Desarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica

ilustracioneds, diagramas

Autores:
Durango Giraldo, Geraldine
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83073
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83073
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Oxido de cinc
Látex
Óxido de zinc
Compuesto
Actividad antibacteriana
Latex
Zinc oxide
Compound
Antibacterial activity
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_040b862fe58f360145ef91b7e784f6a4
oai_identifier_str oai:repositorio.unal.edu.co:unal/83073
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica
dc.title.translated.eng.fl_str_mv Development and evaluation of the physicochemical and antibacterial properties of latex/zinc oxide compounds for applications in biomedical engineering
title Desarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica
spellingShingle Desarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Oxido de cinc
Látex
Óxido de zinc
Compuesto
Actividad antibacteriana
Latex
Zinc oxide
Compound
Antibacterial activity
title_short Desarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica
title_full Desarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica
title_fullStr Desarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica
title_full_unstemmed Desarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica
title_sort Desarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédica
dc.creator.fl_str_mv Durango Giraldo, Geraldine
dc.contributor.advisor.none.fl_str_mv Buitrago Sierra, Robison
Santa Marín, Juan Felipe
dc.contributor.author.none.fl_str_mv Durango Giraldo, Geraldine
dc.contributor.researchgroup.spa.fl_str_mv Materiales Avanzados y Energía MATyER
dc.contributor.orcid.spa.fl_str_mv Durango Giraldo, Geraldine [0000-0002-7799-4790]
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Oxido de cinc
Látex
Óxido de zinc
Compuesto
Actividad antibacteriana
Latex
Zinc oxide
Compound
Antibacterial activity
dc.subject.lemb.spa.fl_str_mv Oxido de cinc
dc.subject.proposal.spa.fl_str_mv Látex
Óxido de zinc
Compuesto
Actividad antibacteriana
dc.subject.proposal.eng.fl_str_mv Latex
Zinc oxide
Compound
Antibacterial activity
description ilustracioneds, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-23T19:13:53Z
dc.date.available.none.fl_str_mv 2023-01-23T19:13:53Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83073
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83073
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Abadeer, N. S., & Murphy, C. J. (2016). Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. Journal of Physical Chemistry C, 120(9), 4691–4716. https://doi.org/10.1021/acs.jpcc.5b11232
Abd Elkodous, M., El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy, H. S., Mohamed, A. E., Mosallam, F. M., Nasser, H. A., Gobara, M., Baraka, A., Elsayed, M. A., & El-Batal, A. I. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids and Surfaces B: Biointerfaces, 180(March), 411–428. https://doi.org/10.1016/j.colsurfb.2019.05.008
Abebe, B., Zereffa, E. A., Tadesse, A., & Murthy, H. C. A. (2020). A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation. Nanoscale Research Letters, 15(1). https://doi.org/10.1186/s11671-020-03418-6
Abu-Dalo, M., Jaradat, A., Albiss, B. A., & Al-Rawashdeh, N. A. F. (2019). Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. Journal of Environmental Chemical Engineering, 7(5), 103370. https://doi.org/10.1016/j.jece.2019.103370
Aditya, A., Chattopadhyay, S., Jha, D., Gautam, H. K., Maiti, S., & Ganguli, M. (2018). Zinc Oxide Nanoparticles Dispersed in Ionic Liquids Show High Antimicrobial Efficacy to Skin-Specific Bacteria. ACS Applied Materials and Interfaces, 10(18), 15401–15411. https://doi.org/10.1021/acsami.8b01463
Aielo, P. B., Borges, F. A., Romeira, K. M., Miranda, M. C. R., Arruda, L. B. D., Paulo, P. N., Drago, B. D. C., & Herculano, R. D. (2014). Evaluation of sodium diclofenac release using natural rubber latex as carrier. Materials Research, 17(August), 146–152. https://doi.org/10.1590/S1516-14392014005000010
Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736. https://doi.org/10.1021/nn101390x
Al-Jumaili, A., Alancherry, S., Bazaka, K., & Jacob, M. V. (2017). Review on the antimicrobial properties of Carbon nanostructures. Materials, 10(9), 1–26. https://doi.org/10.3390/ma10091066
Almeida, G. F. B., Cardoso, M. R., Zancanela, D. C., Bernardes, L. L., Norberto, A. M. Q., Barros, N. R., Paulino, C. G., Chagas, A. L. D., Herculano, R. D., & Mendonça, C. R. (2020). Controlled drug delivery system by fs-laser micromachined biocompatible rubber latex membranes. Applied Surface Science, 506, 144762. https://doi.org/10.1016/j.apsusc.2019.144762
Almontasser, A., Parveen, A., & Azam, A. (2019). Synthesis, Characterization and antibacterial activity of Magnesium Oxide (MgO) nanoparticles. IOP Conference Series: Materials Science and Engineering, 577(1). https://doi.org/10.1088/1757-899X/577/1/012051
Alsultany, F. H., Majdi, H. S., Abd, H. R., Hassan, Z., & Ahmed, N. M. (2019). Catalytic Growth of 1D ZnO Nanoneedles on Glass Substrates Through Vapor Transport. Journal of Electronic Materials, 48(3), 1660–1668. https://doi.org/10.1007/s11664-018-06853-5
Anandgaonker, P., Kulkarni, G., Gaikwad, S., & Rajbhoj, A. (2019). Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arabian Journal of Chemistry, 12(8), 1815–1822. https://doi.org/10.1016/j.arabjc.2014.12.015
Anjana, P. M., Bindhu, M. R., Umadevi, M., & Rakhi, R. B. (2019). Antibacterial and electrochemical activities of silver, gold, and palladium nanoparticles dispersed amorphous carbon composites. Applied Surface Science, 479(February), 96–104. https://doi.org/10.1016/j.apsusc.2019.02.057
Arens, D., Zeiter, S., Nehrbass, D., Ranjan, N., Paulin, T., & Alt, V. (2020). Antimicrobial silver-coating for locking plates shows uneventful osteotomy healing and good biocompatibility results of an experimental study in rabbits. Injury, 51(4), 830–839. https://doi.org/10.1016/j.injury.2020.02.115
Arias-Flores, R., Rosado-Quiab, U., Vargas-Valerio, A., & Grajales-Muñiz, C. (2016). Los microorganismos causantes de infecciones nosocomiales en el Instituto Mexicano del Seguro Social. Microorganisms Responsible of Nosocomial Infections in the Instituto Mexicano Del Seguro Social., 54(1), 20–24. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=112752580&lang=es&site=ehost-live
Ariosa, D., Elhordoy, F., Dalchiele, E. A., Marotti, R. E., & Stari, C. (2011). Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples. Journal of Applied Physics, 110(12). https://doi.org/10.1063/1.3669026
Arora, S., Kaur, H., Kumar, R., Kaur, R., Rana, D., Rayat, C. S., Kaur, I., Arora, S. K., Bubber, P., & Bharadwaj, L. M. (2015). In vitro cytotoxicity of multiwalled and single-walled carbon nanotubes on human cell lines. Fullerenes Nanotubes and Carbon Nanostructures, 23(5), 377–382. https://doi.org/10.1080/1536383X.2013.812638
Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641. https://doi.org/10.1038/nnano.2009.242
B. Pinto, R. J., C., M., Pascoal, C., & Trindade, T. (2012). Composites of Cellulose and Metal Nanoparticles. Nanocomposites - New Trends and Developments. https://doi.org/10.5772/50553
Babayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E., & Jurga, S. (2022). ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-12134-3
Badetti, E., Calgaro, L., Falchi, L., Bonetto, A., Bettiol, C., Leonetti, B., Ambrosi, E., Zendri, E., & Marcomini, A. (2019). Interaction between copper oxide nanoparticles and amino acids: Influence on the antibacterial activity. Nanomaterials, 9(5). https://doi.org/10.3390/nano9050792
Balabanian, C. A. C. A., Coutinho-Netto, J., Lamano-Carvalho, T. L., Lacerda, S. A., & Brentegani, L. G. (2006). Biocompatibility of natural latex implanted into dental alveolus of rats. Journal of Oral Science, 48(4), 201–205. https://doi.org/10.2334/josnusd.48.201
Barraza-Garza, G., De La Rosa, L. A., Martínez-Martínez, A., Castillo-Michel, H., Cotte, M., & Alvarez-Parrilla, E. (2013). La microespectroscopía de infrarrojo con transformada de fourier (FTIRM) en el estudio de sistemas biológicos. Revista Latinoamericana de Quimica, 41(3), 125–148.
Beezhold, D., Swanson, M., Zehr, B. D., & Kostyal, D. (1996). Measurement of natural rubber proteins in latex glove extracts: Comparison of the methods. Annals of Allergy, Asthma and Immunology, 76(6), 520–526. https://doi.org/10.1016/S1081-1206(10)63271-1
Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk; Šerý, Mojmír; Ježek, Jan; Jákl, Petr; Šiler, Martin; Krzyžánek, Vladislav; Zemánek, Pavel; Holá, Veronika; Dvořáčková, Milada; Růžička, F. (2013). Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules, 13188–13199. https://doi.org/10.3390/molecules181113188
Bhat, T. S., Bhogale, S. B., Patil, S. S., Pisal, S. H., Phaltane, S. A., & Patil, P. S. (2020). Synthesis and characterization of hexagonal zinc oxide nanorods for Eosin-Y dye sensitized solar cell. Materials Today: Proceedings, 43, 2800–2804. https://doi.org/10.1016/j.matpr.2020.08.687
Borda D’Água, R., Branquinho, R., Duarte, M. P., Maurício, E., Fernando, A. L., Martins, R., & Fortunato, E. (2018). Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost: In situ synthesis. New Journal of Chemistry, 42(2), 1052–1060. https://doi.org/10.1039/c7nj03418k
Borges, F. A., de Barros, N. R., Garms, B. C., Miranda, M. C. R., Gemeinder, J. L. P., Ribeiro-Paes, J. T., Silva, R. F., de Toledo, K. A., & Herculano, R. D. (2017). Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. Journal of Applied Polymer Science, 134(39), 1–10. https://doi.org/10.1002/app.45321
Bottier, C. (2020). Biochemical composition of Hevea brasiliensis latex: A focus on the protein, lipid, carbohydrate and mineral contents. In Advances in Botanical Research (Vol. 93). Elsevier Ltd. https://doi.org/10.1016/bs.abr.2019.11.003
Bottier, C., Gross, B., Wadeesirisak, K., Srisomboon, S., Vallat, M., & Mougin, K. (2017). Impact of storage time of ammonia-stabilized latex on biochemical and physicochemical indicators of hevea. Agris: International Information System for the Agricultural Science and Technology, 1, 1–14.
Cáceres, A. P., & Gauthier-maradei, P. (2012). Análisis termogravimetrico como un nuevo método para la determinación de contenido de sólidos totales ( CST ) y caucho seco ( CCS ) del látex natural Thermogravimetric analysis as a new method to determine of total solid content ( TSC ) and dry rubber con. 25(2), 57–65.
Cedillo-González, E. I., Hernández-López, J. M., Ruiz-Valdés, J. J., Barbieri, V., & Siligardi, C. (2020). Self-cleaning TiO2 coatings for building materials: The influence of morphology and humidity in the stain removal performance. Construction and Building Materials, 237. https://doi.org/10.1016/j.conbuildmat.2019.117692
Chen, J., Chen, S., Gao, T., Gao, L., Xie, M., Pan, R., Zhong, J., & Cui, X. (2019). A novel approach in blending natural rubber latex with siliceous earth nanoparticles. Iranian Polymer Journal (English Edition), 28(9), 759–768. https://doi.org/10.1007/s13726-019-00740-4
Chen, J. L., Devi, N., Li, N., Fu, D. J., & Ke, X. W. (2018). Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties. Chinese Physics B, 27(8). https://doi.org/10.1088/1674-1056/27/8/086102
Chen, X., Wang, Z., & Wu, J. (2018). Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites. Journal of Polymer Research, 25(2). https://doi.org/10.1007/s10965-017-1433-y
Ciapetti, G., Stea, S., Pizzoferrato, A., Checchi, L., & Pelliccioni, G. A. (1994). A latex membrane, as an alternative device in the GTR technique: preliminary report on its biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9–10), 647–650. https://doi.org/10.1007/BF00120348
Cullity, B. D. (1978). Elements of X-RAY DIFFRACTION. In Addison-Wesley Publishing Company.
De Souza, R. C., Haberbeck, L. U., Riella, H. G., Ribeiro, D. H. B., & Carciofi, B. A. M. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36(2), 885–893. https://doi.org/10.1590/0104-6632.20190362s20180027
Devaraj, N. K., Han, T. C., Low, P. L., Ong, B. H., & Sin, Y. K. (2014). Synthesis and characterisation of zinc oxide nanoparticles for thermoelectric application. Materials Research Innovations, 18, S6-350-S6-353. https://doi.org/10.1179/1432891714Z.000000000980
Dey, T. K., Hossain, A., Jamal, M., Layek, R. K., & Uddin, M. E. (2022). Zinc Oxide Nanoparticle Reinforced Waste Buffing Dust Based Composite Insole and Its Antimicrobial Activity. Advances in Polymer Technology, 2022. https://doi.org/10.1155/2022/7130551
Dick, T. A., & Santos, L. A. (2017). In situ synthesis and characterization of hydroxyapatite / natural rubber composites for biomedical applications. Materials Science & Engineering C, 77, 874–882. https://doi.org/10.1016/j.msec.2017.03.301
Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., & Ighalo, J. O. (2022). Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32(1).https://doi.org/10.1186/s42834-021-00111-w
Dwivedi, S., Wahab, R., Khan, F., Mishra, Y. K., Musarrat, J., & Al-Khedhairy, A. A. (2014). Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE, 9(11), 1–9. https://doi.org/10.1371/journal.pone.0111289
Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537–556. https://doi.org/10.1016/j.talanta.2018.02.088
Emami-Karvani, Z., & Pegah, C. (2012). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research, 5(18), 1368–1373. https://doi.org/10.5897/ajmr10.159
Espitia, P. J. P., Soares, N. de F. F., Coimbra, J. S. dos R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology, 5(5), 1447–1464. https://doi.org/10.1007/s11947-012-0797-6
Feng, Q., Wu, J., Chen, G., Cui, F., Kim, T., & Kim, J. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Polymer Bulletin, 55(1–2), 105–113. https://doi.org/10.1007/s00289-005-0414-1
Floriano, J. F., Da Mota, L. S. L. S., Furtado, E. L., Rossetto, V. J. V., & Graeff, C. F. O. (2014). Biocompatibility studies of natural rubber latex from different tree clones and collection methods. Journal of Materials Science: Materials in Medicine, 25(2), 461–470. https://doi.org/10.1007/s10856-013-5089-9
Fontecha-Umaña, F., Ríos-Castillo, A. G., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2020). Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods, 9(4). https://doi.org/10.3390/foods9040442
Franco, S., Rodriguez, C., & Arias, S. (2013). Modelo de costo-efectividad para optimizar el impacto en la prevención de infecciones asociadas a la atención en salud en hospitales de Bogotá. 1–85. https://repository.usergioarboleda.edu.co/bitstream/handle/11232/899/Modelo de costo efectividad para optimizar impacto.pdf?sequence=2&isAllowed=y
Gallego, A., Cacua, K., Herrera, B., Cabaleiro, D., Piñeiro, M. M., & Lugo, L. (2020). Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Advanced Powder Technology, 31(2), 560–570. https://doi.org/10.1016/j.apt.2019.11.012
Gao, R., Gao, S., Wang, P., Xu, Y., Zhang, X., Cheng, X., Zhou, X., Major, Z., Zhu, H., & Huo, L. (2020). Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism. Sensors and Actuators, B: Chemical, 303(x). https://doi.org/10.1016/j.snb.2019.127085
Gardini, D., Lüscher, C. J., Struve, C., & Krogfelt, K. A. (2018). Tailored nanomaterials for antimicrobial applications. In Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization. Elsevier Inc. https://doi.org/10.1016/B978-0-323-51255-8.00004-5
Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/c9ce01556f
Gharbani, P., & Mehalizadeh, A. (2018). Facile Preparation of Novel Zinc Oxide Nano Sheets and Study of Its Optical Properties. Asian Journal of Nanoscience and Materials, 2(1), 27–36. https://doi.org/10.26655/ajnanomat.2019.1.2
Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W. M., Scott, J. H. J., & Joy, D. C. (2018). Microscopy and X-Ray Microanalysis. https://www.google.co.uk/books/edition/Scanning_Electron_Microscopy_and_X_Ray_M/D0I_DwAAQBAJ?hl=en&gbpv=0
Gopala Krishna, P., Paduvarahalli Ananthaswamy, P., Yadavalli, T., Bhangi Mutta, N., Sannaiah, A., & Shivanna, Y. (2016). ZnO nanopellets have selective anticancer activity. Materials Science and Engineering C, 62, 919–926. https://doi.org/10.1016/j.msec.2016.02.039
Guo, J., Qin, J., Ren, Y., Wang, B., Cui, H., Ding, Y., Mao, H., & Yan, F. (2018). Antibacterial activity of cationic polymers: Side-chain or main-chain type? Polymer Chemistry, 9(37), 4611–4616. https://doi.org/10.1039/c8py00665b
Ha, M. K., Shim, Y. J., & Yoon, T. H. (2018). Effects of agglomeration on in vitro dosimetry and cellular association of silver nanoparticles. Environmental Science: Nano, 5(2), 446–455. https://doi.org/10.1039/c7en00965h
Haberhauer, G., & Gerzabek, M. H. (1999). Drift and transmission FT-IR spectroscopy of forest soils: An approach to determine decomposition processes of forest litter. Vibrational Spectroscopy, 19(2), 413–417. https://doi.org/10.1016/S0924-2031(98)00046-0
Haines, P. J., Reading, M., & Wilburn, F. W. (1998). Chapter 5. 1, 279–361.
