Reliability analysis of structural systems using imprecise probability models
The use of the theory of imprecise probabilities in structural reliability analysis has gained momentum in recent years. This is due to the fact that classical probability theory has been found insufficient for modeling problems in which the limited amount of information makes the construction of pr...
- Autores:
-
Ramírez Candamil, Juliana
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/62303
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/62303
http://bdigital.unal.edu.co/61334/
- Palabra clave:
- 51 Matemáticas / Mathematics
6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
Structural reliability analysis
Imprecise probability theory
Failure probability interval
Random sets theory
FORM method
Linear regression
Polar transformation
Reliability plot
Monte Carlo simulation
Monte Carlo method
Análisis de confiabilidad de estructuras
Teoría de probabilidades imprecisas
Intervalo de probabilidad de falla
Teoría de conjuntos aleatorios
Método FORM
regresión lineal
Transformación polar
Gráfica de confiabilidad
Simulación de Monte Carlo
Método de Montecarlo
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_0396a02e01216a8fc0dc8b694e32057a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/62303 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Reliability analysis of structural systems using imprecise probability models |
title |
Reliability analysis of structural systems using imprecise probability models |
spellingShingle |
Reliability analysis of structural systems using imprecise probability models 51 Matemáticas / Mathematics 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Structural reliability analysis Imprecise probability theory Failure probability interval Random sets theory FORM method Linear regression Polar transformation Reliability plot Monte Carlo simulation Monte Carlo method Análisis de confiabilidad de estructuras Teoría de probabilidades imprecisas Intervalo de probabilidad de falla Teoría de conjuntos aleatorios Método FORM regresión lineal Transformación polar Gráfica de confiabilidad Simulación de Monte Carlo Método de Montecarlo |
title_short |
Reliability analysis of structural systems using imprecise probability models |
title_full |
Reliability analysis of structural systems using imprecise probability models |
title_fullStr |
Reliability analysis of structural systems using imprecise probability models |
title_full_unstemmed |
Reliability analysis of structural systems using imprecise probability models |
title_sort |
Reliability analysis of structural systems using imprecise probability models |
dc.creator.fl_str_mv |
Ramírez Candamil, Juliana |
dc.contributor.advisor.spa.fl_str_mv |
Hurtado Gómez, Jorge Eduardo (Thesis advisor) Álvarez Marín, Diego Andrés (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Ramírez Candamil, Juliana |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering |
topic |
51 Matemáticas / Mathematics 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering Structural reliability analysis Imprecise probability theory Failure probability interval Random sets theory FORM method Linear regression Polar transformation Reliability plot Monte Carlo simulation Monte Carlo method Análisis de confiabilidad de estructuras Teoría de probabilidades imprecisas Intervalo de probabilidad de falla Teoría de conjuntos aleatorios Método FORM regresión lineal Transformación polar Gráfica de confiabilidad Simulación de Monte Carlo Método de Montecarlo |
dc.subject.proposal.spa.fl_str_mv |
Structural reliability analysis Imprecise probability theory Failure probability interval Random sets theory FORM method Linear regression Polar transformation Reliability plot Monte Carlo simulation Monte Carlo method Análisis de confiabilidad de estructuras Teoría de probabilidades imprecisas Intervalo de probabilidad de falla Teoría de conjuntos aleatorios Método FORM regresión lineal Transformación polar Gráfica de confiabilidad Simulación de Monte Carlo Método de Montecarlo |
description |
The use of the theory of imprecise probabilities in structural reliability analysis has gained momentum in recent years. This is due to the fact that classical probability theory has been found insufficient for modeling problems in which the limited amount of information makes the construction of precise reliability models impossible. Limiting an exact evaluation of the failure probability in mechanical and structural systems. Random set theory allows for the estimation of the probability interval when there is random and epistemic uncertainty. With this theory, it is possible to model basic variables, such as CDFs, probability boxes, and intervals, among other representation of uncertainty. Additionally, it allows for representation of input variable dependence, by means of copulas. In this thesis, a number of formulations are presented, in order to estimate the failure probability interval. The first is based on the random sets theory, which uses the Dempster-Shafer evidence theory with an infinite number of focal elements. The second approach proposes calculation of the interval as a design optimization problem, based