Calibración del ensayo CPTu para el depósito lacustre de Bogotá

ilustraciones

Autores:
Barón Castro, Maira Alejandra
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79677
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79677
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
CPTu
Resistencia al corte no drenado
RSC
Velocidad de onda de corte
Depósito lacustre
Arcillas blandas
Undrained shear strength
OCR
Shear wave velocity
Lacustrine deposit
Soft clays
Mecánica de los suelos
Soil mechanics
Transporte urbano
Urban transport
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_01cda28d58f31b8430aaf884f9472f61
oai_identifier_str oai:repositorio.unal.edu.co:unal/79677
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Calibración del ensayo CPTu para el depósito lacustre de Bogotá
dc.title.translated.eng.fl_str_mv Calibration of the CPTu for lacustrine deposit of Bogotá
title Calibración del ensayo CPTu para el depósito lacustre de Bogotá
spellingShingle Calibración del ensayo CPTu para el depósito lacustre de Bogotá
620 - Ingeniería y operaciones afines
CPTu
Resistencia al corte no drenado
RSC
Velocidad de onda de corte
Depósito lacustre
Arcillas blandas
Undrained shear strength
OCR
Shear wave velocity
Lacustrine deposit
Soft clays
Mecánica de los suelos
Soil mechanics
Transporte urbano
Urban transport
title_short Calibración del ensayo CPTu para el depósito lacustre de Bogotá
title_full Calibración del ensayo CPTu para el depósito lacustre de Bogotá
title_fullStr Calibración del ensayo CPTu para el depósito lacustre de Bogotá
title_full_unstemmed Calibración del ensayo CPTu para el depósito lacustre de Bogotá
title_sort Calibración del ensayo CPTu para el depósito lacustre de Bogotá
dc.creator.fl_str_mv Barón Castro, Maira Alejandra
dc.contributor.advisor.none.fl_str_mv Rodríguez Granados, Edgar Eduardo
dc.contributor.author.none.fl_str_mv Barón Castro, Maira Alejandra
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
CPTu
Resistencia al corte no drenado
RSC
Velocidad de onda de corte
Depósito lacustre
Arcillas blandas
Undrained shear strength
OCR
Shear wave velocity
Lacustrine deposit
Soft clays
Mecánica de los suelos
Soil mechanics
Transporte urbano
Urban transport
dc.subject.proposal.spa.fl_str_mv CPTu
Resistencia al corte no drenado
RSC
Velocidad de onda de corte
Depósito lacustre
Arcillas blandas
dc.subject.proposal.eng.fl_str_mv Undrained shear strength
OCR
Shear wave velocity
Lacustrine deposit
Soft clays
dc.subject.unesco.none.fl_str_mv Mecánica de los suelos
Soil mechanics
Transporte urbano
Urban transport
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-22T19:35:34Z
dc.date.available.none.fl_str_mv 2021-06-22T19:35:34Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79677
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79677
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Almeida, M., Marques, M., & Baroni, M. (2010). Geotechnical parameters of very soft clays from CPTu. 2nd International Symposium on Cone Penetration Testing.
ASTM INTERNATIONAL. (01 de 05 de 2021). ASTM. Obtenido de https://la.astm.org/
Bagińska, I., Kawa, M., & Łydżba, D. (2020). Identification of soil types and their arrangement in overburden heaps using the deconvolution approach and CPTu tests results. Engineering Geology, 276(February), 105759. https://doi.org/10.1016/j.enggeo.2020.105759
Campanella, R. G., Gillespie, D., & Robertson, P. K. (1982). Pore pressures during cone penetration testing. Penetration Testing. Proc. 2nd European Symposium, Amsterdam, January 1982, 507–512.
Chang, M. F. (1990). Interpretation of overconsolidation ratio from in situ test in Recent clay deposits in Singapore and Malaysia.
Chen, B. S. Y., & Mayne, P. W. (1996). Statistical relationships between piezocone measurements and stress history of clays. Canadian Geotechnical Journal, 33(3), 488–498. https://doi.org/10.1139/t96-070
Consorcio Troncales Bogotá. (2019). Factibilidad y actualización, complementación, ajustes de los estudios y diseños, y estudios y diseños para la ampliación y extensión de la Avenida Ciudad de Cali al sistema Transmilenio, entre la Avenida Circunvalar del Sur y la Avenida Calle 170. Bogotá, Contrato No. 1352 de 2017.
