Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem

This paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good i...

Full description

Autores:
Escobar Z., Antonio H.
Gallego R., Ramón A.
Romero L., Rubén A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2011
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/33479
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/33479
http://bdigital.unal.edu.co/23559/
http://bdigital.unal.edu.co/23559/2/
http://bdigital.unal.edu.co/23559/3/
Palabra clave:
planeamiento de redes de transmisión
algoritmos genéticos
algoritmos heurísticos constructivos
metaheurística
población inicial.
electricity distribution network expansion planning
genetic algorithm
constructive heuristic algorithm
met heuristics
initial population.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_023a29ec83d770e2da35c61ff72baa99
oai_identifier_str oai:repositorio.unal.edu.co:unal/33479
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
spellingShingle Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
planeamiento de redes de transmisión
algoritmos genéticos
algoritmos heurísticos constructivos
metaheurística
población inicial.
electricity distribution network expansion planning
genetic algorithm
constructive heuristic algorithm
met heuristics
initial population.
title_short Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title_full Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title_fullStr Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title_full_unstemmed Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
title_sort Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem
dc.creator.fl_str_mv Escobar Z., Antonio H.
Gallego R., Ramón A.
Romero L., Rubén A.
dc.contributor.author.spa.fl_str_mv Escobar Z., Antonio H.
Gallego R., Ramón A.
Romero L., Rubén A.
dc.subject.proposal.spa.fl_str_mv planeamiento de redes de transmisión
algoritmos genéticos
algoritmos heurísticos constructivos
metaheurística
población inicial.
electricity distribution network expansion planning
genetic algorithm
constructive heuristic algorithm
met heuristics
initial population.
topic planeamiento de redes de transmisión
algoritmos genéticos
algoritmos heurísticos constructivos
metaheurística
población inicial.
electricity distribution network expansion planning
genetic algorithm
constructive heuristic algorithm
met heuristics
initial population.
description This paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations.
publishDate 2011
dc.date.issued.spa.fl_str_mv 2011
dc.date.accessioned.spa.fl_str_mv 2019-06-27T22:57:56Z
dc.date.available.spa.fl_str_mv 2019-06-27T22:57:56Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/33479
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/23559/
http://bdigital.unal.edu.co/23559/2/
http://bdigital.unal.edu.co/23559/3/
url https://repositorio.unal.edu.co/handle/unal/33479
http://bdigital.unal.edu.co/23559/
http://bdigital.unal.edu.co/23559/2/
http://bdigital.unal.edu.co/23559/3/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/ingeinv/article/view/20534
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación
Ingeniería e Investigación
dc.relation.ispartofseries.none.fl_str_mv Ingeniería e Investigación; Vol. 31, núm. 1 (2011); 127-143 Ingeniería e Investigación; Vol. 31, núm. 1 (2011); 127-143 2248-8723 0120-5609
dc.relation.references.spa.fl_str_mv Escobar Z., Antonio H. and Gallego R., Ramón A. and Romero L., Rubén A. (2011) Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem. Ingeniería e Investigación; Vol. 31, núm. 1 (2011); 127-143 Ingeniería e Investigación; Vol. 31, núm. 1 (2011); 127-143 2248-8723 0120-5609 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Facultad de Ingeniería
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/33479/1/20534-70563-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/33479/2/20534-70563-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv f0b4afe59f4595257905e754dd425a15
8d75068c0859b117ea7f69e4ba673857
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089864188002304
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Escobar Z., Antonio H.ca32614d-dffb-411a-9543-27cc8f622afb300Gallego R., Ramón A.ac1e30aa-800c-46b3-b072-cce419c601b1300Romero L., Rubén A.07735b86-37ee-4c14-8e90-b17c28023ebf3002019-06-27T22:57:56Z2019-06-27T22:57:56Z2011https://repositorio.unal.edu.co/handle/unal/33479http://bdigital.unal.edu.co/23559/http://bdigital.unal.edu.co/23559/2/http://bdigital.unal.edu.co/23559/3/This paper analyses the impact of choosing good initial populations for genetic algorithms regarding convergence speed and final solution quality. Test problems were taken from complex electricity distribution network expansion planning. Constructive heuristic algorithms were used to generate good initial populations, particularly those used in resolving transmission network expansion planning. The results were compared to those found by a genetic algorithm with random initial populations. The results showed that an efficiently generated initial population led to better solutions being found in less time when applied to low complexity electricity distribution networks and better quality solutions for highly complex networks when compared to a genetic algorithm using random initial populations.En este artículo se analiza el impacto de seleccionar poblaciones iníciales de buena calidad para ser usadas en algoritmos genéticos, con el propósito de obtener mayor velocidad de convergencia y mejor calidad en las soluciones alcanzadas cuando se resuelve el problema del planeamiento de la expansión a largo plazo de los sistemas de transmisión de energía eléctrica. Los sistemas de prueba que se analizan corresponden a sistemas de alta complejidad, tradicionalmente usados en la literatura especializada. Para generar soluciones iníciales de buena calidad se utilizan algoritmos heurísticos constructivos, particularmente los más utilizados en problemas de planeamiento de la expansión de sistemas de transmisión. Se comparan los resultados obtenidos con los que entregan los algoritmos genéticos que usan poblaciones iniciales aleatorias. Los resultados muestran que una población inicial generada en forma heurística permite obtener soluciones de mejor o igual calidad y con esfuerzos computacionales menores, cuando se resuelven sistemas eléctricos de gran complejidad.application/pdfspaUniversidad Nacional de Colombia - Facultad de Ingenieríahttp://revistas.unal.edu.co/index.php/ingeinv/article/view/20534Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónIngeniería e Investigación; Vol. 31, núm. 1 (2011); 127-143 Ingeniería e Investigación; Vol. 31, núm. 1 (2011); 127-143 2248-8723 0120-5609Escobar Z., Antonio H. and Gallego R., Ramón A. and Romero L., Rubén A. (2011) Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problem. Ingeniería e Investigación; Vol. 31, núm. 1 (2011); 127-143 Ingeniería e Investigación; Vol. 31, núm. 1 (2011); 127-143 2248-8723 0120-5609 .Using traditional heuristic algorithms on an initial genetic algorithm population applied to the transmission expansion planning problemArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTplaneamiento de redes de transmisiónalgoritmos genéticosalgoritmos heurísticos constructivosmetaheurísticapoblación inicial.electricity distribution network expansion planninggenetic algorithmconstructive heuristic algorithmmet heuristicsinitial population.ORIGINAL20534-70563-1-PB.pdfapplication/pdf303675https://repositorio.unal.edu.co/bitstream/unal/33479/1/20534-70563-1-PB.pdff0b4afe59f4595257905e754dd425a15MD51THUMBNAIL20534-70563-1-PB.pdf.jpg20534-70563-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9233https://repositorio.unal.edu.co/bitstream/unal/33479/2/20534-70563-1-PB.pdf.jpg8d75068c0859b117ea7f69e4ba673857MD52unal/33479oai:repositorio.unal.edu.co:unal/334792023-12-22 23:05:29.837Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co