Hamzah, R., Bakar, M. A., Khairuddean, M., Mohammed, I. A., & Adnan, R. (2012). A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules, 17(9), 10974–10993. https://doi.org/10.3390/molecules170910974
Hotze, E. M., Phenrat, T., & Lowry, G. V. (2010). Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. Journal of Environmental Quality, 39(6), 1909–1924. https://doi.org/10.2134/jeq2009.0462
Huang, Y., Gohs, U., Müller, M. T., Zschech, C., & Wießner, S. (2019). Evaluation of electron induced crosslinking of masticated natural rubber at different temperatures. Polymers, 11(8), 1–14. https://doi.org/10.3390/polym11081279
Ito, H., Sakata, M., Hongo, C., Matsumoto, T., & Nishino, T. (2018). Cellulose nanofiber nanocomposites with aligned silver nanoparticles. Nanocomposites, 4(4), 167–177. https://doi.org/10.1080/20550324.2018.1556912
Jacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M., & Fennell, J. A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science and Technology, 32(17), 2650–2653. https://doi.org/10.1021/es980036f
Jain, A., Bhargava, R., & Poddar, P. (2013). Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods. Materials Science and Engineering C, 33(3), 1247–1253. https://doi.org/10.1016/j.msec.2012.12.019
Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2019). Evaluating the Antibacterial Activity of MgO Nanoparticles Synthesized from Aqueous Leaf Extract. Med One. https://doi.org/10.20900/mo.20190011
Jenkins, R., & Snyder, R. L. (1996). CHEMICAL ANALYSIS A SERIES OF MONOGRAPHS ON ANALYTICAL CHEMISTRY AND ITS APPLICATIONS (Vol. 138).
Jin, S. E., & Jin, H. E. (2019). Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics, 11(11). https://doi.org/10.3390/pharmaceutics11110575
Joe, A., Park, S. H., Shim, K. D., Kim, D. J., Jhee, K. H., Lee, H. W., Heo, C. H., Kim, H. M., & Jang, E. S. (2017). Antibacterial mechanism of ZnO nanoparticles under dark conditions. Journal of Industrial and Engineering Chemistry, 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013
Jones, F., Tran, H., Lindberg, D., Zhao, L., & Hupa, M. (2013). Thermal stability of zinc compounds. Energy and Fuels, 27(10), 5663–5669. https://doi.org/10.1021/ef400505u
Kang, S., Herzberg, M., Rodrigues, D. F., & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13), 6409–6413. https://doi.org/10.1021/la800951v
Karthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., & Sivaramakrishnan, S. (2019). Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. Journal of Photochemistry and Photobiology B: Biology, 190, 8–20. https://doi.org/10.1016/j.jphotobiol.2018.11.001
Khashan, K. S., Sulaiman, G. M., Abdulameer, F. A., Albukhaty, S., Ibrahem, M. A., Al-Muhimeed, T., & Alobaid, A. A. (2021). Antibacterial activity of tio2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences (Switzerland), 11(10). https://doi.org/10.3390/app11104623
Kim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., & Seo, J. (2022). ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Reviews International, 38(4), 537–565. https://doi.org/10.1080/87559129.2020.1737709
Kinoshita, M., Okamoto, Y., Furuya, M., & Okamoto, M. (2019). Biocomposites composed of natural rubber latex and cartilage tissue derived from human mesenchymal stem cells. Materials Today Chemistry, 12, 315–323. https://doi.org/10.1016/j.mtchem.2019.03.002
Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833
Koodziejczak-Radzimska, A., Markiewicz, E., & Jesionowski, T. (2012). Structural characterisation of ZnO particles obtained by the emulsion precipitation method. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/656353
Krainoi, A., Poomputsa, K., Kalkornsurapranee, E., Johns, J., Songtipya, L., Nip, R. L., & Nakaramontri, Y. (2021). Disinfectant natural rubber films filled with modified zinc oxide nanoparticles: Synergetic effect of mechanical and antibacterial properties. Express Polymer Letters, 15(11), 1081–1100. https://doi.org/10.3144/expresspolymlett.2021.87
Kundu, B., Kurland, N. E., Bano, S., Patra, C., Engel, F. B., Yadavalli, V. K., & Kundu, S. C. (2014). Silk proteins for biomedical applications: Bioengineering perspectives. Progress in Polymer Science, 39(2), 251–267. https://doi.org/10.1016/j.progpolymsci.2013.09.002
Lallo da Silva, B., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces, 177(February), 440–447. https://doi.org/10.1016/j.colsurfb.2019.02.013
Lam, E., Male, K. B., Chong, J. H., Leung, A. C. W., & Luong, J. H. T. (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30(5), 283–290. https://doi.org/10.1016/j.tibtech.2012.02.001
Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354. https://doi.org/10.1016/j.nantod.2015.04.002
Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371–384. https://doi.org/10.1038/nrmicro3028
Levy, D. A., Moudiki, P., & Leynadier, F. (2001). Deproteinised latex condoms are well tolerated by latex allergic patients. Sexually Transmitted Infections, 77(3), 202–203. https://doi.org/10.1136/sti.77.3.202
Li, J., Cha, R., Mou, K., Zhao, X., Long, K., Luo, H., Zhou, F., & Jiang, X. (2018). Nanocellulose-Based Antibacterial Materials. Advanced Healthcare Materials, 7(20), 1–16. https://doi.org/10.1002/adhm.201800334
Li, T., Su, Y., Wang, D., Mao, Y., Wang, W., Liu, L., & Wen, S. (2022). High antibacterial and barrier properties of natural rubber comprising of silver-loaded graphene oxide. International Journal of Biological Macromolecules, 195(December 2021), 449–455. https://doi.org/10.1016/j.ijbiomac.2021.12.029
Lin, S., Chen, L., Huang, L., Cao, S., Luo, X., & Liu, K. (2015). Novel antimicrobial chitosan-cellulose composite films bioconjugated with silver nanoparticles. Industrial Crops and Products, 70, 395–403. https://doi.org/10.1016/j.indcrop.2015.03.040
Lv, M. Z., Fang, L., Li, P. W., & Yang, C. L. (2014). The natural rubber/zinc oxide nanocomposites: Its morphology, mechanical and thermal decomposing properties. Advanced Materials Research, 936, 394–399. https://doi.org/10.4028/www.scientific.net/AMR.936.394
Ma, H., Brennan, A., & Diamond, S. A. (2012). Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology and Chemistry, 31(9), 2099–2107. https://doi.org/10.1002/etc.1916
Maji, J., Pandey, S., & Basu, S. (2020). Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bulletin of Materials Science, 43(1), 1–10. https://doi.org/10.1007/s12034-019-1963-5
Mam, K., & Dangtungee, R. (2019). Effects of silver nanoparticles on physical and antibacterial properties of natural rubber latex foam. Materials Today: Proceedings, 17, 1914–1920. https://doi.org/10.1016/j.matpr.2019.06.230
Mehta, N., Braun, P. X., Gendelman, I., Alibhai, A. Y., Arya, M., Duker, J. S., & Waheed, N. K. (2020). Repeatability of binarization thresholding methods for optical coherence tomography angiography image quantification. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-72358-z
Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. de M. R., Lopes, P. R. M., de Moraes, P. B., Montagnolli, R. N., Ferreira, H., & Bidoia, E. D. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-06657-y
Mesa, A. M., Castro-Autié, G. I., & Díaz-garcía, A. (2018). Evaluación de nanoestructuras de ZnO en la separación de CH4-CO2 (Issue June). https://doi.org/10.13140/RG.2.2.28587.54566
Mieszawska, A. J., Fourligas, N., Georgakoudi, I., Ouhib, N. M., Belton, D. J., Perry, C. C., & Kaplan, D. L. (2010). Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials, 31(34), 8902–8910. https://doi.org/10.1016/j.biomaterials.2010.07.109
Ministerio de Salud y Protección Social, I. (2017). INFECCIONES ASOCIADAS A DISPOSITIVOS. 1–31.
