de Kennedy medido desde la salud de los habitantes. Universidad de los Andes. https://repositorio.uniandes.edu.co/entities/publication/de137266-925e-4b81-a76c-af190ae9369bHuang, C.-J., & Kou, P.-H. (2018). A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities. Sensors . doi: https://doi.org/10.3390/s18072220Inter Agency for Research on Cance. Outdoor air pollution. IARC. (2016). Monographs on the Evaluation of Carcinogenic Risks to Humans (Vol. Vol. 109). Lyon.Ismail, M., Suroto, A., Ibrahim, T., & Abdullah, A. (2011). Tropospheric ozone trend in the Muda Irrigation Area, Kedah. Journal of Physical. Science. doi:web.usm.my/jps/22-2-11/22.2.7.pdfJiménez, P. (2019). Estudio de la contaminación. Elearning, S.L., Jin, Z., Yan, D., Zhang, Z., Li, M., Wang, T., Huang, X., Xie, M., Li, S., Zhuang, B. (2023). Effects of Elevated Ozone Exposure on Regional Meteorology and Air Quality in China Through Ozone-Vegetation Coupling. JGR Atmosfpheres. doi: https://doi-org.ezproxy.unal.edu.co/10.1029/2022JD038119Kapadia, D. & Jariwala, N. (2022). Prediction of tropospheric ozone using artificial neural network (ANN) and feature selection techniques. Model. Earth Syst. Environ. doi: https://doi-org.ezproxy.unal.edu.co/10.1007/s40808-021-01220-6Ke, Li., Jacob, D., Liao, H., Shen, L., Zhang, Q. & Bates, K. (2018). Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. PNAS. https://doi.org/10.1073/pnas.1812168116Khalil, A., Barhoom, A., Abu-Nasser, B., Musleh, M. & Abu-Naser, S. (2019). Energy Efficiency Prediction using Artificial Neural Network. International Journal of Academic Pedagogical Research. https://philpapers.org/rec/KHAEEPKingman, D.P. & Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv arXiv:1412.6980. doi: https://doi.org/10.48550/arXiv.1412.6980Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M. & Inmanf, D.(2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing. https://doi.org/10.1016/j.ymssp.2020.107398Kodinariya, T. & Makwana, P. (2013). Review on determining number of Cluster in K-Means Clustering. International Journal of Advance Research in Computer Science and Management Studies. ISSN: 2321-7782Kumar, J., Goomer, R. & Singh, A. (2018). Long Short Term Memory Recurrent Neural Network (LSTM-RNN) Based Workload Forecasting Model For Cloud Datacenters. Procedia Computer Science. https://doi.org/10.1016/j.procs.2017.12.087Kumar, A., Jiménez, R., Belalcázar, L. C., & Rojas, N. Y. (2016). Application of WRF-Chem Model to Simulate PM₁₀ Concentration over Bogota. Aerosol and Air Quality Research. doi:10.4209/aaqr.2015.05.0318Lee, H. & Park, R. (2022). Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions. Environmental Pollution. doi: https://doi.org/10.1016/j.envpol.2022.119645Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371. https://doi.org/10.1038/nature15371Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovascular Research, 116(11), 1910–1917. https://doi.org/10.1093/cvr/cvaa025Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., ... García, S. O. (2019). Contaminación del aire ambiente por partículas y mortalidad diaria en 652 ciudades. DOI: 10.1056/NEJMoa1817364Liu, F., Beirle, S., Zhang, Q., Dörner, S., He, K., & Wagner, T. (2016). NOX lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics, 16(8), 5283–5298. https://doi.org/10.5194/acp-16-5283-2016Liu, Y., Wang, T., Stavrakou, T., Elguindi, N., Doumbia, T., Granier, C., Bouarar, I., Gaubert, B. & Brasseur, G. (2021). Diverse response of surface ozone to COVID-19 lockdown in China. Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2021.147739.MADS. (2010). Protocolo para el monitoreo y seguimiento de la calidad del aire.Mendez-Espinosa, J. F., Belalcazar, L. C., & Betancourt, R. M. (2019). Regional Air Quality Impact of Northern South America Biomass Burning Emissions. Atmospheric Environment. doi:10.1016/j.atmosenv.2019.01.042Mendez-Espinosa, J. F., Rojas, N., Vargas, J., Patchón, J., Belalcazar, L. & Ramírez, O. (2020). Air quality variations in Northern South America during the COVID-19 lockdown. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.141621Mogollón-Sotelo, C., Casallas, A., Vidal, S., Celis, N., Ferro, C., & Belalcazar, L. (2021). A support vector machine model to forecast ground-level PM2.5 in a highly populated city with a complex terrain. Air Qual Atmos Health, vol. 14, pp. 399-409. doi:https://doi.org/10.1007/s11869-020-00945-0Moghani, M. & Archer, C. (2020). The impact of emissions and climate change on future ozone concentrations in the USA. Air Quality, Atmosphere and Health. doi: https://doi.org/10.1007/s11869-020-00900-zMonks, P., Archibald, A., Colette, A., Cooper, O., Coyle, M., Derwent, R., . . . Williams, M. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys.(15, 8889–8973). doi:10.5194/acp-15-8889-2015Morales O (2023) Evaluación de la calidad de aire en Bogotá y su relación con la incidencia en el número de hospitalizaciones por enfermedades respiratorias. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://repositorio.unbosque.edu.co/bitstream/handle/20.500.12495/11447/Trabajo%20de%20grado.pdf?sequence=1&isAllowed=yMurray, C. J. L., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. M., Abbasi-Kangevari, M., et al. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2Ndiaye, E., Le, T., Fercoq, O., Salmon, J., & Takeuchi, I. (2019). Safe Grid Search with Optimal Complexity. Proceedings of the 36th International Conference on Machine Learning, in Proceedings of Machine Learning Proceedings of the 36th International Conference on Machine Learning. https://proceedings.mlr.press/v97/ndiaye19a.htmlNoble, W. (2006). What is a support vector machine?. Nat Biotechnol. doi: https://doi.org/10.1038/nbt1206-1565O’Shea, K. & Nash, R. (2015). An Introduction to Convolutional Neural Networks. Cornell University. https://doi.org/10.48550/arXiv.1511.08458 arXiv:1511.08458Parrish, D., Millet, D., & Goldstein, A. (2009). Increasing ozone in marine boundary layer inflow at the west coasts. Atmospheric Chemistry and Physics. doi: doi.org/10.5194/acp-9-1303-2009Peters, R., Ee, N., Peters, J., Booth, A., Mudway, I., & Anstey, K. J. (2019). Air pollution and dementia: A systematic review. Journal of Alzheimer's Disease, 70(s1), 145–163. https://doi.org/10.3233/JAD-180631Pires, J., & Martins, F. (2011). Correction methods for statistical models in tropospheric ozone forecasting. Atmospheric Pollution Research. doi:10.1016/j.atmosenv.2011.02.011Prechelt , L. (1998). Early Stopping - But When? Lecture Notes in Computer Science. doi: https://doi.org/10.1007/3-540-49430-8_3Pope, C. A., Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine, 360(4), 376–386. https://doi.org/10.1056/NEJMsa0805646Pozzer, A., Anenberg, S. C., Dey, S., Haines, A., Lelieveld, J., & Chowdhury, S. (2022). Mortalidad atribuible a la contaminación del aire ambiente: una revisión de las estimaciones mundiales. https://doi.org/10.1029/2022GH000711Prabhakaran, D., Mandal, S., Krishna, B., Magsumbol, M., Singh, K., Tandon, N., et al. (2020). Exposure to particulate matter is associated with elevated blood pressure and incident hypertension in urban India. Hypertension. https://www.ahajournals.org/doi/full/10.1161Prechelt, L. (2002). Early Stopping - But When? LNCS, V 1524. doi: 10.1007/3-540-49430-8_3Ramírez, O., Sánchez de la Campa, A., Amato, F., Moreno, T., Silva, L. & de la Rosa, J. (2019). Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Science of The Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2018.10.214Río, A (2020). Cambio climático, la penalidad del ozono y la mortalidad asociada en la Ciudad de México. http://hdl.handle.net/11651/4342Roderick, M., MacGlashan, J. & Tellex, S. (2017). Implementing the Deep Q-Network. Cornell University. arXiv:1711.07478. doi: https://doi.org/10.48550/arXiv.1711.07478Rojas, N. (2007). Aire y problemas ambientales de Bogotá. Recuperado de: Microsoft Word - Aire y problemas ambientales de Bogotá.doc (bogota.gov.co)Rojas, N., 2004. Revisión de las emisiones de material particulado por la combustion de Diesel y Biodiesel. Revista de Ingeniería. Disponible: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-49932004000200007&lng=en&tlng=esRusso, F., Biancardo , S., Formisano , A., & Dell'Acqua, G. (2018). Predicting percent air voids content in compacted bituminous hot mixture specimens by varying the energy laboratory compaction and the bulk density assessment method. Construction and Building Materials. doi: https://doi.org/10.1016/j.conbuildmat.2017.12.174Sayeed, A., Choi, Y., Eslami, E., Jung, J., Lops, Y., Khan, A., . . . Choi, M.