on reliability. It was proven theoretically, and via numerical experiments, that the second formulation provides tighter bounds for the failure interval than others estimated by the random sets theory. Additionally, two other methodologies for obtaining the failure interval, based on random set theory and on properties of visualization and representation, are proposed. These are provided by the transformation in polar coordinates proposed by Hurtado (2012). Both methodologies perform a polar analysis of the focal elements. The first does so with each focal element in its entirety, while the second takes samples from within each focal element. These methodologies avoid the costly optimization procedure used by the extension principle. Various practical applications are presented, which contribute to the state of the art, regarding uncertainty management. On the other hand, the properties of the forementioned transformation in polar coordinates are also used to create applications in the analysis of structural systems, in which it is considered more than a limit state function; it also provides a visual tool for sensitivity analysis in structural systems. All of these applications and methodologies are illustrated with practical examples present in the literature. To conclude, obtained results show a significant advance in the management of uncertainty and dependencies for input variables in a system, in addition to providing the necessary tools, with simple, but effective theoretical and practical developments, in order to obtain a reliable evaluation of the failure interval for mechanical and structural systems that are consistent with the formulation and characteristics of the problem |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T20:56:32Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T20:56:32Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/62303 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/61334/ |
url |
https://repositorio.unal.edu.co/handle/unal/62303 http://bdigital.unal.edu.co/61334/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación Departamento de Ingeniería Eléctrica, Electrónica y Computación |
dc.relation.references.spa.fl_str_mv |
Ramírez Candamil, Juliana (2017) Reliability analysis of structural systems using imprecise probability models. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/62303/1/1053769975.2017.pdf https://repositorio.unal.edu.co/bitstream/unal/62303/2/1053769975.2017.pdf.jpg |
bitstream.checksum.fl_str_mv |
9f35937c2077a87f3fdde360713f4d97 3f3f8cd76bd1bc0db932109532f5d708 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090003502858240 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hurtado Gómez, Jorge Eduardo (Thesis advisor)62fdc0fb-32ed-4d19-84c1-5c5e2cc38f63-1Álvarez Marín, Diego Andrés (Thesis advisor)fbb1b5b0-a34f-4334-ad99-4ccadf56ac0c-1Ramírez Candamil, Juliana3f90e356-3232-49b3-8efe-5bd7a242740f3002019-07-02T20:56:32Z2019-07-02T20:56:32Z2017https://repositorio.unal.edu.co/handle/unal/62303http://bdigital.unal.edu.co/61334/The use of the theory of imprecise probabilities in structural reliability analysis has gained momentum in recent years. This is due to the fact that classical probability theory has been found insufficient for modeling problems in which the limited amount of information makes the construction of precise reliability models impossible. Limiting an exact evaluation of the failure probability in mechanical and structural systems. Random set theory allows for the estimation of the probability interval when there is random and epistemic uncertainty. With this theory, it is possible to model basic variables, such as CDFs, probability boxes, and intervals, among other representation of uncertainty. Additionally, it allows for representation of input variable dependence, by means of copulas. In this thesis, a number of formulations are presented, in order to estimate the failure probability interval. The first is based on the random sets theory, which uses the Dempster-Shafer evidence theory with an infinite number of focal elements. The second approach proposes calculation of the interval as a design optimization problem, based on reliability. It was proven theoretically, and via numerical experiments, that the second formulation provides tighter bounds for the failure interval than others estimated by the random sets theory. Additionally, two other methodologies for obtaining the failure interval, based on random set theory and on properties of visualization and representation, are proposed. These are provided by the transformation in polar coordinates proposed by Hurtado (2012). Both methodologies perform a polar analysis of the focal elements. The first does so with each focal element in its entirety, while the second takes samples from within each focal element. These methodologies avoid the costly optimization procedure used by the extension principle. Various practical applications are presented, which contribute to the state of the art, regarding uncertainty management. On the other hand, the properties of the forementioned transformation in polar coordinates are also used to create applications in the analysis of structural systems, in