Métodos de Galerkin Discontinuos para Problemas de Convección-Difusión

En la naturaleza y en la industria, algunos procesos de transporte se modelan matemáticamente por la ecuación de convección-difusión. Tal es el caso del vertido de contaminante en un medio hídrico, la simulación del comportamiento de reservas de petróleo, la transferencia de calor y masa, entre otro...

Full description

Autores:
Rios Zuluaga, Nestor Jaime
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/57470
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/57470
http://bdigital.unal.edu.co/53739/
Palabra clave:
51 Matemáticas / Mathematics
Métodos de Galerkin discontinuos
Ecuación Convección-difusión
Problemas parabólicos
Discontinuous Galerkin methods
Convection-diffusion
Parabolic problems
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:En la naturaleza y en la industria, algunos procesos de transporte se modelan matemáticamente por la ecuación de convección-difusión. Tal es el caso del vertido de contaminante en un medio hídrico, la simulación del comportamiento de reservas de petróleo, la transferencia de calor y masa, entre otros. La ecuación de convección-difusión se expresa matemáticamente como una ecuación diferencial parcial de tipo parabólico, usualmente para modelar numéricamente este tipo de problemas, resulta eficaz discretizar (particionar) el dominio sobre el que se define la ecuación en derivadas parciales. En el presente trabajo se discretizaría el dominio espacial utilizando elementos finitos discontinuos, entre tanto se aplicará un esquema de diferencias finitas en el dominio temporal para resolver el sistema de ecuaciones diferenciales ordinarias resultante. En un contexto general, el método de elementos finitos se basa en tres etapas: Reescribir la forma débil del problema con valores inicial y en la frontera incluyendo allí implícitamente las condiciones de frontera. Se aplica el método de Galerkin "para resolver la ecuación sobre un subespacio de dimensión finita". Se elige una base conveniente del subespacio de dimensión finita, de tal modo que el sistema de ecuaciones asociado sea (en lo posible) fácil, rápido y barato de resolver. Los métodos de Galerkin discontinuo son técnicas numéricas que se utilizan frecuentemente para convertir problemas de operadores continuos (como una ecuación diferencial) en problemas discretos. En este trabajo se estudiarán los aspectos teóricos y las técnicas de implementación de los métodos Galerkin discontinuos apropiados para hallar la solución de Ecuaciones Diferenciales Parciales de tipo parabólico 1-Dimensional