-H. (2021). A novel CMAQ-CNN hybrid model to forecast hourly surface-ozone concentrations 14 days in advance. Scientific Reports, vol. 806. doi: https://doi.org/10.1016/j.scitotenv.2021.150149Sayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A., & Jung, J. (2020). Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Networks. doi: doi.org/10.1016/j.neunet.2019.09.033Sayeed A, Lops Y, Choi Y, Jung J, Salman AK (2021a) Bias correcting and extending the PM forecast by CMAQ up to 7 days using deep convolutional neural networks. Atmos Environ 253:118376. https://doi.org/10.1016/j.atmosenv.2021.118376Secretaría Distrital de Ambiente. (2023). Informe anual de calidad del aire de Bogotá año 2022. Red de Monitoreo de Calidad del Aire de Bogotá D.C RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Informe%20anual%202022.pdfSecretaría Distrital de Ambiente, Dirección de Control Ambiental Subdirección de Calidad del Aire, Auditiva y Visual-SCAAV Red de Monitoreo de Calidad del Aire de Bogotá - RMCAB, (2021). Informe anual de calidad del aire en Bogotá 2020. Recuperado de: 120721Informe-Anual-de-Calidad-del-Aire-Ano-2020-v2 (1).pdfSeinfeld, J., & Pandis, S. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (3rd Edition ed., Vol. Chapter 6). Wiley. Obtenido de http://www.ideam.gov.co/web/tiempo-y-clima/ozono-troposfericoShewalkar, A., Nyavanandi, D & Ludwig, S. (2019). Performance Evaluation of Deep Neural Networks Applied to Speech Recognition: RNN, LSTM and GRU. Journal of Artificial Intelligence and Soft Computing Research. https://doi.org/10.2478/jaiscr-2019-0006Singh, V., Singh, S. & Biswal, A. (2021). Exceedances and trends of particulate matter (PM2.5) in five Indian megacities. Sci. Total Environ. doi: https://doi.org/10.1016/j.scitotenv.2020.141461Sokhi, R., Singh, V., Querol, X., Finardi, S., Targino, A., Andrade, M., . . . Zavala, M. (2021). A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions,. Environment International. doi: doi.org/10.1016/j.envint.2021.106818Sundermeyer, M., Schlüter, R. & Ney, H. (2012). LSTM Neural Networks for Language Modeling. In Thirteenth annual conference of the international speech communication associationSuthaharan, S. (2015). Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning. SpringerTelikani, A., Tahmassebi, A., Banzhaf, W., & Gandomi, A. (2021). Evolutionary Machine Learning: A Survey. ACM Computing Surveys, vol. 54(no. 8). doi: https://doi.org/10.1145/3467477Turner, M. C., Andersen, Z. J., Baccarelli, A., Diver, W. R., Gapstur, S. M., Pope, C. A., et al. (2020). Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: A Cancer Journal for Clinicians, 70(6), 460–479. https://doi.org/10.3322/caac.21632Ultsch, A. (1993). Self-Organizing Neural Networks for Visualisation and Classification. In: Opitz, O., Lausen, B., Klar, R. (eds) Information and Classification. Studies in Classification, Data Analysis and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-50974-2_31University Colles London, Universidad de los Andes. (2013). Caracterización de la contaminación atmosférica en Colombia. Reino Unido - Colombia. Obtenido de https://prosperityfund.uniandes.edu.co/site/wp-content/uploads/Caracterizaci%C3%B3n-de-la-contaminaci%C3%B3n-atmosf%C3%A9rica-en-Colombia.pdfValencia, R., Sanchez, G., & Díaz I. (2016). A general regression neural network for modeling the behavior of PM10 concentration level in Santa Marta, Colombia. ARPN J Eng Appl Sci, ISSN 1819-6608Von Schneidemesser, E., Monks, P., Allan, J., Bruhwiler, L., Forster, P., Fowler, D., . . . Sutton, M. (2015). Chemistry and the linkages between air quality and climate change. Chem. Rev. doi: https://doi.org/10.1021/acs.chemrev.5b00089Wang, J., Wang, D., Ge, B., Lin, W., Ji, D., Pan, X., . . . Wang, Z. (2022). Increase in daytime ozone exposure due to nighttime accumulation in a typical city in eastern China during 2014–2020. Atmospheric Pollution Research, Vol. 13. doi: doi.org/10.1016/j.apr.2022.101387Wang, SC. (2003). Artificial Neural Network. In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science. https://doi.org/10.1007/978-1-4615-0377-4_5World Health Organization. (‎2021)‎. WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. https://iris.who.int/handle/10665/345329World Health Organization. (2018). Burden of disease from ambient air pollution for 2016. World Health Organization. Obtenido de https://www.who.int/airpollution/data/AAP_BoD_results_May2018_final.pdf?ua=1Wong, C. M., Tsang, H., Lai, H. K., Thomas, G. N., Lam, K. B., Chan, K. P., et al. (2016). Cancer mortality risks from long-term exposure to ambient fine particle. Cancer Epidemiology, Biomarkers & Prevention, 25(5), 839–845. https://doi.org/10.1158/1055-9965.EPI-15-0626Wu, Y., & Feng, J. (2017). Development and Application of Artificial Neural. Network. Wireless Personal Communications. doi:10.1007/s11277-017-5224-xWu, K., Yang, X., Chen, D., Gu, S., Lu, Y., Jiang, Q., Wang, F., Ou, Y., Qian, Y., Shao, P. & Lu, S. (2020). Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmospheric Research. doi:10.1016/j.atmosres.2019.104656Yafouz, A., Ahmed, A., Zaini, N., & El-Shafie, A. (2021). Ozone Concentration Forecasting Based on Artificial Intelligence Techniques: A Systematic Review. Water, Air, & Soil Pollution. doi:10.1007/s11270-021-04989-5Yafouz, A., AlDahoul, N., Birima, A., Ahmed, A., Sherif, M., Sefelnasr, A., . . . Elshafie, A. (2022). Comprehensive comparison of various machine learning algorithms for short-term ozone concentration prediction. Alexandria Engineering Journal, Vol. 61. doi: https://doi.org/10.1016/j.aej.2021.10.021Yilmaz, A. (2021). Ozone level prediction with Machine Learning Algorithms. Journal of Aeronautics and Space Technologies, vol. 14(no. 2), pp. 177 – 183. Obtenido de https://orcid.org/0000-0003-0038-7519Zambrano-Monserrate, M., Ruano, M., & Sanchez-Alcalde, L. (2020). Indirect effects of COVID-19 on the environment. Science of the Total Environment. doi: https://doi.org/10.1016/j.scitotenv.2020.138813Zheng, S., Schlink, U., Ho, K. F., Singh, R. P., & Pozzer, A. (2021). Distribución espacial de la mortalidad prematura relacionada con PM 2,5 en China. https://doi.org/10.1029/2021GH000532Zhang, J., Sun, L., Rainham, D., Dummer, T., Wheeler, A., Anastasopolos, A., . . . Johnson, M. (2021). Predicting intraurban airborne PM1.0-trace elements in a port city: Land use regression by ordinary least squares and a machine learning algorithm. Science of the Total Environment, vol. 806. doi: https://doi.org/10.1016/j.scitotenv.2021.150149Zhang, Z., He, H.-D., Yang, J.-M., Wang, H.-W., Xue, Y., & Peng, Z.-R. (2022). Spatiotemporal evolution of NO₂ diffusion in Beijing in response to COVID-19 lockdown using complex network. Chemosphere. doi: https://doi.org/10.1016/j.chemosphere.2022.133631Zihao, Z., Zhan, L., & Wang, Y. (2019). Outlier removal based on Chauvenet's criterion and dense disparity refinement using least square support vector machine. Journal of Electronic Imaging. doi:10.1117/1.JEI.28.2.023028Público generalORIGINALThesis_Msc_Diana_G.pdfThesis_Msc_Diana_G.pdfTesis de Maestría en Ingeniería - Ingeniería Ambientalapplication/pdf3806016https://repositorio.unal.edu.co/bitstream/unal/86187/2/Thesis_Msc_Diana_G.pdffaaf48db5e6facdd61c5239f03c47a23MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86187/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53unal/86187oai:repositorio.unal.edu.co:unal/861872024-05-30 13:44:18.282Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=