Musa, A., Ahmad, M. B., Hussein, M. Z., Mohd Izham, S., Shameli, K., & Abubakar Sani, H. (2016). Synthesis of Nanocrystalline Cellulose Stabilized Copper Nanoparticles. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/2490906
Nagaraju, G., Udayabhanu, Shivaraj, Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94(September), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043
Nain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2020). Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. International Journal of Biological Macromolecules, 162, 24–30. https://doi.org/10.1016/j.ijbiomac.2020.06.125
Narongwongwattana, S., Rittiron, R., & Hock, L. C. (2015). Rapid determination of alkalinity (ammonia content) in Para rubber latex using portable and Fourier transform-near infrared spectrometers. Journal of Near Infrared Spectroscopy, 23(3), 181–188. https://doi.org/10.1255/jnirs.1160
Nawamawat, K., Sakdapipanich, J. T., Ho, C. C., Ma, Y., Song, J., & Vancso, J. G. (2011). Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1–3), 157–166. https://doi.org/10.1016/j.colsurfa.2011.09.021
Nazari, A. (2019). Superior Self-cleaning and Antimicrobial Properties on Cotton Fabrics Using Nano Titanium Dioxide along with Green Walnut Shell Dye. Fibers and Polymers, 20(12), 2503–2509. https://doi.org/10.1007/s12221-019-1135-7
Nejati, M., Rostami, M., Mirzaei, H., Rahimi-Nasrabadi, M., Vosoughifar, M., Nasab, A. S., & Ganjali, M. R. (2022). Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorganic Chemistry Communications, 136(December 2021), 109107. https://doi.org/10.1016/j.inoche.2021.109107
Sharma, R. K., Agarwal, M., & Balani, K. (2016). Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Materials Science and Engineering C, 62, 843–851. https://doi.org/10.1016/j.msec.2016.02.032
Sharma, S. K., Verma, D. S., Khan, L. U., Kumar, S., & Khan, S. B. (2018). Handbook of Materials Characterization. Handbook of Materials Characterization, July 2020, 1–613. https://doi.org/10.1007/978-3-319-92955-2
Sheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., & Cortina, J. L. (2019). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal, 123475. https://doi.org/10.1016/j.cej.2019.123475
Singh, S. (2019). Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology Mechanisms and Methods, 29(4), 300–311. https://doi.org/10.1080/15376516.2018.1553221
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x
Sirisomboon, P., & Hock Lim, C. (2020). Rapid Evaluation of the Properties of Natural Rubber Latex and Its Products Using Near-Infrared Spectroscopy. Organic Polymers, 1–18. https://doi.org/10.5772/intechopen.84549
Soto, K., Garza, K. M., & Murr, L. E. (2007). Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 3(3 SPEC. ISS.), 351–358. https://doi.org/10.1016/j.actbio.2006.11.004
Sruthi, S., Ashtami, J., & Mohanan, P. V. (2018). Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Materials Today Chemistry, 10, 175–186. https://doi.org/10.1016/j.mtchem.2018.09.008
Stanković, A., Dimitrijević, S., & Uskoković, D. (2013). Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids and Surfaces B: Biointerfaces, 102, 21–28. https://doi.org/10.1016/j.colsurfb.2012.07.033
Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679–6686. https://doi.org/10.1021/la0202374
Suksup, R., Imkaew, C., & Smitthipong, W. (2017). Cream concentrated latex for foam rubber products. IOP Conference Series: Materials Science and Engineering, 272(1). https://doi.org/10.1088/1757-899X/272/1/012025
Surfactant, P., & Crosslinking, C. (2021). Water-Resistant Latex Coatings : Tuning of Properties by.
Theerthagiri, J., Salla, S., Senthil, R. A., Nithyadharseni, P., Madankumar, A., Arunachalam, P., Maiyalagan, T., & Kim, H. S. (2019). A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology, 30(39). https://doi.org/10.1088/1361-6528/ab268a
Tofa, T. S., Kunjali, K. L., Paul, S., & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environmental Chemistry Letters, 17(3), 1341–1346. https://doi.org/10.1007/s10311-019-00859-z
Umar, A., Chauhan, M. S., Chauhan, S., Kumar, R., Sharma, P., Tomar, K. J., Wahab, R., Al-Hajry, A., & Singh, D. (2013). Applications of ZnO nanoflowers as antimicrobial agents for Escherichia coli and enzyme-free glucose sensor. Journal of Biomedical Nanotechnology, 9(10), 1794–1802. https://doi.org/10.1166/jbn.2013.1751
Vaysse, L., Bonfils, F., Sainte-Beuve, J., & Cartault, M. (2012). Natural Rubber. In Polymer Science: A Comprehensive Reference, 10 Volume Set (Vol. 10, Issue January). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53349-4.00267-3
Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035
Wahab, R., Kim, Y. S., Mishra, A., Yun, S. Il, & Shin, H. S. (2010). Formation of ZnO Micro-Flowers Prepared via Solution Process and their Antibacterial Activity. Nanoscale Research Letters, 5(10), 1675–1681. https://doi.org/10.1007/s11671-010-9694-y
Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956
Wang, L., Zhang, S., Keatch, R., Corner, G., Nabi, G., Murdoch, S., Davidson, F., & Zhao, Q. (2019). In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. Journal of Hospital Infection, 103(1), 55–63. https://doi.org/10.1016/j.jhin.2019.02.012
Wei, F., Yu, H., Zeng, Z., Liu, H., Wang, Q., Wang, J., & Li, S. (2014). Preparation and structure characterization of hydroxylethylmethacrylate grafted natural rubber latex. Polímeros Ciência e Tecnologia, 24(3), 283–290. https://doi.org/10.4322/polimeros.2014.068
Williams, D. B., & Carter, C. B. (2009). Transmission Electron Microscopy. In Transmission Electron Microscopy. https://doi.org/10.1007/978-1-4757-2519-3_6
World Health Organisation. (2022). Global report on infection prevention and control. http://apps.who.int/bookorders.
Zhang, W., Hu, J., Zhou, Y., Chen, Y., Yu, F., Hong, C., Chen, L., Xin, H., Hong, K., & Wang, X. (2019). Latex and a ZnO-based multi-functional material for cardiac implant-related inflammation. Biomaterials Science, 7(10), 4186–4194. https://doi.org/10.1039/c9bm00952c
Zhao, D. L., Wang, X. X., Zeng, X. W., Xia, Q. S., & Tang, J. T. (2009). Preparation and inductive heating property of Fe3O4-chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. Journal of Alloys and Compounds, 477(1–2), 739–743. https://doi.org/10.1016/j.jallcom.2008.10.104
Zhu, Y., Fu, H., Ding, J., Li, H., Zhang, M., Zhang, J., & Liu, Y. (2018). Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors. Applied Optics, 57(27), 7924. https://doi.org/10.1364/ao.57.007924
Zou, L., Phule, A. D., Sun, Y., Zhu, T. Y., Wen, S., & Zhang, Z. X. (2020). Superhydrophobic and superoleophilic polyethylene aerogel coated natural rubber latex foam for oil-water separation application. Polymer Testing, 85(January), 106451. https://doi.org/10.1016/j.polymertesting.2020.106451
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 78 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83073/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83073/2/1035434738.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83073/3/1035434738.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
0f0266be9039c12f65806ff8c35a7026
ef734dbe3825474f98d14cd7e37edae4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089509079351296
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Buitrago Sierra, Robison44944f4ec6fd91249162ea2198a5505fSanta Marín, Juan Felipe30f321423032a600a1187f1d8ce07534Durango Giraldo, Geraldine1507ac0913c1b7d9897257c4ad3f372d600Materiales Avanzados y Energía MATyERDurango Giraldo, Geraldine [0000-0002-7799-4790]2023-01-23T19:13:53Z2023-01-23T19:13:53Z2022https://repositorio.unal.edu.co/handle/unal/83073Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracioneds, diagramasEl látex de caucho natural es un polímero extraído del árbol de caucho (Hevea brasiliensis). Es un material ecológico, sostenible, no derivado del petróleo y de bajo costo. Ha sido empleado en diferentes aplicaciones en el campo biomédico como la regeneración, prótesis e injertos óseos, además de su uso en guantes, catéteres, condones, entre otros. No obstante, no presenta propiedades antibacterianas, lo que podría llevar a una colonización bacteriana en la superficie del material. El óxido de Zinc (ZnO) es un material inorgánico que dentro de sus propiedades presenta actividad antibacteriana, que dependen de diversos factores, entre ellos su morfología. El ZnO puede ser empleado para la modificación del látex con el fin de otorgarle propiedades antibacterianas. Sin embargo, las propiedades antibacterianas de partículas de ZnO, embebidas en el látex no han sido ampliamente estudiadas. En este trabajo, se sinterizaron partículas de ZnO con dos diferentes morfologías y fueron añadidas al látex a diferentes concentraciones con el fin de evaluar las propiedades antibacterianas del compuesto. Los resultados de caracterización por SEM y TEM mostraron la obtención de partículas con morfología esférica y de hojas. Por medio de DRX, se concluyó que ambos tipos de partícula presentan fase cristalina Wurtzita, la más comúnmente encontrada en el ZnO. Mediante EDS se evidenció presencia de las partículas de ZnO por la superficie del compuesto, sin embargo, para la morfología de hojas, se obtuvo una menor exposición en la superficie del compuesto y se pudieron observar agregados de partículas. Con respecto a las pruebas antibacterianas, se encontró que ambos compuestos presentan esta propiedad contra bacterianas Gram negativas y Gram positivas, sin embargo, se evidenció una mayor efectividad antibacteriana en las partículas con morfología esférica. La cual se asoció a la mayor exposición de las partículas de ZnO en la superficie de estos compuestos, en comparación con los desarrollados con morfología de hojas. (Texto tomado de la fuente)Natural rubber latex is a polymer extracted from the rubber tree (Hevea brasiliensis). It is an ecological, sustainable material, not derived from petroleum and low cost. It has been used in several applications in the biomedical field such as regeneration, prosthetics and bone grafts, in addition to its use in gloves, catheters, condoms, among others. However, it does not have antibacterial properties, which could lead to bacterial colonization on the surface of the material. Zinc oxide (ZnO) is an inorganic material that has antibacterial activity within its properties, which depend on various factors, including its morphology. ZnO can be used to modify latex in order to give it antibacterial properties. Nevertheless, the antibacterial properties of ZnO, embedded in the latex, have not been widely studied. In this work, ZnO particles with two several morphologies were synthesized and added to latex at different concentrations in order to evaluate the antibacterial properties of this compound. The results of characterization by SEM and TEM showed the obtaining of particles with spherical morphology and sheets. Through XRD, it was concluded that both types of particles present Wurtzite crystalline phase, the most commonly found in ZnO. EDS analysis evidenced the presence of ZnO particles on the surface of the compound, however, the morphology of sheets exhibits a lower exposure on the surface of the compound and aggregates of particles could be observed. Regarding the antibacterial tests, it was found that both compounds have this property against Gram-negative and Gram-positive bacteria, however, a greater antibacterial effectiveness was evidenced in the particles with spherical morphology. This relates to greater exposure of ZnO particles on the surface of these compounds, compared to those developed with sheets morphology.MaestríaMagíster en Ingeniería - Materiales y ProcesosNuevos materialesÁrea Curricular de Materiales y Nanotecnologíaxxii, 78 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Materiales y ProcesosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesOxido de cincLátexÓxido de zincCompuestoActividad antibacterianaLatexZinc oxideCompoundAntibacterial activityDesarrollo y evaluación de las propiedades fisicoquímicas y antibacterianas de compuestos látex/óxido de zinc para aplicaciones en ingeniería biomédicaDevelopment and evaluation of the physicochemical and antibacterial properties of latex/zinc oxide compounds for applications in biomedical engineeringTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAbadeer, N. S., & Murphy, C. J. (2016). Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. Journal of Physical Chemistry C, 120(9), 4691–4716. https://doi.org/10.1021/acs.jpcc.5b11232Abd Elkodous, M., El-Sayyad, G. S., Abdelrahman, I. Y., El-Bastawisy, H. S., Mohamed, A. E., Mosallam, F. M., Nasser, H. A., Gobara, M., Baraka, A., Elsayed, M. A., & El-Batal, A. I. (2019). Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids and Surfaces B: Biointerfaces, 180(March), 411–428. https://doi.org/10.1016/j.colsurfb.2019.05.008Abebe, B., Zereffa, E. A., Tadesse, A., & Murthy, H. C. A. (2020). A Review on Enhancing the Antibacterial Activity of ZnO: Mechanisms and Microscopic Investigation. Nanoscale Research Letters, 15(1). https://doi.org/10.1186/s11671-020-03418-6Abu-Dalo, M., Jaradat, A., Albiss, B. A., & Al-Rawashdeh, N. A. F. (2019). Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. Journal of Environmental Chemical Engineering, 7(5), 103370. https://doi.org/10.1016/j.jece.2019.103370Aditya, A., Chattopadhyay, S., Jha, D., Gautam, H. K., Maiti, S., & Ganguli, M. (2018). Zinc Oxide Nanoparticles Dispersed in Ionic Liquids Show High Antimicrobial Efficacy to Skin-Specific Bacteria. ACS Applied Materials and Interfaces, 10(18), 15401–15411. https://doi.org/10.1021/acsami.8b01463Aielo, P. B., Borges, F. A., Romeira, K. M., Miranda, M. C. R., Arruda, L. B. D., Paulo, P. N., Drago, B. D. C., & Herculano, R. D. (2014). Evaluation of sodium diclofenac release using natural rubber latex as carrier. Materials Research, 17(August), 146–152. https://doi.org/10.1590/S1516-14392014005000010Akhavan, O., & Ghaderi, E. (2010). Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736. https://doi.org/10.1021/nn101390xAl-Jumaili, A., Alancherry, S., Bazaka, K., & Jacob, M. V. (2017). Review on the antimicrobial properties of Carbon nanostructures. Materials, 10(9), 1–26. https://doi.org/10.3390/ma10091066Almeida, G. F. B., Cardoso, M. R., Zancanela, D. C., Bernardes, L. L., Norberto, A. M. Q., Barros, N. R., Paulino, C. G., Chagas, A. L. D., Herculano, R. D., & Mendonça, C. R. (2020). Controlled drug delivery system by fs-laser micromachined biocompatible rubber latex membranes. Applied Surface Science, 506, 144762. https://doi.org/10.1016/j.apsusc.2019.144762Almontasser, A., Parveen, A., & Azam, A. (2019). Synthesis, Characterization and antibacterial activity of Magnesium Oxide (MgO) nanoparticles. IOP Conference Series: Materials Science and Engineering, 577(1). https://doi.org/10.1088/1757-899X/577/1/012051Alsultany, F. H., Majdi, H. S., Abd, H. R., Hassan, Z., & Ahmed, N. M. (2019). Catalytic Growth of 1D ZnO Nanoneedles on Glass Substrates Through Vapor Transport. Journal of Electronic Materials, 48(3), 1660–1668. https://doi.org/10.1007/s11664-018-06853-5Anandgaonker, P., Kulkarni, G., Gaikwad, S., & Rajbhoj, A. (2019). Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arabian Journal of Chemistry, 12(8), 1815–1822. https://doi.org/10.1016/j.arabjc.2014.12.015Anjana, P. M., Bindhu, M. R., Umadevi, M., & Rakhi, R. B. (2019). Antibacterial and electrochemical activities of silver, gold, and palladium nanoparticles dispersed amorphous carbon composites. Applied Surface Science, 479(February), 96–104. https://doi.org/10.1016/j.apsusc.2019.02.057Arens, D., Zeiter, S., Nehrbass, D., Ranjan, N., Paulin, T., & Alt, V. (2020). Antimicrobial silver-coating for locking plates shows uneventful osteotomy healing and good biocompatibility results of an experimental study in rabbits. Injury, 51(4), 830–839. https://doi.org/10.1016/j.injury.2020.02.115Arias-Flores, R., Rosado-Quiab, U., Vargas-Valerio, A., & Grajales-Muñiz, C. (2016). Los microorganismos causantes de infecciones nosocomiales en el Instituto Mexicano del Seguro Social. Microorganisms Responsible of Nosocomial Infections in the Instituto Mexicano Del Seguro Social., 54(1), 20–24. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=112752580&lang=es&site=ehost-liveAriosa, D., Elhordoy, F., Dalchiele, E. A., Marotti, R. E., & Stari, C. (2011). Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples. Journal of Applied Physics, 110(12). https://doi.org/10.1063/1.3669026Arora, S., Kaur, H., Kumar, R., Kaur, R., Rana, D., Rayat, C. S., Kaur, I., Arora, S. K., Bubber, P., & Bharadwaj, L. M. (2015). In vitro cytotoxicity of multiwalled and single-walled carbon nanotubes on human cell lines. Fullerenes Nanotubes and Carbon Nanostructures, 23(5), 377–382. https://doi.org/10.1080/1536383X.2013.812638Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4(10), 634–641. https://doi.org/10.1038/nnano.2009.242B. Pinto, R. J., C., M., Pascoal, C., & Trindade, T. (2012). Composites of Cellulose and Metal Nanoparticles. Nanocomposites - New Trends and Developments. https://doi.org/10.5772/50553Babayevska, N., Przysiecka, Ł., Iatsunskyi, I., Nowaczyk, G., Jarek, M., Janiszewska, E., & Jurga, S. (2022). ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-12134-3Badetti, E., Calgaro, L., Falchi, L., Bonetto, A., Bettiol, C., Leonetti, B., Ambrosi, E., Zendri, E., & Marcomini, A. (2019). Interaction between copper oxide nanoparticles and amino acids: Influence on the antibacterial activity. Nanomaterials, 9(5). https://doi.org/10.3390/nano9050792Balabanian, C. A. C. A., Coutinho-Netto, J., Lamano-Carvalho, T. L., Lacerda, S. A., & Brentegani, L. G. (2006). Biocompatibility of natural latex implanted into dental alveolus of rats. Journal of Oral Science, 48(4), 201–205. https://doi.org/10.2334/josnusd.48.201Barraza-Garza, G., De La Rosa, L. A., Martínez-Martínez, A., Castillo-Michel, H., Cotte, M., & Alvarez-Parrilla, E. (2013). La microespectroscopía de infrarrojo con transformada de fourier (FTIRM) en el estudio de sistemas biológicos. Revista Latinoamericana de Quimica, 41(3), 125–148.Beezhold, D., Swanson, M., Zehr, B. D., & Kostyal, D. (1996). Measurement of natural rubber proteins in latex glove extracts: Comparison of the methods. Annals of Allergy, Asthma and Immunology, 76(6), 520–526. https://doi.org/10.1016/S1081-1206(10)63271-1Bernatová, Silvie; Samek, Ota; Pilát, Zdeněk; Šerý, Mojmír; Ježek, Jan; Jákl, Petr; Šiler, Martin; Krzyžánek, Vladislav; Zemánek, Pavel; Holá, Veronika; Dvořáčková, Milada; Růžička, F. (2013). Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules, 13188–13199. https://doi.org/10.3390/molecules181113188Bhat, T. S., Bhogale, S. B., Patil, S. S., Pisal, S. H., Phaltane, S. A., & Patil, P. S. (2020). Synthesis and characterization of hexagonal zinc oxide nanorods for Eosin-Y dye sensitized solar cell. Materials Today: Proceedings, 43, 2800–2804. https://doi.org/10.1016/j.matpr.2020.08.687Borda D’Água, R., Branquinho, R., Duarte, M. P., Maurício, E., Fernando, A. L., Martins, R., & Fortunato, E. (2018). Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost: In situ synthesis. New Journal of Chemistry, 42(2), 1052–1060. https://doi.org/10.1039/c7nj03418kBorges, F. A., de Barros, N. R., Garms, B. C., Miranda, M. C. R., Gemeinder, J. L. P., Ribeiro-Paes, J. T., Silva, R. F., de Toledo, K. A., & Herculano, R. D. (2017). Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. Journal of Applied Polymer Science, 134(39), 1–10. https://doi.org/10.1002/app.45321Bottier, C. (2020). Biochemical composition of Hevea brasiliensis latex: A focus on the protein, lipid, carbohydrate and mineral contents. In Advances in Botanical Research (Vol. 93). Elsevier Ltd. https://doi.org/10.1016/bs.abr.2019.11.003Bottier, C., Gross, B., Wadeesirisak, K., Srisomboon, S., Vallat, M., & Mougin, K. (2017). Impact of storage time of ammonia-stabilized latex on biochemical and physicochemical indicators of hevea. Agris: International Information System for the Agricultural Science and Technology, 1, 1–14.Cáceres, A. P., & Gauthier-maradei, P. (2012). Análisis termogravimetrico como un nuevo método para la determinación de contenido de sólidos totales ( CST ) y caucho seco ( CCS ) del látex natural Thermogravimetric analysis as a new method to determine of total solid content ( TSC ) and dry rubber con. 25(2), 57–65.Cedillo-González, E. I., Hernández-López, J. M., Ruiz-Valdés, J. J., Barbieri, V., & Siligardi, C. (2020). Self-cleaning TiO2 coatings for building materials: The influence of morphology and humidity in the stain removal performance. Construction and Building Materials, 237. https://doi.org/10.1016/j.conbuildmat.2019.117692Chen, J., Chen, S., Gao, T., Gao, L., Xie, M., Pan, R., Zhong, J., & Cui, X. (2019). A novel approach in blending natural rubber latex with siliceous earth nanoparticles. Iranian Polymer Journal (English Edition), 28(9), 759–768. https://doi.org/10.1007/s13726-019-00740-4Chen, J. L., Devi, N., Li, N., Fu, D. J., & Ke, X. W. (2018). Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties. Chinese Physics B, 27(8). https://doi.org/10.1088/1674-1056/27/8/086102Chen, X., Wang, Z., & Wu, J. (2018). Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites. Journal of Polymer Research, 25(2). https://doi.org/10.1007/s10965-017-1433-yCiapetti, G., Stea, S., Pizzoferrato, A., Checchi, L., & Pelliccioni, G. A. (1994). A latex membrane, as an alternative device in the GTR technique: preliminary report on its biocompatibility. Journal of Materials Science: Materials in Medicine, 5(9–10), 647–650. https://doi.org/10.1007/BF00120348Cullity, B. D. (1978). Elements of X-RAY DIFFRACTION. In Addison-Wesley Publishing Company.De Souza, R. C., Haberbeck, L. U., Riella, H. G., Ribeiro, D. H. B., & Carciofi, B. A. M. (2019). Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Brazilian Journal of Chemical Engineering, 36(2), 885–893. https://doi.org/10.1590/0104-6632.20190362s20180027Devaraj, N. K., Han, T. C., Low, P. L., Ong, B. H., & Sin, Y. K. (2014). Synthesis and characterisation of zinc oxide nanoparticles for thermoelectric application. Materials Research Innovations, 18, S6-350-S6-353. https://doi.org/10.1179/1432891714Z.000000000980Dey, T. K., Hossain, A., Jamal, M., Layek, R. K., & Uddin, M. E. (2022). Zinc Oxide Nanoparticle Reinforced Waste Buffing Dust Based Composite Insole and Its Antimicrobial Activity. Advances in Polymer Technology, 2022. https://doi.org/10.1155/2022/7130551Dick, T. A., & Santos, L. A. (2017). In situ synthesis and characterization of hydroxyapatite / natural rubber composites for biomedical applications. Materials Science & Engineering C, 77, 874–882. https://doi.org/10.1016/j.msec.2017.03.301Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., & Ighalo, J. O. (2022). Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32(1).https://doi.org/10.1186/s42834-021-00111-wDwivedi, S., Wahab, R., Khan, F., Mishra, Y. K., Musarrat, J., & Al-Khedhairy, A. A. (2014). Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE, 9(11), 1–9. https://doi.org/10.1371/journal.pone.0111289Elahi, N., Kamali, M., & Baghersad, M. H. (2018). Recent biomedical applications of gold nanoparticles: A review. Talanta, 184, 537–556. https://doi.org/10.1016/j.talanta.2018.02.088Emami-Karvani, Z., & Pegah, C. (2012). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African Journal of Microbiology Research, 5(18), 1368–1373. https://doi.org/10.5897/ajmr10.159Espitia, P. J. P., Soares, N. de F. F., Coimbra, J. S. dos R., de Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food and Bioprocess Technology, 5(5), 1447–1464. https://doi.org/10.1007/s11947-012-0797-6Feng, Q., Wu, J., Chen, G., Cui, F., Kim, T., & Kim, J. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Polymer Bulletin, 55(1–2), 105–113. https://doi.org/10.1007/s00289-005-0414-1Floriano, J. F., Da Mota, L. S. L. S., Furtado, E. L., Rossetto, V. J. V., & Graeff, C. F. O. (2014). Biocompatibility studies of natural rubber latex from different tree clones and collection methods. Journal of Materials Science: Materials in Medicine, 25(2), 461–470. https://doi.org/10.1007/s10856-013-5089-9Fontecha-Umaña, F., Ríos-Castillo, A. G., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2020). Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods, 9(4). https://doi.org/10.3390/foods9040442Franco, S., Rodriguez, C., & Arias, S. (2013). Modelo de costo-efectividad para optimizar el impacto en la prevención de infecciones asociadas a la atención en salud en hospitales de Bogotá. 1–85. https://repository.usergioarboleda.edu.co/bitstream/handle/11232/899/Modelo de costo efectividad para optimizar impacto.pdf?sequence=2&isAllowed=yGallego, A., Cacua, K., Herrera, B., Cabaleiro, D., Piñeiro, M. M., & Lugo, L. (2020). Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Advanced Powder Technology, 31(2), 560–570. https://doi.org/10.1016/j.apt.2019.11.012Gao, R., Gao, S., Wang, P., Xu, Y., Zhang, X., Cheng, X., Zhou, X., Major, Z., Zhu, H., & Huo, L. (2020). Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism. Sensors and Actuators, B: Chemical, 303(x). https://doi.org/10.1016/j.snb.2019.127085Gardini, D., Lüscher, C. J., Struve, C., & Krogfelt, K. A. (2018). Tailored nanomaterials for antimicrobial applications. In Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization. Elsevier Inc. https://doi.org/10.1016/B978-0-323-51255-8.00004-5Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/c9ce01556fGharbani, P., & Mehalizadeh, A. (2018). Facile Preparation of Novel Zinc Oxide Nano Sheets and Study of Its Optical Properties. Asian Journal of Nanoscience and Materials, 2(1), 27–36. https://doi.org/10.26655/ajnanomat.2019.1.2Goldstein, J. I., Newbury, D. E., Michael, J. R., Ritchie, N. W. M., Scott, J. H. J., & Joy, D. C. (2018). Microscopy and X-Ray Microanalysis. https://www.google.co.uk/books/edition/Scanning_Electron_Microscopy_and_X_Ray_M/D0I_DwAAQBAJ?hl=en&gbpv=0Gopala Krishna, P., Paduvarahalli Ananthaswamy, P., Yadavalli, T., Bhangi Mutta, N., Sannaiah, A., & Shivanna, Y. (2016). ZnO nanopellets have selective anticancer activity. Materials Science and Engineering C, 62, 919–926. https://doi.org/10.1016/j.msec.2016.02.039Guo, J., Qin, J., Ren, Y., Wang, B., Cui, H., Ding, Y., Mao, H., & Yan, F. (2018). Antibacterial activity of cationic polymers: Side-chain or main-chain type? Polymer Chemistry, 9(37), 4611–4616. https://doi.org/10.1039/c8py00665bHa, M. K., Shim, Y. J., & Yoon, T. H. (2018). Effects of agglomeration on in vitro dosimetry and cellular association of silver nanoparticles. Environmental Science: Nano, 5(2), 446–455. https://doi.org/10.1039/c7en00965hHaberhauer, G., & Gerzabek, M. H. (1999). Drift and transmission FT-IR spectroscopy of forest soils: An approach to determine decomposition processes of forest litter. Vibrational Spectroscopy, 19(2), 413–417. https://doi.org/10.1016/S0924-2031(98)00046-0Haines, P. J., Reading, M., & Wilburn, F. W. (1998). Chapter 5. 1, 279–361.Hamzah, R., Bakar, M. A., Khairuddean, M., Mohammed, I. A., & Adnan, R. (2012). A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques. Molecules, 17(9), 10974–10993. https://doi.org/10.3390/molecules170910974Hotze, E. M., Phenrat, T., & Lowry, G. V. (2010). Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. Journal of Environmental Quality, 39(6), 1909–1924. https://doi.org/10.2134/jeq2009.0462Huang, Y., Gohs, U., Müller, M. T., Zschech, C., & Wießner, S. (2019). Evaluation of electron induced crosslinking of masticated natural rubber at different temperatures. Polymers, 11(8), 1–14. https://doi.org/10.3390/polym11081279Ito, H., Sakata, M., Hongo, C., Matsumoto, T., & Nishino, T. (2018). Cellulose nanofiber nanocomposites with aligned silver nanoparticles. Nanocomposites, 4(4), 167–177. https://doi.org/10.1080/20550324.2018.1556912Jacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M., & Fennell, J. A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science and Technology, 32(17), 2650–2653. https://doi.org/10.1021/es980036fJain, A., Bhargava, R., & Poddar, P. (2013). Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods. Materials Science and Engineering C, 33(3), 1247–1253. https://doi.org/10.1016/j.msec.2012.12.019Jeevanandam, J., Chan, Y. S., & Danquah, M. K. (2019). Evaluating the Antibacterial Activity of MgO Nanoparticles Synthesized from Aqueous Leaf Extract. Med One. https://doi.org/10.20900/mo.20190011Jenkins, R., & Snyder, R. L. (1996). CHEMICAL ANALYSIS A SERIES OF MONOGRAPHS ON ANALYTICAL CHEMISTRY AND ITS APPLICATIONS (Vol. 138).Jin, S. E., & Jin, H. E. (2019). Synthesis, characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications. Pharmaceutics, 11(11). https://doi.org/10.3390/pharmaceutics11110575Joe, A., Park, S. H., Shim, K. D., Kim, D. J., Jhee, K. H., Lee, H. W., Heo, C. H., Kim, H. M., & Jang, E. S. (2017). Antibacterial mechanism of ZnO nanoparticles under dark conditions. Journal of Industrial and Engineering Chemistry, 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013Jones, F., Tran, H., Lindberg, D., Zhao, L., & Hupa, M. (2013). Thermal stability of zinc compounds. Energy and Fuels, 27(10), 5663–5669. https://doi.org/10.1021/ef400505uKang, S., Herzberg, M., Rodrigues, D. F., & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13), 6409–6413. https://doi.org/10.1021/la800951vKarthik, K., Dhanuskodi, S., Gobinath, C., Prabukumar, S., & Sivaramakrishnan, S. (2019). Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. Journal of Photochemistry and Photobiology B: Biology, 190, 8–20. https://doi.org/10.1016/j.jphotobiol.2018.11.001Khashan, K. S., Sulaiman, G. M., Abdulameer, F. A., Albukhaty, S., Ibrahem, M. A., Al-Muhimeed, T., & Alobaid, A. A. (2021). Antibacterial activity of tio2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences (Switzerland), 11(10). https://doi.org/10.3390/app11104623Kim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., & Seo, J. (2022). ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Reviews International, 38(4), 537–565. https://doi.org/10.1080/87559129.2020.1737709Kinoshita, M., Okamoto, Y., Furuya, M., & Okamoto, M. (2019). Biocomposites composed of natural rubber latex and cartilage tissue derived from human mesenchymal stem cells. Materials Today Chemistry, 12, 315–323. https://doi.org/10.1016/j.mtchem.2019.03.002Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833Koodziejczak-Radzimska, A., Markiewicz, E., & Jesionowski, T. (2012). Structural characterisation of ZnO particles obtained by the emulsion precipitation method. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/656353Krainoi, A., Poomputsa, K., Kalkornsurapranee, E., Johns, J., Songtipya, L., Nip, R. L., & Nakaramontri, Y. (2021). Disinfectant natural rubber films filled with modified zinc oxide nanoparticles: Synergetic effect of mechanical and antibacterial properties. Express Polymer Letters, 15(11), 1081–1100. https://doi.org/10.3144/expresspolymlett.2021.87Kundu, B., Kurland, N. E., Bano, S., Patra, C., Engel, F. B., Yadavalli, V. K., & Kundu, S. C. (2014). Silk proteins for biomedical applications: Bioengineering perspectives. Progress in Polymer Science, 39(2), 251–267. https://doi.org/10.1016/j.progpolymsci.2013.09.002Lallo da Silva, B., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces, 177(February), 440–447. https://doi.org/10.1016/j.colsurfb.2019.02.013Lam, E., Male, K. B., Chong, J. H., Leung, A. C. W., & Luong, J. H. T. (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30(5), 283–290. https://doi.org/10.1016/j.tibtech.2012.02.001Le Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354. https://doi.org/10.1016/j.nantod.2015.04.002Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371–384. https://doi.org/10.1038/nrmicro3028Levy, D. A., Moudiki, P., & Leynadier, F. (2001). Deproteinised latex condoms are well tolerated by latex allergic patients. Sexually Transmitted Infections, 77(3), 202–203. https://doi.org/10.1136/sti.77.3.202Li, J., Cha, R., Mou, K., Zhao, X., Long, K., Luo, H., Zhou, F., & Jiang, X. (2018). Nanocellulose-Based Antibacterial Materials. Advanced Healthcare Materials, 7(20), 1–16. https://doi.org/10.1002/adhm.201800334Li, T., Su, Y., Wang, D., Mao, Y., Wang, W., Liu, L., & Wen, S. (2022). High antibacterial and barrier properties of natural rubber comprising of silver-loaded graphene oxide. International Journal of Biological Macromolecules, 195(December 2021), 449–455. https://doi.org/10.1016/j.ijbiomac.2021.12.029Lin, S., Chen, L., Huang, L., Cao, S., Luo, X., & Liu, K. (2015). Novel antimicrobial chitosan-cellulose composite films bioconjugated with silver nanoparticles. Industrial Crops and Products, 70, 395–403. https://doi.org/10.1016/j.indcrop.2015.03.040Lv, M. Z., Fang, L., Li, P. W., & Yang, C. L. (2014). The natural rubber/zinc oxide nanocomposites: Its morphology, mechanical and thermal decomposing properties. Advanced Materials Research, 936, 394–399. https://doi.org/10.4028/www.scientific.net/AMR.936.394Ma, H., Brennan, A., & Diamond, S. A. (2012). Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology and Chemistry, 31(9), 2099–2107. https://doi.org/10.1002/etc.1916Maji, J., Pandey, S., & Basu, S. (2020). Synthesis and evaluation of antibacterial properties of magnesium oxide nanoparticles. Bulletin of Materials Science, 43(1), 1–10. https://doi.org/10.1007/s12034-019-1963-5Mam, K., & Dangtungee, R. (2019). Effects of silver nanoparticles on physical and antibacterial properties of natural rubber latex foam. Materials Today: Proceedings, 17, 1914–1920. https://doi.org/10.1016/j.matpr.2019.06.230Mehta, N., Braun, P. X., Gendelman, I., Alibhai, A. Y., Arya, M., Duker, J. S., & Waheed, N. K. (2020). Repeatability of binarization thresholding methods for optical coherence tomography angiography image quantification. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-72358-zMendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. de M. R., Lopes, P. R. M., de Moraes, P. B., Montagnolli, R. N., Ferreira, H., & Bidoia, E. D. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-06657-yMesa, A. M., Castro-Autié, G. I., & Díaz-garcía, A. (2018). Evaluación de nanoestructuras de ZnO en la separación de CH4-CO2 (Issue June). https://doi.org/10.13140/RG.2.2.28587.54566Mieszawska, A. J., Fourligas, N., Georgakoudi, I., Ouhib, N. M., Belton, D. J., Perry, C. C., & Kaplan, D. L. (2010). Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials, 31(34), 8902–8910. https://doi.org/10.1016/j.biomaterials.2010.07.109Ministerio de Salud y Protección Social, I. (2017). INFECCIONES ASOCIADAS A DISPOSITIVOS. 1–31.Musa, A., Ahmad, M. B., Hussein, M. Z., Mohd Izham, S., Shameli, K., & Abubakar Sani, H. (2016). Synthesis of Nanocrystalline Cellulose Stabilized Copper Nanoparticles. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/2490906Nagaraju, G., Udayabhanu, Shivaraj, Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94(September), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043Nain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2020). Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. International Journal of Biological Macromolecules, 162, 24–30. https://doi.org/10.1016/j.ijbiomac.2020.06.125Narongwongwattana, S., Rittiron, R., & Hock, L. C. (2015). Rapid determination of alkalinity (ammonia content) in Para rubber latex using portable and Fourier transform-near infrared spectrometers. Journal of Near Infrared Spectroscopy, 23(3), 181–188. https://doi.org/10.1255/jnirs.1160Nawamawat, K., Sakdapipanich, J. T., Ho, C. C., Ma, Y., Song, J., & Vancso, J. G. (2011). Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 390(1–3), 157–166. https://doi.org/10.1016/j.colsurfa.2011.09.021Nazari, A. (2019). Superior Self-cleaning and Antimicrobial Properties on Cotton Fabrics Using Nano Titanium Dioxide along with Green Walnut Shell Dye. Fibers and Polymers, 20(12), 2503–2509. https://doi.org/10.1007/s12221-019-1135-7Nejati, M., Rostami, M., Mirzaei, H., Rahimi-Nasrabadi, M., Vosoughifar, M., Nasab, A. S., & Ganjali, M. R. (2022). Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorganic Chemistry Communications, 136(December 2021), 109107. https://doi.org/10.1016/j.inoche.2021.109107Sharma, R. K., Agarwal, M., & Balani, K. (2016). Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Materials Science and Engineering C, 62, 843–851. https://doi.org/10.1016/j.msec.2016.02.032Sharma, S. K., Verma, D. S., Khan, L. U., Kumar, S., & Khan, S. B. (2018). Handbook of Materials Characterization. Handbook of Materials Characterization, July 2020, 1–613. https://doi.org/10.1007/978-3-319-92955-2Sheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., & Cortina, J. L. (2019). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal, 123475. https://doi.org/10.1016/j.cej.2019.123475Singh, S. (2019). Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicology Mechanisms and Methods, 29(4), 300–311. https://doi.org/10.1080/15376516.2018.1553221Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-xSirisomboon, P., & Hock Lim, C. (2020). Rapid Evaluation of the Properties of Natural Rubber Latex and Its Products Using Near-Infrared Spectroscopy. Organic Polymers, 1–18. https://doi.org/10.5772/intechopen.84549Soto, K., Garza, K. M., & Murr, L. E. (2007). Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 3(3 SPEC. ISS.), 351–358. https://doi.org/10.1016/j.actbio.2006.11.004Sruthi, S., Ashtami, J., & Mohanan, P. V. (2018). Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Materials Today Chemistry, 10, 175–186. https://doi.org/10.1016/j.mtchem.2018.09.008Stanković, A., Dimitrijević, S., & Uskoković, D. (2013). Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids and Surfaces B: Biointerfaces, 102, 21–28. https://doi.org/10.1016/j.colsurfb.2012.07.033Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679–6686. https://doi.org/10.1021/la0202374Suksup, R., Imkaew, C., & Smitthipong, W. (2017). Cream concentrated latex for foam rubber products. IOP Conference Series: Materials Science and Engineering, 272(1). https://doi.org/10.1088/1757-899X/272/1/012025Surfactant, P., & Crosslinking, C. (2021). Water-Resistant Latex Coatings : Tuning of Properties by.Theerthagiri, J., Salla, S., Senthil, R. A., Nithyadharseni, P., Madankumar, A., Arunachalam, P., Maiyalagan, T., & Kim, H. S. (2019). A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology, 30(39). https://doi.org/10.1088/1361-6528/ab268aTofa, T. S., Kunjali, K. L., Paul, S., & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environmental Chemistry Letters, 17(3), 1341–1346. https://doi.org/10.1007/s10311-019-00859-zUmar, A., Chauhan, M. S., Chauhan, S., Kumar, R., Sharma, P., Tomar, K. J., Wahab, R., Al-Hajry, A., & Singh, D. (2013). Applications of ZnO nanoflowers as antimicrobial agents for Escherichia coli and enzyme-free glucose sensor. Journal of Biomedical Nanotechnology, 9(10), 1794–1802. https://doi.org/10.1166/jbn.2013.1751Vaysse, L., Bonfils, F., Sainte-Beuve, J., & Cartault, M. (2012). Natural Rubber. In Polymer Science: A Comprehensive Reference, 10 Volume Set (Vol. 10, Issue January). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53349-4.00267-3Wahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035Wahab, R., Kim, Y. S., Mishra, A., Yun, S. Il, & Shin, H. S. (2010). Formation of ZnO Micro-Flowers Prepared via Solution Process and their Antibacterial Activity. Nanoscale Research Letters, 5(10), 1675–1681. https://doi.org/10.1007/s11671-010-9694-yWang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956Wang, L., Zhang, S., Keatch, R., Corner, G., Nabi, G., Murdoch, S., Davidson, F., & Zhao, Q. (2019). In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. Journal of Hospital Infection, 103(1), 55–63. https://doi.org/10.1016/j.jhin.2019.02.012Wei, F., Yu, H., Zeng, Z., Liu, H., Wang, Q., Wang, J., & Li, S. (2014). Preparation and structure characterization of hydroxylethylmethacrylate grafted natural rubber latex. Polímeros Ciência e Tecnologia, 24(3), 283–290. https://doi.org/10.4322/polimeros.2014.068Williams, D. B., & Carter, C. B. (2009). Transmission Electron Microscopy. In Transmission Electron Microscopy. https://doi.org/10.1007/978-1-4757-2519-3_6World Health Organisation. (2022). Global report on infection prevention and control. http://apps.who.int/bookorders.Zhang, W., Hu, J., Zhou, Y., Chen, Y., Yu, F., Hong, C., Chen, L., Xin, H., Hong, K., & Wang, X. (2019). Latex and a ZnO-based multi-functional material for cardiac implant-related inflammation. Biomaterials Science, 7(10), 4186–4194. https://doi.org/10.1039/c9bm00952cZhao, D. L., Wang, X. X., Zeng, X. W., Xia, Q. S., & Tang, J. T. (2009). Preparation and inductive heating property of Fe3O4-chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia. Journal of Alloys and Compounds, 477(1–2), 739–743. https://doi.org/10.1016/j.jallcom.2008.10.104Zhu, Y., Fu, H., Ding, J., Li, H., Zhang, M., Zhang, J., & Liu, Y. (2018). Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors. Applied Optics, 57(27), 7924. https://doi.org/10.1364/ao.57.007924Zou, L., Phule, A. D., Sun, Y., Zhu, T. Y., Wen, S., & Zhang, Z. X. (2020). Superhydrophobic and superoleophilic polyethylene aerogel coated natural rubber latex foam for oil-water separation application. Polymer Testing, 85(January), 106451. https://doi.org/10.1016/j.polymertesting.2020.106451EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83073/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1035434738.2022.pdf1035434738.2022.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf3640707https://repositorio.unal.edu.co/bitstream/unal/83073/2/1035434738.2022.pdf0f0266be9039c12f65806ff8c35a7026MD52THUMBNAIL1035434738.2022.pdf.jpg1035434738.2022.pdf.jpgGenerated Thumbnailimage/jpeg5406https://repositorio.unal.edu.co/bitstream/unal/83073/3/1035434738.2022.pdf.jpgef734dbe3825474f98d14cd7e37edae4MD53unal/83073oai:repositorio.unal.edu.co:unal/830732023-08-13 23:04:25.423Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=