Eslami, A., & Fellenius, B. H. (2004). CPT and CPTu data for soil profile interpretation: Review of methods and a proposed new approach. Iranian Journal of Science and Technology, Transaction B: Engineering, 28(B1), 69–86.
Eslami, Abolfazl, Akbarimehr, D., Aflaki, E., & Hajitaheriha, M. M. (2020). Geotechnical site characterization of the Lake Urmia super-soft sediments using laboratory and CPTu records. Marine Georesources and Geotechnology, 38(10), 1223–1234. https://doi.org/10.1080/1064119X.2019.1672121
Fayed, A. L., & Mousa, A. A. (2020). Shear Wave Velocity in the East Nile Delta Clay: Correlations with Static CPT Measurements. Geotechnical and Geological Engineering, 38(2), 2303–2315. https://doi.org/10.1007/s10706-019-01089-4
Zonificación de la respuesta sísmica de Bogotá para el diseño sismo resistente de edificaciones, 21 (2010). https://www.scg.org.co/microzonificacion-sismica-de-bogota-d-c/
Giretti, D., Been, K., Fioravante, V., & Dickenson, S. (2018). CPT calibration and analysis for a carbonate sand. Geotechnique, 68(4), 345–357. https://doi.org/10.1680/jgeot.16.P.312
Guo, Y., Zhang, G., & Liu, S. (2020). Temperature effects on the in-situ mechanical response of clayey soils around an energy pile evaluated by CPTU. Engineering Geology, 276(June), 105712. https://doi.org/10.1016/j.enggeo.2020.105712
Hammam, A. H., Abel-Salam, A. I., & Yousf, M. A. (2017). On the evaluation of pre-consolidation pressure of undisturbed saturated clays. HBRC Journal, 13(1), 47–53. https://doi.org/10.1016/j.hbrcj.2015.02.003
Heidari, P., & Ghazavi, M. (2021). Statistical Evaluation of CPT and CPTu Based Methods for Prediction of Axial Bearing Capacity of Piles. Geotechnical and Geological Engineering, 39(2), 1259–1287. https://doi.org/10.1007/s10706-020-01557-2
IDECA. (24 de 05 de 2020). Mapas IDECA. Obtenido de https://www.ideca.gov.co/recursos/mapas/curva-de-nivel-bogota-dc
IDU. (2021). REPOSITORIO INSTITUCIONAL IDU. Obtenido de https://webidu.idu.gov.co/jspui/
Geología de la Sabana de Bogotá, (2005). https://doi.org/10.1043/0003-9985(2001)125<1579:CGAWLG>2.0.CO;2
Karlsrud, K., Lunne, T., Kort, D., & Strandvik, S. (2005). CPTU correlations for clays. https://doi.org/10.3233/978-1-61499-656-9-693
Konkol, J., Międlarz, K., & Bałachowski, L. (2019). Geotechnical characterization of soft soil deposits in Northern Poland. Engineering Geology, 259(June), p. 105–187. https://doi.org/10.1016/j.enggeo.2019.105187
Kottegoda, N., & Rosso, R. (2008). Applied Statistics for Civil and Environmental Engineers (Second). Blackwell Malden, MA.
Kulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design (Report No. EPRI-EL-6800), Electric Power Research Institute., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. In Ostigov. https://doi.org/EPRI-EL-6800
Ladd, C., & Foott, R. (1974). New Design Procedure for Stability of Soft Clays (p. 24).
Long, M., & Donohue, S. (2010). Characterization of Norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data. Canadian Geotechnical Journal, 47(7), 709–718. https://doi.org/10.1139/T09-133
Madiai, C., & Simoni, G. (2004). Shear wave velocity-penetration resistance correlation for Holocene and Pleistocene soils of an area in central Italy. International Symposium on Geotechnical and Geophysical Site Characterization, January 2004, 1687–1694.
Mayne, P. (2016). Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT. Australian Geomechanics Journal, 51(4), 27–55.
Mayne, P. W. (2005). Integrated ground behavior: In-situ and lab tests. Deformation Characteristics of Geomaterials : Recent Investigations and Prospects - International Symposium on Deformation Characteristics of Geomaterials, ISLyon 2003, June, 155–177.
Mayne, P. W. (2006). In-situ test calibrations for evaluating soil parameters. Characterisation and Engineering Properties of Natural Soils, 3–4, 1601–1652. https://doi.org/10.1201/noe0415426916.ch2
Mayne, P. W., & Peuchen, J. (2018). Evaluation of CPTU N kt cone factor for undrained strength of clays. Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, August, 423–429.
Mayne, P. W., & Rix, G. J. (1995). Correlations Between Shear Wave Velocity and Cone Tip Resistance in Natural Clays. Soils and Foundations, 35(2), 107–110. https://doi.org/10.3208/sandf1972.35.2_107
Mayne, P. W., Christopher, B. R., & DeJong, J. (2001). Manual on Subsurface Investigations. Nat. Highway Inst. Sp. Pub. FHWA NHI-01--031. Fed. Highway Administ, Washington, DC, 394. https://doi.org/10.17226/25379
Mayne, P. W., & Benoît, J. (2020). Analytical CPTU Models Applied to Sensitive Clay at Dover, New Hampshire. Journal of Geotechnical and Geoenvironmental Engineering, 146(12), 04020130. https://doi.org/10.1061/(asce)gt.1943-5606.0002378
Mendoza, C., Caicedo, B., & Lopez, F. (2019). Geotechnical behavior of Bogotá lacustrine soil through its geological history. XVII European Conference on Soil Mechanics and Geotechnical Engineering, October. https://doi.org/10.32075/17ECSMGE-2019-0017
Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente, Titulo A REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE NSR-10 1 (2010).
Mo, P. Q., Gao, X. W., Yang, W., & Yu, H. S. (2020). A cavity expansion–based solution for interpretation of CPTu data in soils under partially drained conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 44(7), 1053–1076. https://doi.org/10.1002/nag.3050
Motaghedi, H., & Eslami, A. (2014). Analytical Approach for Determination of Soil Shear Strength Parameters from CPT and CPTu Data. Arabian Journal for Science and Engineering, 39(6), 4363–4376. https://doi.org/10.1007/s13369-014-1022-x
Norwegian Geotechnical Institute. (2019). CPTU CORRELATIONS FOR CLAYS.
R (3.6.1). (2019). R for Statistical Computing, Multiplataforma (Windows), R Development Core Team. Obtenido de https://www.r-project.org/
Robertson, P. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — An update. Canadian Geotechnical Journal, 53(12), 1910–1927. https://doi.org/10.1139/cgj-2016-0044
Robertson, P., & Cabal, K. (2010). Estimating soil unit weight from CPT. In 2nd International Symposium on Cone Penetration Testing, May, 2–40, Vol 2, 575-583.
Robertson, P., & Cabal, K. (2015). Guide to Cone Penetration Testing (6th Edition). Gregg Drilling & Testing, Inc. www.greggdrilling.com
Robertson, P. K. (2009). Interpretation of cone penetration tests - A unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355. https://doi.org/10.1139/T09-065
Robertson, P. K., Campanella, R. G., Gillespie, D., & Rice, A. (1986). Seismic CPT to measure in situ shear wave velocity. Journal of Geotechnical Engineering, 112(8), 791–803. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(791)
Robertson, P. K. (2010). Soil behaviour type from the CPT: an update. In 2nd International Symposium on Cone Penetration Testing, 2(May), Vol 2, 575–583.
Schervish, M. J. (1996). P values: What they are and what they are not. American Statistician, 50(3), 203–206. https://doi.org/10.1080/00031305.1996.10474380
Senneset, K., Sandven, R., & Janbu, N. (1989). Evaluation of soil parameters from piezocone tests. Transportation Research Record, 1235, 24–37.
Torres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005
Troncoso, P. (2018). Evaluación del método de medición del perfil de velocidad de ondas de corte SPT-sísmico. Universidad de Concepción.
Vardon, P. J., Baltoukas, D., & Peuchen, J. (2018). Thermal Cone Penetration Test (T-CPT). Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, June, 649–655.
Vardon, P. J., Baltoukas, D., & Peuchen, J. (2019). Interpreting and validating the thermal cone penetration test (T-CPT). Geotechnique, 69(7), 580–592. https://doi.org/10.1680/jgeot.17.P.214
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s Statement on p-Values: Context, Process, and Purpose. American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108
dc.rights.none.fl_str_mv Derechos Reservados al Autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos Reservados al Autor, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 124 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Bogotá
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79677/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79677/4/1026574991_2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79677/5/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79677/6/1026574991_2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
20f5c9a47bfefb72a832c3bcba6b663e
4460e5956bc1d1639be9ae6146a50347
6e4945013e20f69e2694c70810c4fa84
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089515768217600
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Granados, Edgar Eduardo6eb1f7ec2ab1f6dfd42b30f1c77ff1dbBarón Castro, Maira Alejandraec25cf286da6e356de3869697eb3be452021-06-22T19:35:34Z2021-06-22T19:35:34Z2021https://repositorio.unal.edu.co/handle/unal/79677Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesMediante el uso del ensayo de penetración con cono y medición de presión de poros (CPTu), es posible el cálculo de múltiples geoparámetros útiles para la caracterización del suelo y el diseño geotécnico, la mayoría de los parámetros geotécnicos que pueden obtenerse del ensayo provienen de correlaciones empíricas que requieren calibración con otras técnicas de exploración del subsuelo y ensayos de laboratorio. El trabajo plasmado en este documento presenta la caracterización geotécnica del depósito lacustre de Bogotá y los resultados de la calibración de los principales parámetros de interés geotécnico obtenidos del piezocono, que ostentan un alto grado de incertidumbre. Se realizó la calibración de las ecuaciones existentes o la generación de nuevos modelos que permitan la definición de parámetros de clasificación del suelo como el peso unitario total y parámetros asociados a la resistencia del material del depósito, su historia de esfuerzos y rigidez, como la resistencia al corte no drenado, la relación de sobre consolidación (RSC) y la velocidad de onda de corte. Los resultados se obtuvieron mediante análisis estadísticos y matemáticos a partir de la recopilación de información de campañas exploratorias localizadas en la zona de estudio, para un total de 140 perforaciones mecánicas, 87 piezoconos con longitudes de hasta 50 m y los ensayos de campo y laboratorio asociados. Los modelos matemáticos obtenidos en la investigación ofrecen mejores resultados con respecto a las ecuaciones actuales más comunes. Para la resistencia al corte no drenado se presenta una zonificación del Nkt que depende de la profundidad y la ubicación en el depósito. Para parámetros como la RSC y la velocidad de onda de corte se encontraron valores del coeficiente de determinación (R2) iguales a 0.61 y 0.95, respectivamente. En cuanto al peso unitario total y el ángulo de fricción interna del suelo, los resultados se ajustan a la tendencia general de los ensayos de laboratorio de referencia, con valores medios de 13 kN/m3 y 21°, respectivamente. (Texto tomado de la fuente)It is possible to calculate multiple parameters useful for soil characterization and geotechnical design using the Piezocone Penetration Test (CPTu). Most of the geotechnical parameters that can be estimated from the CPTu data are obtained using empirical correlations that require calibration and verification with other subsoil exploration techniques and laboratory tests. This document presents a geotechnical characterization of the Bogotá lacustrine deposit and the results of the calibration of the main parameters of geotechnical interest, which has a high degree of uncertainty. Calibration of existing equations or generation of new models was performed in order to define the soil classification parameters such as unit weight, and parameters associated with the deposit resistance, stress history and stiffness, such as undrained shear strength, overconsolidation ratio (OCR) and shear wave velocity. Results were obtained through statistical and mathematical analysis. Data of soil exploration campaigns distributed throughout the study area that included 140 mechanical perforations and 87 CPTu to depths of up to 50 m was compiled for the calibration. Mathematic models obtained during the research, provide better results regarding the current equations. For the undrained shear strength, a Nkt zonification is presented, which depends on the depth and location of the deposit. Parameters such as the OCR and the shear wave velocity show values of the coefficient of determination (R2) of 0.61 and 0.95, respectively. In terms of the unit weight and the intern friction angle, the results follow a general trend concerning to the laboratory test, with mean values of 13 kN/m3 and 21° respectively. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería Civil - GeotecniaModelación y Análisis en Geotecnia124 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesCPTuResistencia al corte no drenadoRSCVelocidad de onda de corteDepósito lacustreArcillas blandasUndrained shear strengthOCRShear wave velocityLacustrine depositSoft claysMecánica de los suelosSoil mechanicsTransporte urbanoUrban transportCalibración del ensayo CPTu para el depósito lacustre de BogotáCalibration of the CPTu for lacustrine deposit of BogotáTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotáAlmeida, M., Marques, M., & Baroni, M. (2010). Geotechnical parameters of very soft clays from CPTu. 2nd International Symposium on Cone Penetration Testing.ASTM INTERNATIONAL. (01 de 05 de 2021). ASTM. Obtenido de https://la.astm.org/Bagińska, I., Kawa, M., & Łydżba, D. (2020). Identification of soil types and their arrangement in overburden heaps using the deconvolution approach and CPTu tests results. Engineering Geology, 276(February), 105759. https://doi.org/10.1016/j.enggeo.2020.105759Campanella, R. G., Gillespie, D., & Robertson, P. K. (1982). Pore pressures during cone penetration testing. Penetration Testing. Proc. 2nd European Symposium, Amsterdam, January 1982, 507–512.Chang, M. F. (1990). Interpretation of overconsolidation ratio from in situ test in Recent clay deposits in Singapore and Malaysia.Chen, B. S. Y., & Mayne, P. W. (1996). Statistical relationships between piezocone measurements and stress history of clays. Canadian Geotechnical Journal, 33(3), 488–498. https://doi.org/10.1139/t96-070Consorcio Troncales Bogotá. (2019). Factibilidad y actualización, complementación, ajustes de los estudios y diseños, y estudios y diseños para la ampliación y extensión de la Avenida Ciudad de Cali al sistema Transmilenio, entre la Avenida Circunvalar del Sur y la Avenida Calle 170. Bogotá, Contrato No. 1352 de 2017.Eslami, A., & Fellenius, B. H. (2004). CPT and CPTu data for soil profile interpretation: Review of methods and a proposed new approach. Iranian Journal of Science and Technology, Transaction B: Engineering, 28(B1), 69–86.Eslami, Abolfazl, Akbarimehr, D., Aflaki, E., & Hajitaheriha, M. M. (2020). Geotechnical site characterization of the Lake Urmia super-soft sediments using laboratory and CPTu records. Marine Georesources and Geotechnology, 38(10), 1223–1234. https://doi.org/10.1080/1064119X.2019.1672121Fayed, A. L., & Mousa, A. A. (2020). Shear Wave Velocity in the East Nile Delta Clay: Correlations with Static CPT Measurements. Geotechnical and Geological Engineering, 38(2), 2303–2315. https://doi.org/10.1007/s10706-019-01089-4Zonificación de la respuesta sísmica de Bogotá para el diseño sismo resistente de edificaciones, 21 (2010). https://www.scg.org.co/microzonificacion-sismica-de-bogota-d-c/Giretti, D., Been, K., Fioravante, V., & Dickenson, S. (2018). CPT calibration and analysis for a carbonate sand. Geotechnique, 68(4), 345–357. https://doi.org/10.1680/jgeot.16.P.312Guo, Y., Zhang, G., & Liu, S. (2020). Temperature effects on the in-situ mechanical response of clayey soils around an energy pile evaluated by CPTU. Engineering Geology, 276(June), 105712. https://doi.org/10.1016/j.enggeo.2020.105712Hammam, A. H., Abel-Salam, A. I., & Yousf, M. A. (2017). On the evaluation of pre-consolidation pressure of undisturbed saturated clays. HBRC Journal, 13(1), 47–53. https://doi.org/10.1016/j.hbrcj.2015.02.003Heidari, P., & Ghazavi, M. (2021). Statistical Evaluation of CPT and CPTu Based Methods for Prediction of Axial Bearing Capacity of Piles. Geotechnical and Geological Engineering, 39(2), 1259–1287. https://doi.org/10.1007/s10706-020-01557-2IDECA. (24 de 05 de 2020). Mapas IDECA. Obtenido de https://www.ideca.gov.co/recursos/mapas/curva-de-nivel-bogota-dcIDU. (2021). REPOSITORIO INSTITUCIONAL IDU. Obtenido de https://webidu.idu.gov.co/jspui/Geología de la Sabana de Bogotá, (2005). https://doi.org/10.1043/0003-9985(2001)125<1579:CGAWLG>2.0.CO;2Karlsrud, K., Lunne, T., Kort, D., & Strandvik, S. (2005). CPTU correlations for clays. https://doi.org/10.3233/978-1-61499-656-9-693Konkol, J., Międlarz, K., & Bałachowski, L. (2019). Geotechnical characterization of soft soil deposits in Northern Poland. Engineering Geology, 259(June), p. 105–187. https://doi.org/10.1016/j.enggeo.2019.105187Kottegoda, N., & Rosso, R. (2008). Applied Statistics for Civil and Environmental Engineers (Second). Blackwell Malden, MA.Kulhawy, F. H., & Mayne, P. W. (1990). Manual on Estimating Soil Properties for Foundation Design (Report No. EPRI-EL-6800), Electric Power Research Institute., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. In Ostigov. https://doi.org/EPRI-EL-6800Ladd, C., & Foott, R. (1974). New Design Procedure for Stability of Soft Clays (p. 24).Long, M., & Donohue, S. (2010). Characterization of Norwegian marine clays with combined shear wave velocity and piezocone cone penetration test (CPTU) data. Canadian Geotechnical Journal, 47(7), 709–718. https://doi.org/10.1139/T09-133Madiai, C., & Simoni, G. (2004). Shear wave velocity-penetration resistance correlation for Holocene and Pleistocene soils of an area in central Italy. International Symposium on Geotechnical and Geophysical Site Characterization, January 2004, 1687–1694.Mayne, P. (2016). Evaluating effective stress parameters and undrained shear strength of soft-firm clays from CPT and DMT. Australian Geomechanics Journal, 51(4), 27–55.Mayne, P. W. (2005). Integrated ground behavior: In-situ and lab tests. Deformation Characteristics of Geomaterials : Recent Investigations and Prospects - International Symposium on Deformation Characteristics of Geomaterials, ISLyon 2003, June, 155–177.Mayne, P. W. (2006). In-situ test calibrations for evaluating soil parameters. Characterisation and Engineering Properties of Natural Soils, 3–4, 1601–1652. https://doi.org/10.1201/noe0415426916.ch2Mayne, P. W., & Peuchen, J. (2018). Evaluation of CPTU N kt cone factor for undrained strength of clays. Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, August, 423–429.Mayne, P. W., & Rix, G. J. (1995). Correlations Between Shear Wave Velocity and Cone Tip Resistance in Natural Clays. Soils and Foundations, 35(2), 107–110. https://doi.org/10.3208/sandf1972.35.2_107Mayne, P. W., Christopher, B. R., & DeJong, J. (2001). Manual on Subsurface Investigations. Nat. Highway Inst. Sp. Pub. FHWA NHI-01--031. Fed. Highway Administ, Washington, DC, 394. https://doi.org/10.17226/25379Mayne, P. W., & Benoît, J. (2020). Analytical CPTU Models Applied to Sensitive Clay at Dover, New Hampshire. Journal of Geotechnical and Geoenvironmental Engineering, 146(12), 04020130. https://doi.org/10.1061/(asce)gt.1943-5606.0002378Mendoza, C., Caicedo, B., & Lopez, F. (2019). Geotechnical behavior of Bogotá lacustrine soil through its geological history. XVII European Conference on Soil Mechanics and Geotechnical Engineering, October. https://doi.org/10.32075/17ECSMGE-2019-0017Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente, Titulo A REGLAMENTO COLOMBIANO DE CONSTRUCCIÓN SISMO RESISTENTE NSR-10 1 (2010).Mo, P. Q., Gao, X. W., Yang, W., & Yu, H. S. (2020). A cavity expansion–based solution for interpretation of CPTu data in soils under partially drained conditions. International Journal for Numerical and Analytical Methods in Geomechanics, 44(7), 1053–1076. https://doi.org/10.1002/nag.3050Motaghedi, H., & Eslami, A. (2014). Analytical Approach for Determination of Soil Shear Strength Parameters from CPT and CPTu Data. Arabian Journal for Science and Engineering, 39(6), 4363–4376. https://doi.org/10.1007/s13369-014-1022-xNorwegian Geotechnical Institute. (2019). CPTU CORRELATIONS FOR CLAYS.R (3.6.1). (2019). R for Statistical Computing, Multiplataforma (Windows), R Development Core Team. Obtenido de https://www.r-project.org/Robertson, P. (2016). Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — An update. Canadian Geotechnical Journal, 53(12), 1910–1927. https://doi.org/10.1139/cgj-2016-0044Robertson, P., & Cabal, K. (2010). Estimating soil unit weight from CPT. In 2nd International Symposium on Cone Penetration Testing, May, 2–40, Vol 2, 575-583.Robertson, P., & Cabal, K. (2015). Guide to Cone Penetration Testing (6th Edition). Gregg Drilling & Testing, Inc. www.greggdrilling.comRobertson, P. K. (2009). Interpretation of cone penetration tests - A unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355. https://doi.org/10.1139/T09-065Robertson, P. K., Campanella, R. G., Gillespie, D., & Rice, A. (1986). Seismic CPT to measure in situ shear wave velocity. Journal of Geotechnical Engineering, 112(8), 791–803. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(791)Robertson, P. K. (2010). Soil behaviour type from the CPT: an update. In 2nd International Symposium on Cone Penetration Testing, 2(May), Vol 2, 575–583.Schervish, M. J. (1996). P values: What they are and what they are not. American Statistician, 50(3), 203–206. https://doi.org/10.1080/00031305.1996.10474380Senneset, K., Sandven, R., & Janbu, N. (1989). Evaluation of soil parameters from piezocone tests. Transportation Research Record, 1235, 24–37.Torres, V., Vandenberghe, J., & Hooghiemstra, H. (2005). An environmental reconstruction of the sediment infill of the Bogotá basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 226(1–2), 127–148. https://doi.org/10.1016/j.palaeo.2005.05.005Troncoso, P. (2018). Evaluación del método de medición del perfil de velocidad de ondas de corte SPT-sísmico. Universidad de Concepción.Vardon, P. J., Baltoukas, D., & Peuchen, J. (2018). Thermal Cone Penetration Test (T-CPT). Cone Penetration Testing 2018 - Proceedings of the 4th International Symposium on Cone Penetration Testing, CPT 2018, June, 649–655.Vardon, P. J., Baltoukas, D., & Peuchen, J. (2019). Interpreting and validating the thermal cone penetration test (T-CPT). Geotechnique, 69(7), 580–592. https://doi.org/10.1680/jgeot.17.P.214Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s Statement on p-Values: Context, Process, and Purpose. American Statistician, 70(2), 129–133. https://doi.org/10.1080/00031305.2016.1154108GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79677/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINAL1026574991_2021.pdf1026574991_2021.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf5893396https://repositorio.unal.edu.co/bitstream/unal/79677/4/1026574991_2021.pdf20f5c9a47bfefb72a832c3bcba6b663eMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79677/5/license_rdf4460e5956bc1d1639be9ae6146a50347MD55THUMBNAIL1026574991_2021.pdf.jpg1026574991_2021.pdf.jpgGenerated Thumbnailimage/jpeg3832https://repositorio.unal.edu.co/bitstream/unal/79677/6/1026574991_2021.pdf.jpg6e4945013e20f69e2694c70810c4fa84MD56unal/79677oai:repositorio.unal.edu.co:unal/796772024-07-22 00:40:32.233Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==