which it is considered more than a limit state function; it also provides a visual tool for sensitivity analysis in structural systems. All of these applications and methodologies are illustrated with practical examples present in the literature. To conclude, obtained results show a significant advance in the management of uncertainty and dependencies for input variables in a system, in addition to providing the necessary tools, with simple, but effective theoretical and practical developments, in order to obtain a reliable evaluation of the failure interval for mechanical and structural systems that are consistent with the formulation and characteristics of the problemResumen: El uso de la teoría de probabilidades imprecisas en el análisis de confiabilidad de estructuras, ha tomado fuerza en los últimos años. Esto, debido a que la teoría clásica de probabilidades ha demostrado no ser suficiente para modelar problemas en los cuales la cantidad limitada de información, hace imposible la construcción de modelos de probabilidad precisos. Limitando una evaluación exacta de la probabilidad de falla para sistemas mecánicos y estructurales. En este sentido, la teoría de conjuntos aleatorios permite la estimación del intervalo de probabilidad cuando existen incertidumbre aleatoria y epistémica. Con esta teoría, es posible modelar variables básicas como CDFs, cajas de probabilidad e intervalos, entre otros. Además, permite representar la dependencia de las variables de entrada por medio de copulas. En esta tesis se presentan algunas formulaciones para estimar el intervalo de la probabilidad de falla. La primera se basa en la teoría de conjuntos aleatorios que emplea la teoría de evidencia de Dempster-Shafer con un número infinito de elementos focales. La segunda aproximación, plantea el cálculo del intervalo como un problema de optimización del diseño basado en confiabilidad. Se probó de manera teórica y por medio de experimentos numéricos que la segunda formulación proporciona cotas más ajustadas para el intervalo de falla, que aquellas estimadas por la teoría de conjuntos aleatorios. Además, se plantean otras dos metodologías para obtener el intervalo de falla basadas en la teoría de conjuntos aleatorios y en las propiedades de visualización y representación, proporcionadas por la transformación en coordenadas polares propuesta por Hurtado (2012). Ambas metodologías realizan un análisis polar de los elementos focales. La primera lo realiza con cada elemento focal en su totalidad, mientras que la segunda tomas muestras dentro de cada elemento focal para hacerlo. Estas metodologías evitan el costoso procedimiento de optimización, empleado por el principio de extensión. Se presentan algunas aplicaciones prácticas, que permiten llenar algunos vacíos en el estado del arte sobre el manejo de la incertidumbre. Por otro lado, las propiedades de la mencionada transformación en coordenadas polares, también se emplean para formular aplicaciones en el análisis de sistemas estructurales donde se consideran más de una función de estado límite, además de proporcionar una herramienta visual para el análisis de sensibilidad en sistemas estructurales. Todas estas aplicaciones y metodologías son ilustradas con ejemplos prácticos presentes en la literatura. En conclusión, los resultados obtenidos muestran un avance significativo en el manejo de la incertidumbre y dependencias de las variables de entrada de un sistema, además de proporcionar las herramientas necesarias, con desarrollos teóricos y prácticos simples, pero efectivos, para obtener una evaluación confiable del intervalo de falla para sistemas mecánicos y estructurales, que estén acordes con la formulación y características del problemaDoctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónDepartamento de Ingeniería Eléctrica, Electrónica y ComputaciónRamírez Candamil, Juliana (2017) Reliability analysis of structural systems using imprecise probability models. Doctorado thesis, Universidad Nacional de Colombia - Sede Manizales.51 Matemáticas / Mathematics6 Tecnología (ciencias aplicadas) / Technology62 Ingeniería y operaciones afines / EngineeringStructural reliability analysisImprecise probability theoryFailure probability intervalRandom sets theoryFORM methodLinear regressionPolar transformationReliability plotMonte Carlo simulationMonte Carlo methodAnálisis de confiabilidad de estructurasTeoría de probabilidades imprecisasIntervalo de probabilidad de fallaTeoría de conjuntos aleatoriosMétodo FORMregresión linealTransformación polarGráfica de confiabilidadSimulación de Monte CarloMétodo de MontecarloReliability analysis of structural systems using imprecise probability modelsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL1053769975.2017.pdfapplication/pdf14215219https://repositorio.unal.edu.co/bitstream/unal/62303/1/1053769975.2017.pdf9f35937c2077a87f3fdde360713f4d97MD51THUMBNAIL1053769975.2017.pdf.jpg1053769975.2017.pdf.jpgGenerated Thumbnailimage/jpeg4257https://repositorio.unal.edu.co/bitstream/unal/62303/2/1053769975.2017.pdf.jpg3f3f8cd76bd1bc0db932109532f5d708MD52unal/62303oai:repositorio.unal.edu.co:unal/623032023-04-16 23:05:28.39Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |